数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.04.26] No.112
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
レイティング(評価)とランキングの数理
Amy Langville(ラングビル)
Professor, Mathematics Department, Operations Research Analyst,
College of Charleston
2012年にCarl Meyerとの共著 “No.1は誰か:レイティング(評価)とランキングの数理” が出版
[訳註:共立出版より同名の訳書あり]されると,企業,法律事務所,同僚,学生などから,
彼らのデータを解析支援する要棲を定期的に受けるようになった.
最近の興味深いプロジェクトのいくつかと,今年の数学月間のテーマ”予測の未来”
にふさわしいツールを説明しようと思う.
まず,タイムリーな応用[MAMは4月]は,3月の狂気(March Madness)です.
毎年恒例のNCAAカレッジ・バスケット・トーナメント.数百万人のファンが
この一月続くトーナメントの各試合の勝者を当てようとします.
[訳者より:ブラケット・チャレンジというのは,インターネットで行う
CBS sports serviceが提供する各試合の勝者を当てポイントを競うことらしいが,
よく知りません.米国事情に詳しい方,米国バスケットの3月の狂気と
ブラケット・チャレンジについて教えてください].
まず,同僚Tim Chartier(Davidson College)と一緒に,数学モデルのみに基づき
ブラケットを提出する方法を学生に教えます.
そのときの2つのモデル(Colley and Masseyモデル)は,チームの評価に線形システムを用い,
もう一つのモデル(Eloモデル)は,反復更新を使います.
長年にわたって,学生のモデルはよい結果を出し,ある年などは提出された
すべてのブラケットの99のパーセントを得点しました.
毎年,モデルに洗練を加えるために,学生たちは質問をしデータを集めます.
例えば,コーチ,チーム団結,トーナメント経験のような因子をどのように導入したら良いのか?
怪我は因子にどのように入れることができるか?
我々は、今年のシンデレラ・チームを予測することができるだろうか?
もう一つのスポーツ応用:オリンピック・アスリートのデータ分析で,
私の学生と私は米国オリンピック委員会を支援しました.資源の効率利用の観点から,
委員会はどのアスリートがメダルをとるか予測したい.この問題を解くためには,
回帰とシミュレーションを用います.他の問題は,国の資金がどうであれ,
アスリートにより多くのメダルを獲得する動機を与えなければならない.
この第2の問題に関する適切なデータを得ることは困難だった.
それで,英国を含む他国の促進プログラムがうまくいったかどうかに調査を広げました.
次に,Amazonの「これを買った顧客はこれも買う」のような推薦システムを議論します.
また,どの映画を顧客に推薦するべきか,どの歌が特定のリスナーのプレイリストを満たすか,
どのスポーツ用品を顧客に推薦するべきかなどを予測したい小規模の新興企業からの要請に答えるために,
私は同僚Tim Chartierとチームを組みました.共通のテーマは,企業が集めたデータを,
顧客の行動に影響する役立つ予測のために,どのように使用するかということです.
この問題を解くために,典型的にはクラスタリング(クラス分け)と最隣接クラス分けのツールを用います.
昨年,Rootmetricsから,携帯電話を評価する現在の彼らのシステムの改良の依頼がありました.
学生Tyler Periniは,うまく接続し伝達できる物理過程をエレガントにモデルしたマルコフ連鎖を立て,
現在の評価システムのもつ多くのタイがある曖昧さをなくすことができました.
Charleston大の同僚,哲学教授と心理学教授,からは,
彼らの謙譲プロジェクトで集めたテキストデータの解析の要請がありました.
ゴールは,書かれたサンプルを解析して謙譲の個人レベルを決定することです.
学生 Tyler Perini は,テキストを混合するツールを開発しました.
それは,与えられた短いテキストサンプル(ツイートやfacebook今何してるより長くない)で,
著者が謙譲か謙譲でないか予測する.
謙譲な著者は,"and”,”we”,”all”,”each other”を含み,
謙譲でない著者は,"they", "people","them", 排除的"or"などの距離を取る言葉を使う.
次のステップで,人文科学教授が研究するのは,自己抑制である.
スピーチに基づき自己抑制の低さを予測する我々のツールが,
子供たちの行動訓練を提供することを願っています.
もう一つのテキスト・マイニング・プロジェクトでは,Charleston大の大学院生は,
今年の大統領選挙戦で候補のテキストを分析しています.
彼らは,若干の面白い傾向を見つけました.
たとえば,Donald Trumpの辞書(彼の使う語彙)は,Hillary Clintonのおよそ3分の1です.
フィールドが狭くなって,有権者がどのように1人の候補から他方の候補者へ支持を移すかを予測するために,
彼らは測度の同一性とマルコフ連鎖を使います.
最後に,同僚の妻は私に非常に難しい問題ー卒業の後の医学実習生と病院との安定結合問題ーを提案しました.
データが至る所にあることは,上述の問題の多様性から明白です.
衛星からスマートフォンまで,大小のソースから,データは絶えまなく集められています.
将来は,指数関数的に多くの予測解析法を持つことになり容易に予測ができるようになります.
現在は,数学,コンピューター・サイエンス,データ科学,統計学を専攻するには素晴らしい時代です.
これらの組み合わせはさらにうまく行きます.
ここまでは,MAMのエッセイ http://www.mathaware.org/mam/2016/essay/ からの翻訳でした.
選挙の開票で,まだ開票率が35%なのに当確が出たりします.これはレイティングの予測で
トーナメントの勝ち数の推移から1番を予測するのと同じようなものです.
また,webサイトのページを渡り歩き,あるサイトで買い物をしたとすると,
それに導いたwebサイトの貢献率はどのようなものでしょうか.
googleのweb各ページのレイティングはどのように計算するのでしょうか.
サイト間の遷移行列を作り,この行列を作用させた結果新しい状態になると考えると
何度も遷移が繰り返された結果収束する状態が各ページのランキングになります.
つまり,遷移行列のn乗の固有ベクトルを求めることになります.
ここに線形代数が使われるし,現在の状態だけで次の状態が決まるというマルコフ連鎖にもとづき
遷移行列を決めることができます.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.04.19] No.111
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今月14日夜に,熊本県益城町で震度7の大きな地震が起きました.マグニチュードは6.5でした.
地震規模のスケールであるマグニチュードは,リヒターの発案当時は便宜的なものでしたが,
今日では,ずれの面積と変位,地面の剛性から計算できる地震の仕事エネルギーを対数で表示したものです.
14日の地震のマグニチュードは,巨大地震ほどではないが,震源が10kmと浅いため,
局地的に地表が激しい揺れとなり大きな被害がでました.
その上,この地域はフォッサマグナ(活断層が集まっているベルト地帯)の上にあり,
次々と余震が続きます.震源もフォッサマグナに沿って熊本県や大分県由布市に移ってきました.
心配ですね.被害お見舞い申し上げます.皆様のところは大丈夫でしょうか.
阿蘇の東側から佐伯,および,阿蘇の南側には,むかし行ったことがあります.
峡谷で囲まれた台地が島のようになった地形で,交通は大変だったそうですが,豊かな芸術文化が伝承されています.
通潤橋のある山都町では人形浄瑠璃が印象に残りました.怪我や避難やたいへんな日々と思います.
応援しております.はやく落ち着きますように.
■フォッサマグナは西日本では,佐田半島から大分,由布,九重,阿蘇を通り,天草,八代海に沿って走り,
川内原発の付近に至るようです.活断層の調査は露頭でできますが,川内原発の地下を通っていても見えません.
再稼働の根拠となった九電の調査は3つの断層延長上の1つのみの結果で,規制委は不十分のまま再稼働に踏み切りました.
フォッサマグナの走る佐田半島の付け根には伊方原発が,八代海側には稼働中の川内原発があります.
すべての原発は即時廃炉を進めるべきですが,特に地震の活動期にある九州で稼働させた川内原発は停止すべきです.
原発事故でどのような責任がとれるというのでしょうか.
川内原発は発電を続けています.それなのに送電先がなく被災地に電源車41台+81台を17日までに配るという.
役立たずの原発ですね.太陽光などの地域分散型の発電システムにすべきです.
■この機会に,手元にあった第4紀地図(1987年版で古いものです)を30年ぶりに開いてみました
(実は一時期,私は地学を教えていたことがあります).参考までに地図を引用掲載しました.
伊方原発,益城町,フォッサマグナの大体の位置は,私がこの地図に書き込んだものです.
阿蘇の周りなどに見られる黒い線が活断層です.
活断層とは,第4紀後期(数十万年前)以降に何度か動いた断層で,地震の原因になる可能性があります.
第4紀は258万年前(寒冷化に向いだした)からで,人類出現の時代.
古い原人が発見されるたび,第3紀と第4紀の境は遡っていき,
258万年前は,2009年に国際地質科学連合が定義したものです.
地球が生まれた45億年前を1月1日の0時とし,現在を新年が始まる0時と例える地球カレンダーなら,
第4紀後期は大晦日の夕方以降です.ごく最近動き,まだ動きそうな断層が活断層ということになります.
活断層であるかどうかは露頭で,断層のできた時期の鑑定になります.
■この地域の乗るユーラシアプレートの下には,フィリピン海プレートがもぐり込んでいます.
地殻と上部マントルの地殻と一緒に動く部分を合わせてプレートと呼び,厚さはおよそ100kmです.
地球の半径は6,500kmですから,半径65mmのボールに例えるなら,プレートの厚さは1mmです.
プレートは,マントル対流に乗ってふわふわ動きぶっつかりもぐり込む皮みたいなもの,
その上に我々は暮らしています.
以下に,第4紀地図を掲載:
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/62/17401362/img_1_m?1460875928
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/62/17401362/img_2_m?1460875928
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.04.12] No.110
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
数学と社会の架け橋=数学月間
数学月間は7/22~8/22(22/7=π,22/8=e)の期間です.
私たちは,この期間に数学への興味を惹き起こすイベントが
各地で盛んになるように応援しています.
数学月間の初日の7/22には毎年,懇話会を開催しています.
今年で数学月間懇話会は第12回になります.
計画中の懇話会情報:正式アナウンスに先立ちお知らせします.
無料です多くの方のご参加をお待ちしています.
日時:7月22日,14:00~17;00
場所:東大駒場キャンバス,数理科学研究科・002号教室
1.亀井哲治郎 数学の周辺
2.田渕健 統計と医学
3.松原望 統計と社会
(演題はいずれもまだ仮題です)
問い合わせ先:sgktani@gmail.com(日本数学協会,数学月間の会)
今年のテーマは,統計学です.
世の中は不確かなものやことばかりで確率で記述されます.確率の正しい理解が必要です.
従来,得られなかったようなデータも多量に収集できる時代になりました.
でも,データ収集が恣意的であったり,不合理な解析をしたりすると
どんな結論でも導くことができるので,だまされないように要注意です.
今年(4月に実施中)の米国MAM(Maths Awareness Month)のテーマは「予測の未来」.
・外れた世論調査ー予測の限界を知ろう
・あなたの健康のために
などの興味あるエッセイがあります.ちょっと紹介しましょう.
2015年5月の英国総選挙では,与党の保守党が過半数の326議席を獲得し,
労働党は232議席でした.スコットランド民族党は大躍進の56議席です.
選挙直前の世論調査では,保守党と労働党の差がこれほど広がる予測はありませんでした.
最後の世論調査と投票日の間に逆の一揺れがあったわけですが
なぜこれほど予測に誤差が出たのでしょうか?
調査委員会の報告書(2016年3月)によると,サンプリングが正しい代表値でなかった
ということですが,理想のランダム・サンプリングをすることはできるのでしょうか.
予測を頭から信じることは危ないことです.
今年は,日本も重要な選挙の年です.支持率調査などでも
現実が正しく反映されているのか怪しいところがあります.
2001年にフラミンガム心臓研究の研究者たちは,拡張期血圧,収縮期血圧,脈拍圧を,
冠動脈性心臓病リスク心の予測因子として使用できる結果を発表しました.
この研究により,冠動脈性心臓病の予測能力が向上しました.
異なる年齢層にたいする予測因子の強度を解析し,
それぞれの年齢層でどの予測因子が最も支配するか結論を得ました.
健康とウェルネスのための予測因子は,いろいろな理由で多くの分野で改善が進んでいます.
利用可能なデータは劇的に拡大し,モデリングや解析に用いる技術と手法は向上しています.
一つの分野での進歩は,別の分野の進歩につながり,また広がります.
研究者は以前よりも,より深くより洞察に満ちた結論に到達することができるようになりました.
フラミンガム心臓研究は1948年に始まったが,その後数回の拡大があり,
続く世代集団だけでなく,人口の多様性の増加を反映している集団を追加しました.
これにより,研究者達は,人口の幅,および,多様な健康問題の側面の両方を
表すデータの使用ができるようになった.
この研究のために,研究者達は,原初の集団に20才から79才の集団を統合した.
さらに,研究者達は,数年前には不可能だった場所でのデータ収集をしています.
フィットネスの追跡者は,活動レベルや睡眠パターンのような個人生活の情報を
容易に定量化できる恩恵を受けている.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.04.05] No.109
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
前号(108号)に,色置換の性質の項で誤りがありました.お詫びして訂正します.
今号は,訂正した全文と,新たな話題の両方を載せますので,長くなります.
12枚のユニットで作るユニット折り紙の立体は下図のようなものです.
この立体は,正8面体の面(正3角形)の上に,
頂角が直角の三角形ピラミッドが乗っている形です.
これから作る展開図では,ピラミッドは正8面体の面(正3角形)に
射影されているので,ぺちゃんこになっています.
正8面体の展開図の各面を,このように塗り分けるようにユニット折り紙を組み立てると,正8面体の各頂点のある4回回転軸(x,y,z軸の方向に3本ある)で4色置換が起こり,正8面体の面の真ん中を通る3回軸(4本ある)は,1色は保存し,残る3色を置換する3回軸だということがわかるでしょう.もちろん辺の真ん中を通る6本の2回軸の色置換も完璧です.
このような色の配置は実際にユニット折り紙で実現可能です.作ってみてください.
ユニット折り紙の規則では2つの直角3角形ピラミッドをつなぐユニットは1つのみですから,展開図の三角形の辺を越えて,対角上に同色の配置を作ります.展開図では,もう一つの対角上にも同色がある(辺を挟んで×になる配置)ように思うかもしれませんが,そちらは1つのユニットではありません.辺の両側で分かれる別々のユニット(同色だが)です.4色のバリエーションはいくらでもできますが,
配置に関しての解はただ一つのようです.
ただし,ユニットの作り方で右回りと左回りのものがあります.
この立体を眺めると4回軸の周りに,4つの色の帯の大円(緑,黄,青,ピンク)が見えます.
各色の帯の大円は,各3回軸を地球の地軸と見立てたとき赤道に相当します.
そして,その3回軸が保存する色が,帯状に現れるのです.
この立体には4色置換が行われる4回回転軸(3本)があり,外から(x,y,z軸の正方向)見て右回りに以下の順です:
x軸:黄→ピンク→青→緑,
y軸:黄→ピンク→緑→青,
z軸:黄→青→ピンク→緑
3色置換が行われる3回回転軸(4本)があります.
z軸(z>0方向)の外から見て右回りに以下の順に置換が起こります:
黄→緑→青(保存:ピンク),黄→緑→ピンク(保存:青),
ピンク→青→緑(保存:黄),黄→ピンク→青(保存:緑)
ーーーーー
新たな話題
■正20面体(あるいは双対な正12面体)
60ユニット(正20面体の面の上にピラミッドが乗っている)の立体の塗り分けを考えます.
以下は展開図
6色を使って塗り分けます.
5回回転軸は6本ありますが,それぞれを地球の地軸とすると
それぞれの赤道に相当する大円に配置される1色が保存され,残りの5色が順番に置換されます.
3回回転軸は10本ありますが,それぞれ2組の3色置換になります.
ーーーーー
■平面
「大川組子」(さなさんブログから教えていただきました)という伝統工芸があります.
シンプルで精緻な組子で感動します.ななつ星の写真をご参照ください.
これらの組子はどちらも三角の格子でできています.ただし,どちらの組子も
格子の中身に,対称性は同じだが異なるモチーフが2種類(あるいは3種類)あり,
単純ではない面白い図案になっています.
さて今日は,この組子とユニット折り紙の関係についてです.
ユニット折り紙で作る多面体の場合と異なり,平面ですので正三角形が頂点で6つ集まっています.
そして正三角形の格子の上にピラミッドが乗っています.
図はユニット折り紙でこれを作り真上から見たものです.
6回軸の色置換を完全にするためにこの図では6色使いました
(地図の塗り分けで,4色問題というのがありましたね.長い間未解決の難問でしたが今は証明されています.この図の場合は,実は3色あれば塗り分けられます.一色の周りは4辺で,皆頂点で接続していますから)
そして,これは壁紙模様の平面群の一つで6回対称です.
色置換の対称性も完全にするには6色で塗り分ける必要があります.
色の区別ができる場合の単位胞タイルは大きな白い4辺形,
色の区別ができない場合の単位胞は小さな白い4辺形です.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.03.29] No.108
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
桜の季節がやって来ました.皆様のまわりはどうでしょうか.
私はこのところユニット折り紙に凝っています.今日はその話です.
ユニット折り紙とは,多数のユニットをつないで多面体を作る方法です.
1つのユニットは同じ大きさの直角3角形4個が連なった帯の様な形です.
まず,12枚のユニットで作られる多面体を取り上げましょう.
(Fig1)http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/36/17363336/img_0?1458990114
ユニット内の4つの直角3角形の両端のものはつなぎに使われますから,
立体の面となる直角3角形はユニットあたり2つ(合わせて正方形)です.
この立体の形は正8角面体の面の上に頂角が直角のピラミッドが乗っている形です.
1つのピラミッドは3枚のユニットで構成されています.
この立体をユニット色紙で塗り分ける方法を考察しました.
正8面体の各頂点のまわりに4回対称軸(それぞれ,x軸,y軸,z軸の方向)が3本あります.
色の巡回置換を4回対称軸に結び付けると4色要りますので,
全体を4色で対称操作と矛盾しないように塗り分けてみましょう.
■展開図
これから作るのは正8面体の展開図で,正三角形の面の上のピラミッドは
正8面体の面に射影してぺちゃんこになっています.
(fig.2)http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/65/17360665/img_0_m?1458989502
展開図の塗り分けをもとに,ユニット折り紙を組み立てます.
このような色の配置は実際にユニット折り紙で実現可能です.作ってみてください.
ユニット折り紙の規則では2つのピラミッドをつなぐユニットは
1つのみですから,展開図の三角形の辺を越えて,対角上に同色の配置を作ります.
展開図では,もう一つの対角上にも同色がある(辺を挟んで×になる配置)
ように思うかもしれませんが,そちらは1つのユニットではありません.
辺の両側で分かれている別々のユニット(同色だが)です.
4色のバリエーションはいくらでもありますが,配置に関しての解はただ一つのようです.
ただし,ユニットの作り方で右回りと左回りのものがあります.
■得られた立体の性質
正8面体の各頂点にある4回回転軸(3本あります)で4色置換が起こり,
正8面体の面の真ん中を通る3回軸(4本あります)は,1色は保存し,
残る3色を置換するということがわかるでしょう.
もちろん辺の真ん中を通る6本の2回軸の色置換も完璧です
この立体を眺めると立体の周りに,4つの色の帯の大円が見えます.
各色の帯の大円は,各3回軸を地球の地軸と見立てたとき赤道に相当します.
そして,その3回軸が保存する色が,帯状に現れるのです.
4色置換が行われる4回回転軸(3本)は,外から見て右回りに以下の順です:
x軸:黄→ピンク→青→緑,
y軸:黄→ピンク→緑→青,
z軸:黄→青→ピンク→緑
3色置換が行われる3回回転軸(4本)は,
黄→緑→青(保存:ピンク),黄→緑→ピンク(保存:青),
ピンク→青→緑(保存:黄),黄→青→ピンク(保存:緑)
■さらに色々な性質があることに気づきます.-------
3回軸は軸の負方向から見ても正方向から見ても同じ順番の置換を起こしますが,
4回軸は軸の負方向から見ると正方向から見た場合と逆順の置換が起こします.
何故でしょうか?
正8面体の骨格をもつ今回の立体では,正3角形が頂点で4つ集まる展開図を作りましたが,
正20面体の展開図では正3角形が頂点で5つ集まります.そして,対称性を保った色の塗り替えは5色が要ります.
展開図で色の配置を考えてください?.
平面の3角格子では,正3角形が頂点に6つ集まります.
6回対称を保った色の塗り分けになるように,展開図で6色の配置を決定してください?..
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.03.22] No.107
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
早いもので桜も咲き始めました.皆さまもお変わりなくお過ごしのことでしょう.
周期的空間(2次元に限定すれば壁紙模様)の数学-結晶空間群-の平易な解説法を色々工夫しています.
理論の本質が理解できるようにして,数学的な記述は最小限にしようとしています.
しかし,ある程度の数学的な記述をした方が反って理解し易いのです.
そこで,以下の様な記述に落ち着きました.皆様如何お感じでしょう.ご意見ご感想をお聞かせください.
さらに改良に活かしたいと思っています.
ーーーーー
有限図形の対称性を扱うのが点群.繰り返し模様(周期的な空間)の対称性を扱うのが結晶空間群です.
有限図形の対称性に比べて周期的な空間の対称性はなじみのない人が多いようです.
しかし,周期的な空間はとても重要です.例えば,もし体が縮む薬があり原子の大きさ位になって
結晶の中に入り込んだら,そこは無限に繰り返す世界(=結晶空間)です.
ここで,点群から空間群への拡大方法にちょっと言及しておきましょう.
原理の骨格を簡明に示すために,扱う周期的空間は2次元(平面)に限定しました.
2次元での繰り返し模様(=壁紙模様)は,エッシャー〈1944頃)の作品に見られます.
(1)格子
2次元空間では,互いに独立な2つの基本並進ベクトルa1,a2がとれ,
a1,a2の整数係数の1次結合をすべて集めたT={h・a1+k・a2丨h,kは整数}を,
この平面の格子点の集合(あるいは単に“格子”)といいます.
集合Tは無限集合になりますが, 群の条件を満たしており,Tを並進群とも呼びます.
ブラべ格子とは,結晶点群の対称性を基準に,格子のタイプ分類をしたものです.
(2)点群一有限図形の対称性一
1点の周りの対称操作(点群の対称操作)を考察しましよう.
回転対称軸には,1, 2,3,4,5,6,・・・,∞回(回転対称)軸があり得ます [何もしないのは1回軸].
n回軸Cnとは,360°/nだけの時計回りの回転操作で,n回続けるとCn^n=360°=0°(mod 360°),
これは恒等操作1です.回転操作Cnからは,回転群Cn={Cn,Cn^2,…,Cn^n=1}が生成されます.
その他の2次元点群で見られる対称操作には,鏡映m [対称心-1は,2次元空間では2回軸と同じ]があります.
鏡映操作mが生成する鏡映群はm={m,m^2=1}
(注)mod360°とは360°回転したら同じものとする[360°を法として同値]という意味です.
別の例では,時計の文字盤があります.我々は13時のことを1時とも言いますが,
これは,mod12[12を法として同値]を用いた結果です.
(3)結晶点群一格子と両立できる点群一
結晶では,点群の回転対称性と並進群(格子)の対称性とが両立しなければなりません.
2,3,4, 6回軸は,それぞれに両立できる格子 がありますが,5回軸の場合はどうでしょう.
1つの5回軸が支配する局所的な作用域として正5角形タイルを描きます.
平面に周期があり複数の5回軸が配列している状態を考えると,各5回軸は自分の局所的な作用域
(正5角形タイル)内でのみ有効なのではなく,全域でも有効です.
各5回軸の局所的な作用域は,互いに他の5 回軸により変換し合い,全体として不変な配置となるべきです.
これは2次元平面を正5角形タイルで隙間なく張り詰めることと同じで,そのようなタイル張りは実現不可能です.
したがって,5回軸と両立する格子はあり得ません.7回以上の回転対称軸に関しても同様で,
結局,格子と両立できる(=結晶空間で許される)回転対称は,2, 3,4,6回軸に限られることになります
[ただし,2次元,3次元空間 での話].
(4)空間群の作り方〈2次元の場合)
2次元空間では,10種の結晶点群G:1,m,2=-1,2mm, 3,3m,4,4mm,6,6mm,
および,5つのブラべ格子T:clino-P (斜交単純格子),ortho-P(直交単純格子),
ortho-C (直交C面心格子),tetra-P(正方単純格子),hexa-P(六方単純格子)が数え上げられます.
周期的な空間での対称操作が作る群が結晶空間群で,結晶空間群Φの要素は,
結晶点群Gの要素と並進群Tの要素との積(結合)です.Φ=G×T
壁紙模様の平面群17種の構成を見てみましょう.
壁紙模様は,1つの“モチーフ”(=単位胞の中身)を無限にある格子点の上に配置して構成されています.
格子点は無限にあり,どの格子点にいても常に世界の真ん中ですから,
「格子点距離の倍数だけ移動した点はすべて同価」との見方をします.
これを“格子を法として(mod T)同値”と言います.無限に繰り返す“モチーフ”の分布を,
単位胞内の1つの “モチーフ”に還元できます.
[準同型写像で,Φ/T=G のように表現します.ただし,並進群TはΦの正規部分群であることを用いています]
この見方をさらに進めると,“モチーフ”内部の対称性を記述する結晶点群G自体も,
格子を法として(mod T)閉じればよく,G(mod T)と拡張でき,
拡張された結晶点群G(mod T)と並進群Tとの積で作られる空間群もあります.
このような夕イプの空間群には, 映進面(鏡映 + 鏡面に平行に格子距離/2の並進),
n回螺旋軸(360°/nの回転 十 軸方向に格子距離/nの並進)などの操作があります.
ただし,螺旋軸が現れるのは3次元以上の空間です.
例として,平面群P2mm, P2mg, P2ggの作り方を図示します
(注)頭のPは格子を表し,続く2mmなどが結晶点群の対称要素です.後者の2つ平面群には,映進面gが現れます.
Fig
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/17/17352517/img_0_m?1458546408
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/17/17352517/img_1_m?1458546408
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.03.15] No.106
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■ユークリッド幾何
アレクサンドリアにいたユークリッド(300BC)は,「原論」全13巻を著し,これがユークリッド幾何の誕生です.
彼が作った幾何学体系は,演繹を積み重ねて構築されるのですが,その演繹のスタートに,
彼は5つの公準(公理)を設定しました.公準とは無証明の命題で,常識的で直観的に違和感のないものでした.
公準の5番目が平行線に関してです.ユークリッド幾何は,測量や建築や物づくりに古代から活用され,
我々も日常的にその理論の活用をしています.
■非ユークリッド幾何
ユークリッドの第5公準(平行線の公準)を変えると,異なる幾何体系(非ユークリッド幾何)が構築できます.
これを考えたのが,ロバチェフスキー(1829,1840),ボヤイ(1832,1835)です.
ガウスも同時代にすでにいくつかの結論を得ていたのですが発表はしませんでした.
双曲幾何の誕生です.ロバチェフスキーはロシアのカザン大学の数学者,ボヤイはハンガリーの数学者,
ガウスはドイツの数学者で当時すでに大御所でした.これらの研究はそれぞれ独立になされたものでした.
双曲幾何に続き,ドイツのリーマンは楕円幾何を生み出しました.
さらに,リーマン(1854)は,高次元の曲がった空間を扱うリーマン幾何を生み出します.
空間の曲率が楕円的であったり双曲的であったり位置ごとに変わるような空間の幾何学です.
これはアインシュタイン(1915)が一般相対性理論を構築する際に必要となる理論でした.
■非ユークリッド幾何とユークリッド幾何の整合
19世紀末から20世紀初頭に,ケーリー(イギリスの数学者,弁護士),クライン(ドイツの数学者),
ポアンカレ(フランスの数学者)などが,射影幾何やユークリッド幾何空間の中に非ユークリッド空間のモデルを作ります.
機会をあらため,ポアンカレの円盤モデルはもう一度紹介するつもりです.
■射影幾何から非ユークリッド幾何へ
ダビンチなど画家たちは,遠近法や透視図法を古くから用いていました.
デザルグ(17c初頭,フランスの数学者建築家)は,透視図法を発展させた射影幾何の祖です.
ポンスレー(19c中葉)はフランス革命で開設されたエコール・ポリテクニークでモンジュの下で学び,
ナポレオンのロシア遠征に従軍.ロシアで捕虜になっている間に射影幾何学を研究しました.
射影変換というのは,物体から影を作る演算です.射影法には.平行光線や点光源からの発散光線を用いるなど色々あります.射影変換で失われる図形の性質もありますが,保存される性質もあります.
射影変換では,直線は直線に変換されるし,2つの直線の交点の性質も同様に保存されます.
しかし,長さや角度は保存されません.例えば,円を投影すると歪んでしまいます.
それぞれの変換で保存される性質に注目すると,色々な幾何学が生まれます.
群という概念も変換の集合に関する構造で,群に注目してた幾何学もあります.
クラインは,ユークリッド空間を運動群で規定されるものとして定義しました.
射影幾何やアフィン幾何もあるし,ポアンカレらによる位相幾何(図形のつながり方に注目)なども生まれています.
次のデザルグの定理を見るとわかるように,デザルグの定理を3次元で証明するのは容易ですが,
2次元で証明するのは非常に困難です.それは3次元から2次元への射影により,
長さの情報が失われてしまうからです(比率は保存されます).
ーーーーー
■デザルグの定理
△ ABC と△A'B'C'があり,AA',BB',CC'が一点 O で交わるなら,
AB とA'B'の交点 P,BC と B'C'の交点 Q,CA と C'A'の交点 R は同一直線上にある.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/84/17335884/img_0_m?1457866730
(これを3次元の中で証明するのは非常に容易です)
この図が紙面に垂直な方向に高さをもつ3次元世界の中に置かれているものと想像しましょう.
△ABC と△A'B'C' は平行でなく,それぞれの三角形を含む平面は,線分QRを含む直線で交差しています.
当然,線分ABは△ABCを含む面内に,線分A'B'は△A'B'C'を含む面内にありますから,
ABとA'B'の交点Pは,両平面の交差する線分QRの延長上にあることになります.
ーーーーーーーーーー
(参考)ユークリッド幾何学と非ユークリッド幾何学
色々な幾何空間があります.大きく分けて,ユークリッド幾何空間と非ユークリッド幾何空間です.
非ユークリッド幾何空間には,楕円幾何,双曲幾何の支配する幾何空間があります.
我々の常識が通用するユークリッド幾何の世界では,
“直線l外の1点をA通り,その直線に平行な直線“は,唯一本だけ引けます.
平行線が1本も引けない世界や,無数に引ける世界とはどんな世界でしょうか?
これら3種類の幾何空間を,平面を例にとり比較します.
(1)ユークリッド幾何平面 (2)楕円幾何平面 (3)双極幾何平面
例⇒我々の常識の世界 球の表面 ポアンカレの円盤モデル
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/28/17335928/img_0_m?1457866699
それぞれの空間で,“直線の定義を変えれば”,そのようなことが起こる世界があることを納得できるでしょう.
2点間を結ぶ直線とは,その世界で2点間の距離を最小とするものです.
(1)常識の通用するユークリッド幾何平面
2点間の距離が最少なのは我々の知っている直線です.
(2)球の表面は楕円幾何平面の例
球表面の世界では,大円(球中心を通る平面で切った球の表面)が直線です.
地球自体は3次元ユークリッド空間の物体ですが,表面だけなら楕円幾何平面です.
地球上の2点間の距離が最小のものは大圏コースと呼ばれますが,これは地表の大円上の線分のことです.
異なる2つの大円は必ず2点(直径の両端)で交わるので,直線外の1点を通る平行線はありません.
また,地球儀の緯線のようなもの(小円)は大円でないのでこの世界では直線になりません.
(3)双曲幾何平面の例(ポアンカレ円盤モデル)
双曲幾何の世界のポアンカレ円盤モデルでは,円盤のフチに直交する円弧を,直線と定義します.
この世界では,ある直線に対する直線外の1点を通る平行線は無数に引けます.
円盤モデルの世界では,円盤のフチ(地平線)に近づくほど見かけの距離はどんどん縮んで見える
[あるいは旅をする自分がどんどん縮む]ので,永久に地平線に到達できません.
このような世界の最短距離(直線)は円盤のフチに直交する円弧となるのは納得できるでしょう.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.03.08] No.105
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
このブログやメルマガの表題になっている「数学月間」についての言及は少なかったように思います.
今日は,初心にもどって「数学月間」のことをお話します.
<数学と社会の架け橋>「数学月間」は,毎年7月22日~8月22日です.私たちはこの期間を中心に,
市民が数学に関心を向けるようなイベント開催を奨励しています.「数学月間」は,
市民が数学に関心を向けると同時に,数学者が社会に関心を向ける双方向の架け橋を目指しています.
何故7月22日~8月22日かと言えば,22/7≒π(円周率),22/8≒e(自然対数の底)
という数学の基本定数にちなんでいます.日本の「数学月間」は,今年で11年目.
毎年,初日に“数学月間懇話会”を開催し,今年の7月は第12回です.
正式アナウンスは4月末の予定ですが,以下の案で只今準備中です.
遠方の方もおられましょうが,ぜひ多くの方のご参加をお待ちしております.
今年のテーマは,現代社会で正しい理解が必要になる“確率や統計”がテーマです.
■第12回数学月間懇話会 7月22日(金)14:00-17:00(開場13:30)
場所●東京大学(駒場)数理科学研究科棟002号室
最寄り駅●京王井の頭線「駒場東大前」
参加費●無料
内容[演題は仮]●数学よもやま話(亀井哲治郎),医学と統計学(田渕健),社会と統計学(松原望)
問合せ先●数学月間の会(SGK),sgktani@gmail.com(SGK世話人)
17:30から構内(イタリアントマト)で懇親会(各自めいめい払い)
ーーーーーーー
■フランスの数学週間
2012年から始まったフランスの数学啓発活動-数学週間の今年(第5回)のテーマは“数学とスポーツ”です.
今年は,3月14日~20日が実施週間です.
http://www.education.gouv.fr/cid59384/la-semaine-des-mathematiques.html
パートナーと呼ばれる20数団体が参加して,毎年3月中旬に行われ,毎回一つのテーマが決められます.
“数学カンガルー”テスト・暗算大会と国内数学オリンピック大会とが同時開催されます.
数学カンガルーとは,1978年,オーストラリアの数学教授が考案した多項目選択式数学(算数)学力テストを,
フランスの二人の数学教授が更に発展させたもの(1991年)で,
現在は,“国境なきカンガルー協会”が,毎年3月の第3木曜日に実施し,
EUを中心に,世界50か国(600万人)以上が参加しています.
ーーーーーーーーー
■米国の数学月間
1986年4月のレーガン宣言で始まった米国の数学月間MAM(Maths Awareness Month)は,
長い歴史があります.米国MAMのスタートとなった歴史的なレーガン宣言は,
Webでは見当たらなくなりました.このブログの初期の項目に翻訳しておいたものがありますので,ご覧ください.
http://rdsig.yahoo.co.jp/blog/article/titlelink/RV=1/RU=aHR0cDovL2Jsb2dzLnlhaG9vLmNvLmpwL3Rhbmlkci8xNTc0NTU4My5odG1s
今年のテーマは“予測の未来”です.数学月間の先進国ですが,昨年あたりからあまりパッとしないように感じます.
ちなみに昨年のテーマは,“数学はキャリアを運ぶ”でした.
あまり数学の功利的な面を取り上げるのは私は好みません.
今年は数学に地道に根差したものになることを期待しています.
米国MAMの実施月は4月ですが,まだ準備が遅れているようです.
http://www.mathaware.org/mam/2016/essay/
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.03.01] No.104
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
平面の非周期なタイル張りの一つが,
ロジャー・ペンローズが考案した(1966)ペンローズ・タイリングです.これは
2種類のタイルによる規則的ではあるが,周期的ではないタイル張りです.
2通りの方法でペンローズ・タイリングを作る.
(1)正10角形から出発して,分割・拡大を繰り返して作る
ペンローズ・タイリングに出てくる2つの2等辺3角形 A型とB型は,
正5角形の中にあります.この図形には黄金比1:φがたくさん出てきます.
A型やB型の2等辺3角形の等辺と底辺の比はφ:1(A型)や1:φ(B型).
ただし,φ=1.618・・・
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568616/95/17313295/img_0_m?1456754314
黄金比の3角形は,分割すると同じ型の3角形が含まれている性質があります.
A型およびB型の2等辺3角形は,それぞれ図示したように分割できます.
この性質を利用して,正10角形から出発して,分割とφ倍の拡大を繰り返すと
平面全体をA型とB型の2等辺3角形で埋め尽くすことができます.
こうしてペンローズのタイル張りを得ることができます.
タイルの分割が十分進んだときの,AのタイルとBのタイルの個数の比は,
φ(=1.618・・・):1の黄金比になります.
図は3回の分割と拡大を繰り返して得た図形です.
この図形で見られる形は,凧(2A)と矢(2B)です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568616/95/17313295/img_1_m?1456754314
(2)正5角形のフラクタル配置を繰り返して作る
正5角形を一回り大きな正5角形の内に並べます.
これをさらに一回り大きな正5角形の内に並べます.
これを次々繰り返すと,全平面を埋め尽くすフラクタル図形ができます.
図上段は,この操作を3回繰り返したところです.
ギャップができますが,気にしないで配列を進めます.
実は,後でギャップの中も正五角形(白色)で埋めます.
すると最終的には,王冠型や星型のギャップが残されることがわかります.
この図をよく見ると,図中段のような2種類のタイル(黄色と青色の菱形)で
置換えると,図下段のようにペンローズ・タイリングであることがわかります.
図下段右の大きなペンローズ・タイリングはこのようにして得たものです.
このペンローズ・タイリングには,中心に5回回転対称が残っていますが,
中心の回転対称を消す配置も可能です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568616/07/17050507/img_3_m?1456754576
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.02.23] No.103
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今回は,話題の凍土遮水壁についての解説にしました.海への汚染を止めねばなりません.
■福一の事故から5年が経った.メルトダウンした原子炉の中がどのようになっているのか,
燃料棒のデブリが地下どこまで汚染しているのか,見た者はまだ誰もいない.
廃原子炉からデブリ取り出しの開始は,早くて2021年である.この間毎日,多量の地下水が原子炉建屋の下を流れ,
デブリを浸している高濃度の放射性汚染水と混ざり海に流れ込んでいる.豊富な地下水の流量は日に400トンと言われる.
読者も航空写真を見たことがおありかと思うが,汚染水貯蔵タンクが1,100基も立ち並び,
もはや敷地内にタンクを作る余地のない状態である.1~3号炉の冷却のために注入する水は400ton/日,
建屋地下を流れ去る地下水400ton/日のほかに,原子炉建屋を浸し冷却水と混合する地下水が400ton/日,
従って,建屋地下から汲み出す冷却水が800ton/日で,分離されてタンクに貯蔵される高濃度の汚染水は400ton/日という.
■従って,地下水を原子炉建屋のデ ブリに触れさせずに,バイパスさせ汚染のないまま海に放出したらどうか
という案は当初からあった.地下水脈は地上を流れる川のように迂回させるという工事 はできない.
緊急に短期間で実施できる対策に,トンネル工事などの水止めで実績のある凍土遮水壁を提案したのは
鹿島建設でこの案が採用された.
凍土遮水壁は原子炉建屋と建屋の周りのサブドレインを取り囲む周囲1,500mで,
深さ30mまで冷却パイプを打ち込み地盤,あるいは流水を凍らせるものである.
事業費約350億円は全額国費で賄われ,完成後も凍結を保つために,年間約20億円の電気代がかかるので,
「国による東電の救済策」との批判もある.(北海道新聞,2/18社説)
■2014.4月に凍結し難い箇 所の試験凍結.5月に山側全体の凍結開始が,2015.3月に凍結開始,
さらにもっと計画がずれ込んだ.凍土遮水壁の工事は2014.6月に 開始し,
毎日約500人が働き,2年を費やしてやっと工事が完成したのだ.工事は犠牲者もでる難工事で現場の努力は評価したい.
凍土壁は,トンネル工事での短期間とか,局所現場に適応実績のあるもので,
このように周囲をぐるりと塀のように囲んだり,何年にもわたって凍結を維持した実績はない.
地下水脈の深度が深かったり,多量の地下流水が熱を運び去ったりして凍結できないのではないかと私も心配している.
原子力規制委員会は,凍結を実施 して地下水の侵入を止めると,サブドレインの水位より原子炉建屋中の水位が高くなり,
デブリに触れている高濃度の汚染水がサブドレインの方に出てくるリス クを懸念し,
やっと完成した凍土壁の稼働にストップをかけている.いまさら何を言っているのかと思う.
規制委員会,田中俊一委員長は効果が期待できないと,この件に関しては冷淡である
(2/17田中俊一委員長定例会見,iwj中継).
3月初めに,水位の影響の少ない海側(建屋からの汚染水の排出側)だけ凍結 し,
様子を見ながら徐々に全周の凍結を行うという案を東電が提出し,これを規制委員会が認可して即実施に入る見込みである.
凍結が始まって順調だと8ヶ月 後に,流入地下水は日に90トンに低減されるという(2/15東電定例会見,iwj中経)
■凍土壁工法は,ローコストな救 急的な工法で,すぐ実施でき海洋の汚染を防止することに意味があったのだが,
計画より2年以上遅れ,今稼働しても凍結までまだ8ヶ月もかかる.この間汚染水は海に漏れま くっており,
対策時期を逸しいる.現場の苦労に同情しうまくいくことを望むが,抜本的な解決策ではないのが残念だ.
■規制委員会は,規制値内の汚染水なら海洋に放出してかまわない(抜本的な手立てを打っていない)との方針だ.
しかし,排水規制は放射能の濃度のみで総量は規制されないので,汚染水放出が続くと海洋汚染は深刻になる.
廃液の規制はCs134で60Bq/L,Cs137で90Bq/L,Sr90で30Bq/Lであり,これらの核種が混ざっていれば合計の放射能で規制され,
これら部分成分の濃度はさらに低く規制されるはずである.
ところが敷地内の海側の井戸水から規制値の何千倍もの汚染が観測されているのが現実で,
地下水も高濃度に汚染されている可能性が高い.
海水のモニタ値に変化が出るなら,海水の量を考えればそれはとんでもない汚染で死の海である.
現地漁協は風評被害というが, 食物連鎖による魚の汚染は進んでいる.
このことを考えると,一刻も早い汚染水の排出を止めるべきで,
規制委員会が効果が期待できないなどと無関心を決めることは許されることではない.
-------
(注)ちょっとわかりにくいのだ が,原子炉建屋をぐるりと取り巻く凍土遮水壁は全部,陸側遮水壁とも呼ばれる,
それは,現存する海側遮水壁に対する名称で,海側遮水壁は,鋼管矢板594 本を使用し
海の前に作った全長約780mの壁(凍土ではない)で,2015年10月26日に作業終了している.
大雨の折などポンプの能力が追い付かずK排水路から高濃度の汚染水がオーバーフローすることがあるのはこの海側遮水壁である.
本文中で,陸側,海側と使われるのは凍土遮水壁の陸側の部分,海側の部分という意味である.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.02.16] No.102
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
写真は,なかなか洒落たテーブル断面の模様です.最近入ったレストランで発見しました.
調べて見るとこの断面の孔は向こう側まで貫通しています.どうやって貫通孔を穿けたのでしょうか?
菱形,長方形,わざわざ貫通孔を穿けるのはとても困難な作業です.
そこで,さらによく観察すると,上・下面は貼り合わせて作ったようで,鏡映対称になっています.
片面をこのような溝つきに仕上げて,溝つき側を内側に貼り合わせれば,
このような上・下鏡映対称で貫通孔のある断面を作れます.
面白い断面模様ができるし,これらの溝が貼り合わせのマーカーになるのかもしれない.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/71/17285171/img_0_m?1455501541
このように考察したところで,とても面白かったのでこれをfacebookの記事にしました.
すると,友人から以下のコメントがありました.
「丸太の外周部分を使って背中合わせにしているのですね。
切れ込みはおそらく反り止めではないかと思います」
なるほど,溝は反り止めの効果があったのです.実に巧妙な木取です.
木目を頼りに木取の図を描いてみました.
1本の丸太材から柱を切り出した残りの外側廃材から4枚とれます.
幾何学的にも見事で,経験と知恵に感心します.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/71/17285171/img_2_m?1455501541
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.02.09] No.101
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
対称性が高いとか低いとか言いますが,これはいったいどのようなことでしょうか.
正方形の対称性4mmに限定して話を進めます.その他の平面図形についてはブログをご覧ください,
正方形の対称性(点群)は,4mmと表記されます.この記号中の4は,図形の中心にある4回回転対称軸です.
4回回転対称とは,図形を90°回転しても初めの状態と全く変わらないという図形の状態です.
このような操作を4回繰り返すと1回転しますから4回回転軸という名称が付きました.
4回回転対称の対称操作の数は,90°,180°,270°,360°=0°の回転の4つがあります.
正方形の形に対する鏡映対称操作は,横辺の中点を結んだ鏡と,縦辺の中点を結んだ鏡の2枚(青色),
および対角線の方向に2分する2枚(赤色)の合計4枚があります.
前者の2枚の鏡は,4回軸の操作で互いに移り変われ,後者(対角線方向の2枚)の鏡同士も同様です.
しかしながら,前者の鏡と後者の鏡とは4回軸の操作で互いに移り変わることができませんから,
前者と後者は種類の異なる鏡です.そこで,正方形の対称性(点群)の記述では,
4mmというようにm[鏡(mirror)の意]を2つ並べて書きます(注).
(注)正五角形は5mですが,5枚の鏡は5回軸で互いに変換されますので,1種類の鏡(赤の鏡)しかないからです.
点群4mmの対称操作(要素)の数(群の位数と呼ばれる)は,全部で8個になります.
対称性が高いとは,群の位数が大きいことですが,対称要素が次々に減じていく系列のなかで考えます.
これから説明しようとしているのは,それぞれの群の下に含まれる部分群の系統図についてです.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568615/22/17246222/img_4_m?1454724698
正方形の系列で最も対称性の高い4mmには,4回軸と2種類(赤色と青色)の鏡がありました.
回転対称軸の対称性が下がって(4→2→1)行ったり,鏡映面がなくなったりして,
対称性の高い点群から対称性の低い点群(部分群)が得られます.
赤や青の矢印で結ばれたものは,群と部分群の関係にあります.
図表には,それぞれの点群の対称性を一目でわかる図形で表現しました.
対称要素の数(群の位数)をrとすると,各図形の1/rの領域(緑に塗った)を
対称操作で広げて全体を作ることができます.
つまり,対称性の高い図形ほどこの領域は小さくて済みます.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.02.02] No.100
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
おかげさまで100号発行になりました.今年は数学月間は11年目です.
7月の数学月間懇話会に向けての情報も,これから掲載していきますので
よろしくお願いします.日本の数学月間は7/22~8/22です.
さて,エッシャーのような繰り返し模様のモチーフをつくる平行6辺形タイルについては
085(2016/10/20)で言及したことがありましたが,再度ここにまとめてみます.
(1)平行4辺形とは下図の(A)のような形です.
これらは,向かい合った平行な辺どうしは同じ長さです.
向かい合った辺どうしを突き合わせて平面を敷き詰めることができます.
向かい合った辺に同じような変形を加えて図案のモチーフを作ります.
エッシャーの作品の2羽の鳥はこのようにして作られました.
(A)
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/28/17260028/img_0_m?1454336049
(2)平行6辺形で平行な辺どうしが同じ長さの図形は下図の(B),(C)のような形です.
これらは,向かい合った平行な辺(同じ色に着色)どうしを突き合わせて平面を敷き詰めることができます.
向かい合った辺に同じような変形を加え,図案のモチーフを作るとエッシャーの様な繰り返す絵が作れます.
私は,ハロウイン魔女を作って見ました.
(B) (C)
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/28/17260028/img_1_m?1454336049
(3)平行8辺形以上になると平面を敷き詰められないのは何故でしょうか?
平面は2次元のために独立な平行移動の方向は2つで,3つ目の方向は決まってしまいます.
可能な方向は全部で3つで,4つ目の方向は存在できません.
従って,敷き詰め可能なのは平行6面体までということになります.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/28/17260028/img_2_m?1454336049
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.01.26] No.099
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
皆さまご機嫌いかがですか.東京でもちょっと雪が降ったりしました.
今は寒いですが,晴天の日が続いています.日本海側はだいぶ雪が降っているようですが
被害などありませんように.
今回取り上げる伝統工芸の「大川組子」は,FBの友達からの情報と
ブログの友達からの情報で知りました.ウエブやSNSで得られた情報がことの起こりです.
写真は,見事な伝統工芸の格子です.寸分も違わない見事な細工です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/64/17219564/img_3_m?1452480087
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/64/17219564/img_2_m?1452480087
この模様の対称性を鑑賞しましょう.
これらの組子は,正3角形2つでできている菱形の胞(セル)を単位としています.
そして,全体を一貫する格子があり,胞(セル)は格子の中に詰め込まれています.
第二の図の右側コラムに,そこに使われている胞(セル)の中身(5種類)を取り出しました.
これらはどの中身も周期的に繰り返すなら,どれもみんな6回対称(p6mm)になります.
違った中身へと移り変わる境界の状態は,対称性で記述するのは困難です.
その複雑さに,数学がまだ追着かない芸術の深さがあるようです.
胞の中身に変化があっても,格子が同じ一貫したものになっています.
これは,人工結晶などで見られる格子整合という状態を連想させます.
素晴らしい「大川組子」の写真をウエブで探してたくさん鑑賞しました.
「大川組子」の格子は,3角格子(正3角形2つの菱形),正方格子,
六角形格子の3タイプがありました.
多くの工芸作品は,みんなこのうちのどれかで,他の格子は使われないようです.
そこで思い当たったのですが,これは,正多角形のタイル張りが,
正3角形,正4角形,正6角形の3種であることと似ています.
そして,上で述べたように3角形の中に入る胞の中身の対称性は3mです.
正多角形の格子を用いることと,胞の中身も格子の対称性と同じにすることは
安定な釣り合いを考えれば当然のことで,
昔から職人は,寸分もたがわぬ組子を作るために
力のつり合いと対称性を直観的に理解していたことがわかります.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.01.19] No.098
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
鏡は左/右を逆転する(上/下は逆転しない)のが不思議だという人がいます.
そんなに不思議でしょうか?実物と鏡像とは,上は上に,下は下に,左は左に,右は右に映る
(対応する)のですから当たり前で,不思議でも何でもありません.
それでも,鏡像の世界はなんだか不思議な感じがするのは確かです.
この不思議さはどこに原因があるのでしょうか?実物と鏡像を考察してみましょう.
実物は我々の世界にあり,鏡像は鏡の中の世界にあります.
それなのに,鏡像を我々の世界の中にあるように思うことが,この混沌の原因なのです.
■ちょっと脱線ーーーーー
「太古の時代は,我々の世界と鏡の中の世界の行き来ができたそうだ.
(このようなことは4次元の世界なら実際に可能である.)
鏡の中の生き物とこちらの世界の生き物は仲良く一緒にいたのだそうです.
ある夜,突然,鏡の世界の住人達が我々の世界で好き勝手を始めるようになった.
そして人々は,鏡の中の住人の正体が「混沌」であることに気付いたという.
そこで,黄帝が魔力によって「混沌」を鏡の世界に閉じ込め,
姿や動きも我々の世界の模倣しかできないようにした.」*1)
混沌の中から湧き出るように次々と生まれてきたさまざまなものが宇宙を形作った.
そしてこれを神の技として語り伝えられた.
呪文の効果が切れて,鏡の世界の住人達が勝手に動き出すことが将来起こるかも知れない.
私は幻想怪奇小説が大好きです.そのようなテーマの小説*2,3)
のうちで私が好きなものは「パイプをすう男」です:
一人の男が寂しい一軒家に住んでいます.
毎夜,ランプを卓に置き食事をとる.正面の張出し窓の五枚の窓ガラスに,五つの人影が映る.
彼が食事をとれば人影も同じように食事をとって,
彼が食後の煙草に火をつければ,同じように火をつける.
ガラス窓が五稜形をしてるから当たり前だが,毎夜のことだった.
ところが,ある夜,恐ろしいことが起こった.彼は,煙草に火をつけて
いつものように正面の窓ガラスに映る自分の姿に眼をやった.
すると,その一番左の端の窓ガラスで,五番目の彼の姿が同じように火をつけた.
が,つけたのは,彼のように紙巻ではなくてパイプだった.....」*2)
*1)Turbulent mirror, J Briggs & F. D. Peat, 訳:高安秀樹,高安美佐子
*2)パイプをすう男,M・アームストロング,幻想と怪奇 1(ハヤカワ)
*3)わな,H・S・ホワイトヘッド,怪奇幻想の文学(新人物往来社)
ーーーーーーー閑話休題
■鏡映像の左右反転
x軸に垂直な鏡面があるとします.鏡面内に原点(0,0,0)があり,上方向がy軸です.
この鏡面により,(x,y,z)の点は(-x,y,z)の点に映ります.
つまり,y,zは変わりません(上は上に,左は左に対応)が,xは-xに変わります(前向きが後向きに対応).
この鏡面は,xの符号だけ反転します.だから,右手は鏡に映ると左手に変わります.
鏡像は鏡の世界にあるのですが,我々は,鏡の世界を我々の世界の延長のように認識しようとします.
つまり,鏡の世界の天井と地面を,我々の世界の天井と地面と共通のものと直観してしまいます.
そして,鏡像を我々の世界に連れ込んで,前後の向き(鏡像はx方向が反転している)を,揃えようとします.
上下方向(y軸)は,鏡の世界と我々の世界は共通,前後方向(x軸)は鏡像では反転しているので,
我々の世界に鏡像を連れてくるなら,反転したx軸をそろえるため,y軸(左右方向)が反転してしまいます.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.01.12] No.097
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
先週に引き続き,モアレの美しさを鑑賞ください.
(A)2枚の格子を全く傾けずに(交差角0°)重ねたもの
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/68/17214068/img_0_m?1452512081
(B)2枚の格子を交差角10°で重ねたもの
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/68/17214068/img_1_m?1452512081
(C)2枚の格子を交差角15°で重ねたもの
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/68/17214068/img_2_m?1452512081
(D)2枚の格子を交差角20°で重ねたもの
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/68/17214068/img_3_m?1452512081
(E)2枚の格子を交差角30°で重ねたもの
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/68/17214068/img_4_m?1452512081
2枚の全く同じ格子(3角格子)を重ねます.
3角格子(6mmの対称性)の非対称の領域は0°~30°です.
そこで交差角(回転角)を0°~30°の範囲を実験しました.
言及したい注目点は3つ:
(1)元の3角格子の格子点の集合(並進群A)と,重ね合わせで生じた共通格子点の集合(並進群B)の関係は,
BはAの部分群であることです.
例えば,交差角30°の時の2つの格子に共通な格子点(スーパーラティスという人もいる)は,
coincident-site-latticeで,Fig(E)に示します.
あたかも,結晶の表面構造や高分解能電顕による格子像観察の映像のようです.
(2)連続的に交差角度をかえると,生じた拡大された格子像がズーム・アップして面白いです.
交差角が小さいと拡大率は大きくなります.Fig(B~D)
(3)モアレ現象は,薄膜の干渉で生じる現象にも似ています.
例えば,複写機ドラムの感光体塗膜の厚さにより,界面と表面からの反射光の干渉があります.
望まない干渉縞を除去するそんな特許を昔書いたことがあります.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.01.05] No.096
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
新しい2016年がスタートしました.皆様のご健康とご成功を祈ります.
やる素振り,やった振りで国民を期待させ欺くのはもう化けの皮がはがれてきました.
日本にとって2016年は大事な年です.良い年になりますように.
■モアレMoire
2枚の同じグレーチング(格子模様)を重ねたとき,もとのグレーチングの拡大像のようなものが
新たに生じるのを見たことがありますか.これはモアレ現象の一種です.
The superposition of two regular nets produces a secondary enlarged net of the same shape.
2枚の全く同じグレーチング(格子模様)を重ねると,たいてい相互にわずか傾いていますから,モアレ(モワレ)縞を生じます.
これは,2枚のグレーチング模様の重なった場所はよく光を通し明るく見えるためです.
重なる場所の出現は周期的ですから,重ね合わせ像のコントラストに周期的な分布ができます
(ビート,うなりのようなものです).そしてあたかも,グレーチングの拡大像を得たように見えます.
グレーチング相互の傾きがわずかなら生じる像の拡大率は大きく,傾きが大きくなると拡大率は小さくなります.
下の3つの写真は,最近ある店の中で撮影したもので,今回モアレのテーマを思い出したのもこのせいです.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_2_m?1451706758
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_0_m?1451706758
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_1_m?1451706758
3枚の写真は,それぞれ全く同じ2枚のグレーチングが平行移動(傾きはなく)して重なっている状況です.
これらの写真を見ると,2次元的なビート・パターンが生じているのですが,
全く同じグレーチングが平行にずれても,新しいビート・パターンは生じないはずです.
ではなぜこのようなビート・パターンが生じたのでしょうか?
それは,2枚のグレーチングの間にスペース D があるために,観測者から視差(パララックス)があり,
前方のグレーチングよりも後方のグレーチングを小さく見込むためです.
これは,わずかに寸法の違うグレーチングを重ねたのと同じ現象なので,
このためにビート・パターンが生じているのです.
とても美しいので,よくわかるように以下の写真を追加します.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_7_m?1451706758
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_8_m?1451706758
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_9_m?1451706758
■詳細考察
では,計算してみましょう:ノギスの副尺の原理を思い出すと良いかもしれません.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_6_m?1451706758
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_5_m?1451706758
本当のグレーチングの格子のサイズ a
2枚のグレーチングの間隔 D
視点から表面のグレーチングまでの距離 L
後ろのグレーチングの縮小割合 δ/a≡q<1
として,生じるビートの周期 T を求めて見ましょう.
a/(D+L)=(a-δ)/L より δ/a=D/(D+L)
T≡n・a=(n+1)(a-δ)より δ/a=a/(T+a) ⇒ T=a(1/q-1) ← D, L を消去した
あるいは, T=a(L/D) ← q を消去した
さて,この例で生じた新しいビートの周期は, T=5a のように観測されます.
従って,L/D=5 が得られます.あるいは,1/q=6,つまり δ/a=1/6 です.
2枚の同一なグレーチングの間隔Dで重ねたとき生じるビートが,もとのグレーチングのn倍に見えたら,
観測点から表面のグレーチングまでの距離はL=n・D です.これは,距離Lを測定する道具に応用できるでしょう.
ただし,n=1(T=a)はモアレとは言いません.a/2周期の均一なコントラスト分布です.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.12.29] No.095
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
いろいろあった2015年もあと数日で終わります.忙しい日々ですがどうぞ
お変わりなくお過ごしになりますよう.皆さまにとって良い2016年になりますように.
毎年7月22日に,数学月間懇話会を実施していますので,ご参加をお誘いします.
来年の計画が決まりましたらご案内いたします.
数学月間を日本数学協会が提唱して今年(2015年)で丸10年になりました.
今年の7月22日の数学月間懇話会(第11回)テーマは,十年目の数学月間(片瀬豊),
フランス数学週間(高窪正明),サッカーボールの対称性を解くトポロジカルシンメトリー(細矢治夫),
繰り返し模様の観賞法(谷克彦),テーラー展開の話(鈴木啓一)でした.
今年も例年のように大変暑い日で,教室付近の構内は自動販売機はないし熱中症も心配されましたが,
高校生5人を含む30人を超す参加があり熱心に質疑もなされました.参加者の過半数が懇親会にも参加されました.
今回のメルマガでは(1)の講演の概要を報告します.
(1)フランス数学週間(高窪正明)
2012年から始まったフランスの数学啓発活動-数学週間(La semaine des Mathématiques)-に付いて,
主にネットで得られた情報を中心に紹介がありました.
数学週間は,国民教育省の企画の下,“現在の生き生きとした魅力ある数学の提示”,
“数学が日常生活で果たしている重要性の提示”,などの五つの目的を掲げ,
パートナーと呼ばれる20数団体が参加して,毎年3月中旬に行われます.
加えて,毎回一つのテーマが決められています.2012年の第一回から2015年の第四回まで順にテーマを記すと,
”女子と数学”,”惑星である地球”,”様々な文化の交差点にある数学”,そして,”数学は,私たちを運ぶ”です.
この数学週間の特徴は,“数学カンガルー”テスト(後述)・暗算大会と国内数学オリンピック大会とが
同時開催されている点でしょう.前者二つは,遊び・身近なものを通じて,数学への関心を高める目的.
後者は,数学を専門として使う人材を養成する目的でしょう.
さて,数学カンガルーとは,1978年,オーストラリアの数学教授が考案した多項目選択式数学(算数)学力テストを,
フランスの二人の数学教授が更に発展させたもの(1991年)で,
現在は,“国境なきカンガルー協会”が,毎年3月の第3木曜日に実施し,
EUを中心に,世界50か国(600万人)以上が参加しています.
テスト問題は,学年・専攻別に12水準で用意され,代数,幾何学,および,
論理の三分野から出題される24問/50分から成り,参加国各国語に翻訳されます.
テスト結果は参加国それぞれで集計され,成績優秀者が表彰されます.
フランスでは,約4,000の学校・約3,000,000の小中高生が参加します.
これら三つの催しの他に,数学週間の期間中,その年のテーマに沿って多くの講演,
多彩な見学会(実習付),そして,教育映画上映会が,
フランス全土の30大学区(教育行政区)・パートナーによって執り行われます.
特に,第一回以来Cédric Villani 教授(2011年 Fields賞)が,活発な講演・啓発活動を行っている事も注目されます.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.12.22] No.094
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
本年もあと1週間です.本年お付き合いいただきありがとうございました.
今回は,前回のユニット折り紙の箱の考察の続きです.
■正6角形箱
2つの箱をユニット折り紙で作りました
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/29/17175629/img_0_m?1450707610
どちらの箱も正6角形です.色の見分けのできない(すべて灰色の見える)眼鏡をかけて見れば,
どちらもおなじで6回回転対称です.
左の箱は,6回回転軸の60°回転ごとに,色がオレンジ⇔青と入れ替わります.
このような色の交代と結び付いた6回軸を6’と書きます.
右の箱は,6回回転軸の60°回転ごと(左まわり)に,色は,青→ピンク→オレンジと置換します.
このような3色の置換と結び付いた6回回転軸を6^(3)と書きます[(3)は上付文字です]
左のような,2色交代と空間対称操作との結合はシュブニコフ,
右のような色置換と空間対称操作との結合はベーロフによって研究されました.
空間対称操作(空間群)はフェドロフにより研究されましたのでフェドロフ群と呼ばれるように,
これらの拡張された空間群は,シュブニコフ群,ベーロフ群と呼ばれます.
■シュブニコフ群
左の点群を6’={6',6'^2,6'^3,6'^4,6'^5,6'^6=1}とします.
図形を見てわかるように,色の変化を起こさない点群3={3, 3^2,3^3=1},
[ただし,6’^2=3,6'^4=3^2に注意]が,部分群[実は正規部分群]として含まれています.
したがって,対称操作の集合は2つの集合の和(剰余類展開)になります:
6'=6’・3+1・3
これは,点群6'を色を変えない正規部分群 3を法として6’/3={1,6'(mod3)}に単純化されるということです.
[注)群3を法としてとは,点群3で動くものはすべて同じものと思えということです.
時計は12を法としています.1時と13時は同じ位置に来ます]
■ベーロフ群
右の点群は6^(3),色を変えない正規部分群は 2={(6^(3))^3=2, 1}ですから,
6^(3)/2={6^(3)(mod2),(6^(3)(mod2))^2, 1}
つまり,mod2というのは,2回軸で移るものは同じと思えということで,考察は図形の半分に帰着できます.
例えば図形の右側だけ見ると,青→ピンク→オレンジの置換が起きることがわかるでしょう.
■正8角形の箱
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/29/17175629/img_1_m?1450707610
左の箱は前回登場した正8角形のものです.点群は 8'
この中に含まれる色を変えない部分群は,4
8'/4={8'mod(4), 1} です.
ただし,正8角形のタイルで平面のタイル張りはできませんから,
有限図形の点群としての8はありますが,8回軸が周期的に並ぶと矛盾が起きます.
つまり,結晶点群として8は存在できません.
例えば,正8角形の分子(オクタテトラエン)が,周期的に配列して結晶を作ったとしても,
並進周期はせいぜい4回対称か2回対称でしょう.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.12.15] No.093
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
ネットでこのような美しい正八角形の箱を見つけました.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/99/17162399/img_0_m?1450074719
このなかに以下のような図形が見られます.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/99/17162399/img_1_m?1450074719
一番外側の大きな正8角形の内に一回り小さな正8角形が
含まれています.そしてその正8角形の内に,さらに一回り小さい
正8角形が見えます.
この調子で,内部に作図を続けていくなら,どんどん小さな正8角形が
含まれて行きます.そのようなどんどん繰り込まれていく図形は
フラクタル図形です.
一回り小さくなる度に,その相似比はどのくらいでしょうか?
外側周は直角2等辺3角形でできていますからすぐわかると思います.
1:√2-1 が答えの相似比ですね.
外側を以下のように星形にすると
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/99/17162399/img_2_m?1450074719
レオナルドの星形8角形が得られます.
外側の星形と内部の星形の相似比は,やはり
1:√2-1 です.
老婆心ながら,この比率を√2+1倍して
√2+1:1
が相似比だと答えても正解です.
■私も折り紙でこの箱を作製してみました.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/99/17162399/img_3_m?1450104156
以下のサイトに作り方が出ていますのでご参考まで.
同じ部品を作っておいて組み立てるこのような作り方を
ユニット折り紙というそうです.
正方形の千代紙が8枚必要です(フタ側の半身で).
ただし,中心の白く見える部分は千代紙の裏側ですから
これが嫌な方は両面印刷の千代紙か,贅沢ですが
背中合わせで2枚重ねの千代紙を使うと良いでしょう.
折り紙では,45度や45度の半分の角度は簡単に作れます.
今回の箱作りでもそのような折り方(下写真)を使います.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/99/17162399/img_4_m?1450104156
■作り方は以下のサイトを参考にしました
https://www.youtube.com/attribution_link?a=CJItUT4Igow&u=/watch?v=RbSiETOOac4&feature=share
八角形の折り紙箱 1/2
http://origamisho.com/archives/1412
セツの折り紙処
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.12.09] No.092
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
慌ただしい12月ですが,皆さまお風邪など召しませんように.私も危ない危ない.
今回は,4次元正多面体を理解するのに避けて通れないシュレーフリ記号についてです.
シュレーフリ(1814-1895)は,スイスの幾何学者.4次元の正多面体(ポリトープ:正多胞体)
が6つであることを示した人です.
ちょっと話を戻して,3次元の正多面体とは,
(1)すべての面が同一の正多角形でできている.
(2)すべての頂点のまわりの状態は同一である.
を満たすもので,特に凸正多面体をプラトン正多面体と言いました.
プラトンの正多面体は5つであることはご存知でしょう.
注)5つの正多面体がプラトン多面体と呼ばれるのは,プラトンが著作に,ロクリス
(ギリシャの地名)のティマイオス(哲学者名)の宇宙観として“巨大な正12面体で囲まれている宇宙と,
四元素の正多面体”について述べているからです.この時代の四元素とは:
火→正4面体, 土→正6面体, 空気→正8面体, 水→正20面体.
正多面体が5種類であることは,プラトン以前のギリシャですでに知られていました.
ユークリッドの「原論」にも証明が載っています.
4次元の正多面体のことを正多胞体と呼ぶのが正しいのですが,
これは4次元の正多面体の面は,3次元の正多面体(プラトンの正多面体)なので,
面と言わずに胞Cellと呼ぶべきなのです.
さて,今回はこのようなものを記述するシュレーフリの記号についてです.
このような記号は面倒なようですが,この記号を理解すると多面体の性質のほとんどを理解したことになります.
シュレーフリの記号は本質をとらえた非常に優れた表記法であります.
■3次元の正多面体のシュレーフリ記号
{面の形,頂点に集まる面の数}
正4角形の面が頂点で3つ集まる図形を{4,3}と書きます.これは立方体ですね.
正3角形の面が頂点で4つ集まる図形{3,4}は? これは正8面体です.
{4,3}と{3,4}の図形は互いに双対の関係にあります.つまり,
一方の図形の面→頂点,頂点→面に置き換えると他方の図形が得られます.
互いに双対な図形の対称性は全く同じです.
■ユークリッド平面のタイル張り
{4,4}なら,正方形による無限平面のタイル張り,{3,6}なら,正3角形によるタイル張りになります.
■半正多面体を記述するシュレーフリの記号
半正多面体というのは,複数の正多角形で作られる多面体で
どの頂点のまわりの状況も同じものです.半正多面体を記述する記号は,
頂点のまわりを1周するとき出会う正多角形を列挙します.
切頂正4面体(正4面体のとがった頂点を切断し,残りの面が正6角形になるようにする)の例では
[3,6,6]となります.シュレーフリ記号が,正多面体に関するものか,
半正多面体に関するものかの混乱を避けるため,私は前者を{},後者を[]と違うカッコを使い区別しています.
■4次元の正多胞体
正5胞体,正8胞体,正16胞体,正24胞体,正120胞体,正600胞体の6つです.
正5胞体は正4面体が5つでできています.
4次元正胞体のシュレ―フリの記号は{胞の形,1辺が共有する胞数}を指定します.
正5胞体は,正4面体が各辺の周りに3個集まっている図形ですので{ { 3,3},3}={3,3,3},
正16胞体は{3,3,4},正600胞体は{3,3,5}というように,全く自然に3次元から延長できます.
■最後に3つの幾何平面(2次元)のタイル張りについてまとめます.
このような正n多角形によるタイル張りを,平面の正則分割{n,k}といいます.
赤い色は楕円幾平面,緑色はユークリッド幾何平面,青色は双極幾何平面の出来事です
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/32/17152332/img_0_m?1449586423
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.12.01] No.091
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■ゼロとアラビア数字
最古の記数法は五進法だそうです.5をひとまとめにしたものを「1クワイン」といいました.
バビロニアには60進法,20進法を使ったところも,12進法を使った場所もありました.「1ダース」です.
12は約数が多いので10より便利なところがあります.けれども,大勢は10進法に落ち着きました.
われわれが指を折って数えるところから10進法が各所で使われるようになったと推測されています.
10進法での記数法には0と1~9までの数字が必要です.これからアラビア数字の起源に思いを馳せるわけですが,
0と1~9までの数に対応する何らかの記号があり,それ以前に十進法が確立していなければなりません.
参考書:「アラビア数学奇譚」マオバ・タハン(越智典子訳)白揚社
■イスラムの数学
フワーリズミー(780頃~850頃)は、アッバース朝のバクダッドで活躍しアラビアの数学を確立した代数学の創始者です.
彼の時代のバクダッドをのぞいてみましょう.
ゼロの役割には,位取りの役割と4則演算の対象となる数の役割があります.
まず位取りに関していえば,この時代,大勢は和算もイスラムも10進法でありましたから,
数を表示するには,・・・・,十万,万,千,百,十,一,の位の場所に,0~9に相当する数字を書いたり,
マッチの軸木のような算木を置いたり,
そろばんでは玉で表示したりします.どんな記号を使っても似たようなもので,
ゼロの記号がないときはその位は空にしました.アラビア数字に関しては,エジプト,インドから
伝えられたゼロの概念がイスラムで発展しヨーロッパに伝わり完成されたという流れでしょう.
どのような数字でもかまいませんが,0があると空を位取りの場所に配置するよりも明瞭に数字を表示できます.
これが位を明瞭にするので,十,百,千,万,十万,百万,千万,億,...と際限なく単位が必要になることが避けられます.
これはイスラム数学の画期的な成果でしょう.
次に,4則演算の対象としてのゼロについてです.分数全体の集合(=有理数)の中で4則演算を自由に行えます.
ただし,ゼロで割ることは禁じられていますのでご注意ください.
ギリシャでは幾何学が盛んでしたが,イスラムの数学ではアラビア数字の記数法を用いて,代数や方程式が進みました.
特に,三角関数が生まれて発展しました.われわれが高校で学んだ加法定理や倍角の公式やそのほか様々な三角関数の公式が証明され,本が出版され,三角関数の数表も発行されました
■平和の都,バクダッド
1100年前のバクダッドは人口100万人の世界最大の都市でした.
その賑わいはまさにアラビアンナイトの世界です.イスラムの教えのもとに
“平和の都”と呼ばれ,アッパース朝宮殿は建築工学,幾何学の粋を集めます.
イスラム帝国は,東ローマ帝国と中国(唐王朝)の間に位置し交易に便利です.
コーランは“神は商売を許したもうた”と商業を奨励し,売買の証人たる仲介人がいて契約と公正な取引が行われたそうです.
最古の小切手(エジプトの商人が振り出した)も発見されています.
チグリス川とユーフラテス川の間に円城都市(直径2.3km)が建設され,
これを中心とする見事な中央集権行政システムが出来上がりました.
バクダッドに集まる4本の街道は東西南北に延びヨーロッパはスエーデンまで交流があったということです.
(バイキングも正式に貿易しイスラム銀貨が流通しました)
■科学や医学,都市の発展
8世紀に成立したアッバース朝では,カリフや宮廷のワズィールたちが保護をうけ,第7代カリフ,
マアムーンが創設した研究施設バイト・アル=ヒクマ(智恵の館)には多くの科学者が集まり,
ギリシャ科学のアラビア語への翻訳が進めらました.マアムーンに仕えた科学者・数学者のひとりが,
フワーリズミー(780頃~850頃)でした.
科学では,古代エジプトに起源を持つ錬金術の実験が繰り返され,元素記号が生まれ,
文学では,アラビアン=ナイトが生まれ,唐で発明された製紙法もキルギスの戦いの際に伝わりました.
バクダッドには100軒を越す書店があったそうです.
百花繚乱.当時のバグダードのにぎわい言ったらすごい.見たかったですね.
イブン・シーナは最先端医学の医学典範を著し,世界初の総合病院がバクダッドに作られました.
病院は寄進され,その運営費も,周辺の市場の売り上げ寄付で行うワクフという相互扶助の制度が,公共施設を支えたそうです.
円城都市を中心に,モスク3万,多くの市場と市場には100店を超す店があったそうです.
500年間繁栄したイスラム帝国は,1万2千のモンゴル軍により滅亡しました.
チグリス川は血で染まり,本のインクで青く染まったそうです.
アラビア語に訳されたアリストテレスなどギリシャの古典や発展したイスラムの科学は,
その後ヨーロッパに伝わりラテン語に翻訳されルネッサンスが花開きます.
参考:
ドキュメンタリー 文明の道「第06集 バグダッド 大いなる知恵の都」
https://www.youtube.com/watch?v=ehEuTnLfOME&feature=share
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.11.24] No.090
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
秋らしい日になりましたが,今年も慌ただしく過ぎて行きます.
皆様お変わりありませんか.
前号で双曲幾何平面(ポアンカレ円盤モデル)の正則分割(タイル張り)の話をしました.
そのような光景を万華鏡で作ってみることにします.
■コクセターの万華鏡
まず球表面(楕円幾何平面)の話から復習します.
球表面が球面正p多角形タイルで{p,q}のように張りつめられているとき,
1つのタイルの中を2p個の直角3角形に分割できます.
この直角3角形を鏡室とする万華鏡は“メビウスの万華鏡”です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/51/17096451/img_1_m?1447147230
直角3角形の内角は,それぞれ π/p,π/q,π/2で,この直角3角形を(p,q,2)と書きます.
ポアンカレ円盤の双曲幾何平面でも,双曲正p多角形で{p,q}のように張りつめられているとき,
1つのタイルを2p個の直角3角形に分割できます.
この直角3角形を鏡室とする万華鏡は“コクセターの万華鏡”です.
双曲面の{6,4}正則分割の場合の直角3角形(6,4,2)(赤い3角形)を図(左)に,
対応する“コクセターの万華鏡”の映像を図(右)に示します.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/15/17104115/img_0_m?1447459606
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/15/17104115/img_1_m?1447459606
この3角形の2辺は平面鏡,残りの1辺は円盤のフ チに直交する円弧鏡よりなります.
しかしながら,この円弧鏡は,数学的には反転円として定義できるのですが,
現実の円柱鏡の反射には収差があるので,数学 の定義のようにはいきません.
従って,あまり鮮明な万華鏡映像にはなりません.
■(7,3,2)3角形によるコクセターの万華鏡
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/87/17106487/img_0_m?1447506664
(1){7,3}の正7角形タイル張り(赤) (2){3,7}の正3角形タイル張り(緑) (3)菱形タイル張り(青)
3枚鏡(直線鏡2枚,円弧鏡1枚)の万華鏡により
ポアンカレ円盤内の双曲平面は市松模様に塗られますが,
正7角形のタイル張り,正3角形のタイル張り,菱形タイル張り
などを見ることができます.
話はこの先,エッシャーの作品「極限としての円」シリーズに続きます.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.11.17] No.089
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
非ユークリッド幾何の双曲幾何平面を訪ねて見ようと思います.
エッシャーの作品で「極限としての円」シリーズを見たことがおありでしょうか.
円盤の世界で周辺に行くほど,どんどん小さくなって行く構図です.
この作品は双曲幾何のポアンカレ円盤モデルを使い,
円盤内の正則分割(コクセターの万華鏡)が基礎になっています.
正多角形タイルによるタイル張り(正則分割という)は,
双曲幾何平面の場合は無限にあります.
例として,{6,4}と{5,4}を掲載しますので,まずはご鑑賞ください.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/02/17100202/img_0_m?1447229525
(注)
ポアンカレの双曲幾何のモデルは,円盤の中にすべての宇宙があります.
宇宙の果て(円盤のフチ)に近づけば近づくほど自分もどんどん小さくなるので
いつまでたっても宇宙の果てに到達できません(無限の時間がかかります).
{6,4}は正6角形による双曲幾何平面の正則分割で,各頂点に4個の正6角形が集まっています.
円盤の中は双曲幾何の世界ですから,この世界の直線は円盤のフチに直交する円弧です.
正6角形の辺はすべて直線です.円盤の中に描かれた円弧は皆,縁と直交しており,
この世界ではすべて直線です.円盤の中の正6辺形はすべて同じ大きさです.
同様に,{5,4}の図は正5角形による双曲幾何平面の正則分割の例です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/02/17100202/img_1_m?1447686193
例えば,赤い円弧で分けられた世界は左が大きく右が小さいようですが,
この円盤内の世界では同じ広さです.どちらの世界も無限に広い.
円弧は左右の世界を写し合う鏡です.鏡像は色が変るように市松模様に塗り分けました.
■エッシャーのトリック(引用先:コクセター論文)
M.C.エッシャーの「極限としての円」Circle limit IIIを鑑賞しましょう(図左).
この円盤内は双曲幾何の世界(ポアンカレの円盤モデル)です.
この円盤内を旅する人は,円の縁(世界の果て)に近づくほど時間がかかる.
つまり,[世界の果てに到達するには無限の時間がかかる]ようになっています.
この世界で定義される直線(最短時間で移動できる経路)は,円盤世界の縁で直交する円弧です.
エッシャー作品(図(左))の円盤は,魚の流れを示す白い線で分割された双曲面の
[4,3,4,3,4,3]分割のように見えますが,実は図(中)に示すような,黒い線で分割した{8,3}正則分割です.
白い線は,双曲幾何の円盤世界の縁に80°で交差し,直線ではないのです.
図(中)の正8角形の黒い線がこの円盤世界の直線であることは,図(中)に書き込んだ赤い円弧
(いずれも円盤縁で直交する円弧)を見れば理解できるでしょう.
双曲平面の正8角形タイルは,双曲平面の直線(円盤の縁で直交する円弧)で囲まれています.
タイルの大きさは円盤の縁に行くほど小さく見えますが,円盤内は無限に広い双曲幾何平面なのですべて同じ大きさです.
1つのタイルの中には4匹の魚がおり中心に4回軸があります.
正8角形の頂点には3回軸があり,魚の白い流れは3回軸の場所に集まっています.
エッシャーは{8,3}分割に用いる直線をわざと隠し,白い流れが分割であるようなトリックを見せます.
もちろん,白い流れの円弧(直線ではない)に関して鏡映対称はありません.
■直角3角形(7,3,2) によるコクセターの万華鏡
正7角形のタイルは,直角3角形(7,3,2)[内角の組(π/7,π/3,π/2)の3角形のこと]の14個に分割できる.
直角3角形(7,3,2)を鏡室とする万華鏡を,コクセター万華鏡と呼びます.
(1) {7,3}の正7角形タイル(赤)張り. (2) (1)の双対である{3,7}の正3角形タイル(緑)張り.(3) 菱形タイル(青)張り.
3枚鏡(直線鏡2枚,円弧鏡1枚)のコクセター万華鏡により,
ポアンカレ円盤内の双曲平面は市松模様に塗られます.
生じるタイル張りは,正7角形のタイル張り,正3角形のタイル張り,菱形タイル張り,に見えます.
■エッシャー作品の生まれるまで
コクセター エッシャー
直角3角形(6,4,2) 直線魚のモチーフ 「極限としての円I」
双曲面の{6,4}分割を細分 Circle Limit I
コクセターとエッシャーはオランダで開催された1954年の国際数学者会議で出会いました.
1958年にコクセターはこの分割を掲載した論文*をエッシャーに送り,
これがエッシャーの「極限としての円」の作品群を生むことになります.
*By S.H.M.Coxeter
Crystal Symmetry and ItsGeneralizations (published in the Transactions of the RoyalSociety of Canada in 1957).
続く⇒ 極限としての円Ⅲ
■メビウスの万華鏡とコクセターの万華鏡
■楕円幾何平面の正則タイル張り
球表面が球面正p多角形タイルで{p,q}のように張りつめられているとき,1つのタイルの中を2p個の直角3角形に分割できます.この直角3角形を鏡室とする万華鏡は“メビウスの万華鏡”と名付けます.このときの直角3角形(鏡室)の内角は,それぞれ π/p,π/q,π/2で,この直角3角形を(p,q,2)と表記します.
■双曲幾何平面の正則タイル張り
ポアンカレ円盤の双曲幾何平面でも,双曲正p多角形で{p,q}のように張りつめられているとき,1つのタイルを2p個の直角3角形に分割できます.この直角3角形を鏡室とする万華鏡は“コクセターの万華鏡”と名付けます.
双曲面の{6,4}正則分割の場合の直角3角形(6,4,2)(赤い3角形)を図(左)に,対応する“コクセターの万華鏡”の映像を図(右)に示します.
■双曲面{6,4}分割の場合の“コクセターの万華鏡”を作る
双極面{6,4}分割の映像を,3角形の万華鏡で作るには,双曲面直角3角形(6,4,2)を用います.この3角形の2辺は平面鏡,残りの1辺は円盤のフチに直交する円弧鏡よりなります.この円弧鏡は,数学的には反転円として定義できるのですが,現実の円柱鏡の反射には収差があるので,数学の定義のように鮮明な万華鏡映像を作るのは困難です.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.11.10] No.088
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今日は楕円幾何の世界である球表面のタイル張りを万華鏡で見て見ましょう.
シュレフリーの記号{p,q}は正p多角形が頂点でq個集まってできる正多面体を表します.
例えば,{5,3}は正5角形が各頂点で3つ集まっている正多面体(正12面体)を表します.
球面{p,q}多面体の面は球面正p-多角形です.
1つの球面正p-多角形タイルを2p個の球面3角形(p,q,2)に分割しましょう.
図は球面{5,3}多面体の例で,12個の面はすべて球面正5角形(黄色のタイル)から成ります.
1つの面は10個の球面三角形(5,3,2)(赤色タイル)に分割できます.
(注)3角形(p,q,2)とは,内角が(π/p,π/q,π/2)の直角3角形のことです.
球面幾何の世界では,直線は大円.球面正p-角形や球面3角形の辺はすべてこの世界の直線ですから,
大円です.球面三角形(5,3,2)の内角は,(π/5,π/3.π/2)で,内角の和は,(31/30)π>π とπを越しますが
楕円幾何の世界だからです(ユークリッド幾何の世界では3角形の内角の和はπ).
ユークリッド平面では{5,3}は隙間ができタイル張りにならないが,
球表面ではタイル張りができ,これをユークリッド幾何の世界で見ると立体になります.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/51/17096451/img_1_m?1447081624
球面3角形(p,q,2)の各辺を中心から見込む平面を鏡として,3枚鏡(△OHK,△OKA,△OAH)の万華鏡を作り,
球面3角形(p,q,2)の外側から覗きこむと,球面{p,q}多面体が見えます.
以下に{5,3}多面体用の万華鏡の作り方を掲載します.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/51/17096451/img_3_m?1447081624
(注)青色の3枚の3角形鏡(ただし,頂点Oの周りは半径2.5の円弧を切り取る)を組み立てる.図中の数字は長さ.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.11.03] No.087
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
秋が深まりました.皆様お変わりありませんか.一寸,万華鏡の数学の話をしましょう.
万華鏡映像の美しさが我々の心をとらえるのは,空間の完全な対称性だけではありません.
時間の流れとともに映し出される「千変万化だが一度きり」の映像に,
生命を感じるからでもありましょう.
ワンドの中を降り行くすべてのガラス屑の運命は,運動方程式ですべて定まっているとはいえ,
ときおりカオスの起こる期待で目が離せません.
万華鏡は,対称性(秩序)とカオス(乱れ)の混在が魅力なのです.そして,
合わせ鏡が生みだす完全な秩序は,無限に繰り返される“結晶世界”に入り込んだようでもあります.
万華鏡 “カレイドスコープ”は,物理学者ブリュースター卿の特許(1817)[発明は1816年]
が起源です.特許には,2枚の合わせ鏡の交差角θ°が,360°を
偶数で割り切る角度にするということが書かれています.
今日はこの数学についてさらに考えて見ましょう.
■平面群と市松模様
本来の市松模様はチェス盤のように正方格子が交互に塗り分けられたものですが,
3角格子などの場合でも交互に塗り分けられていれば市松模様と呼ぶことにします.
Fig1 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/27/17073327/img_7_m?1446474652
これらは皆,市松模様と呼ぶことになります.
万華鏡は鏡(位数2の対称操作)の組み合わせだけで作られます.
1回鏡で反射すると鏡像の向きは裏返っています.しかし,2回反射すると
鏡像の鏡像になり始めの向きと同じになります.
市松模様の黒-白は,物体のある鏡室タイル(グレイ色)と同じ向き="正置像”を黒;
“裏返像”を白に塗り分けています.
■正方形の鏡室の万華鏡がつくる市松模様
Fig2 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/27/17073327/img_8_m?1446474652
図(1)万華鏡の鏡室タイルをグレイの正方形とします.
鏡室のフチの赤線は鏡(4枚)です.
図(2)1回の反射で4個のタイルの裏返像(黄色)が生まれます.
図(3)2回の反射で,その外側に8個のタイルの正置像(緑色)が生まれます.
図(4)3回の反射で,その外側に12個のタイルの裏返像(黄色)が生まれます.
このようにして,鏡室タイルはその鏡像を全平面に広げて行き,
平面を市松模様で塗りつぶします.
■3角形の鏡室の万華鏡は市松模様をつくるか?
Fig3 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/27/17073327/img_9_m?1446474652
1.左図の鏡室3角形ABCは90°30°60°の3角形です.
各頂点で3角形が偶数個集まっています.3つの頂点のまわりはどれも市松模様ができており,
全平面が市松模様であることがわかります.
2.右図の鏡室3角形ABCは45°60°75°の3角形で,
AおよびBのまわりは3角形が偶数個集まりますが,Cのまわりでは偶数個あつまりません.
そのため,全平面では市松模様が出来ないことがわかります.
3.鏡映操作の集合が平面群を作っている場合は,全平面が市松模様になりますが,
逆に,市松模様が何処かで乱れているなら,その鏡の組み合わせは平面群が作れない場合です.
そのような万華鏡のもう一つの例を(Fig4)に示します.
Fig4 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/27/17073327/img_2_m?1446474652
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.10.26] No.086
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
ユークリッド幾何学と非ユークリッド幾何学
色々な幾何空間があります.
大きく分けて,ユークリッド幾何空間と非ユークリッド幾何空間です.
非ユークリッド幾何空間には,楕円幾何,双曲幾何の支配する幾何空間があります.
我々の常識が通用するユークリッド幾何の世界では,
“直線l外の1点をA通り,その直線に平行な直線“は,唯一本だけ引けます.
平行線が1本も引けない世界や,無数に引ける世界とはどんな世界でしょうか?
これら3種類の幾何空間を,平面を例にとり比較します.
(1)ユークリッド幾何平面 (2)楕円幾何平面 (3)双極幾何平面
例⇒ 我々の常識の世界 球の表面 ポアンカレの円盤モデル
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/81/17061581/img_0?1445817357
それぞれの空間で,“直線の定義を変えれば”,
そのようなことが起こる世界があることを納得できるでしょう.
2点間を結ぶ直線とは,その世界で2点間の距離を最小とするものです.
(1)常識の通用するユークリッド幾何平面
2点間の距離が最少なのは我々の知っている直線です.
(2)球の表面は楕円幾何平面の例
球表面の世界では,大円(球中心を通る平面で切った球の表面)が直線です.
地球自体は3次元ユークリッド空間の物体ですが,表面だけなら楕円幾何平面です.
地球上の2点間の距離が最小のものは大圏コースと呼ばれますが,
これは地表の大円上の線分のことです.
異なる2つの大円は必ず2点(直径の両端)で交わるので,
直線外の1点を通る平行線はありません.また,地球儀の
緯線のようなもの(小円)は大円でないのでこの世界では直線になりません.
(3)双曲幾何平面の例(ポアンカレ円盤モデル)
双曲幾何の世界のポアンカレ円盤モデルでは,
円盤のフチに直交する円弧を,直線と定義します.
この世界では,ある直線に対する直線外の1点を通る平行線は無数に引けます.
円盤モデルの世界では,円盤のフチに近づくほど見かけの距離はどんどん縮むので,
フチの近傍は実際は無限の距離があり,永久に地平線に到達できません.
確かにこのような円弧が最短距離です.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.10.20] No.085
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■平行4辺形や平行6辺形は,平面を敷き詰めることができます.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/41/17047041/img_3_m?1445036597
平行6辺形とはこんな形です.
向かい合った辺(同じ色)を繋ぎ合わせて,平面を埋められます.
このような形のタイルを土台に向い合った辺を同じように変形し図案のモチーフにすると,
エッシャーのような繰り返す絵が作れます.
私はハロウィーン魔女を作ろうとしましたが未完成です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/41/17047041/img_4_m?1445042284
皆様完成させてください.
■任意の4辺形は,180°回転したものと組み合わせると平行6辺形になります.
下図の4種の組み合わせが可能ですが,どの平行6辺形のタイルを用いても
同じ敷き詰めになります.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/41/17047041/img_1_m?1445036597
■任意の3角形は,180°回転したものと組み合わせると
平行4辺形や平行6辺形になるので,平面を敷き詰めることができます.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/41/17047041/img_2_m?1445036597
Q. 平行8辺形以上は平面を敷き詰められないのは何故でしょうか
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.10.13] No.084
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■空間のデジタル化
最近の交通信号は,発光ダイオードのドットが円盤内に配置されています.
本来,円盤内は連続平面ですが,ドットの配置で表現される円盤は,
離散化(あるいはデジタル化)されています.
デジタル化された世界では,ドットを1つ2つと数えることができます.
ドットを十分小さくすれば,ドットはいくらでもこの世界に入ります.
このような世界を,“可算無限”の世界といいます.一方,連続平面は,
点を数えることすらできない“非可算無限”の世界です.
(例)整数や有理数(分数で書ける数)は可算無限個,
無理数(分数では書けない数)は非可算無限個です
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/44/17032344/img_0_m?1444646310
■無限に続く繰り返し
周期的な空間-結晶世界
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/44/17032344/img_1_m?1444646310
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/44/17032344/img_2_m?1444646310
黒と白のタイルでできる市松模様が無限に広がっています.
もし,白いタイルのどれか一つの上にいたとしても,
市松模様の世界は無限に続いているのですから,
そこがいつも世界の真ん中に思えます.
つまり,どの白いタイルもすべて同価です.
この市松模様の世界の周期がわかりますか? 図には,
白いタイルから,隣の同価な白いタイルへの移動を示すベクトル(矢印)
が記入されています.
2次元の世界ですから2つの独立なベクトル a, bが基本周期になります.
白いタイルを基本周期a, bを繰り返して平行移動することを並進といいます.
(注)na+mbは,a方向にn個,b方向にm個の移動(並進)の意味です.
na+mb(整数n,m)の点(格子点)はすべて同価な点で,
これらの集合を格子といいます.
格子点の集合(格子,無限集合)は加法で閉じており
群という代数系になります(これを並進群といいます).
上図の2つの市松模様は全く同じものですが,見渡す方向でずいぶん景色が違います.
このような性質を異方性と言います.
格子点に配置して,重ならず隙が出来ずに平面を張りつめるとき単位となる
ブロックタイル(単位胞)の形はどのようなものでしょうか?
これには色々なものを採用できますが,例えば,横並びの黒白ペアのタイル,
あるいは,a, bで囲まれた平行4辺形などがあります(上図の右側に図示).
その面積はどちらも同じです.
無限に続く周期的な平面は,一つのブロックタイル(単位胞)で平面を張りつめる
こと(デジタル化)ができ,扱うのが簡単です.これに比べて,
周期的でない平面はアナログ平面で簡単化できません.つまり
一様な(平面のどの場所も同価であるような)デジタル化ができません.
デジタル化された信号のような円盤内も,一様でもなければ周期的でもありません.
周期的なデジタル化された空間は“結晶空間”と呼ばれ,
その性質は“格子”で抽象的に表現されます.
■繰り返し模様の観賞法
今年の数学月間懇話会(7/22)で,私は以下の話をしました:
周期的な空間(繰り返し模様)の対称性は有限図形の対称性にくらべて,
なじみのない人が多いようです.
これは,教科書で扱う対称性が有限図形だけであることによります.
しかし,周期的空間=“結晶空間”は,最も基本的なデジタル化された空間で重要です.
デジタル画像や視細胞の配列した網膜など,自然界のほとんどが
デジタル化された平面です.特に,無限に広がる平面を,
一様で周期的にデジタル化した-“結晶空間”-は特に重要です.
結晶の内部構造は,単位となる平行6面体(単位胞)が,
空間を隙間なく埋め尽くしています.
このような例として,平面上の繰り返し模様の数学に親しみましょう.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/68/17037468/img_0_m?1444646276
数学の言葉でいうと,繰り返し模様の対称性(空間群)と
有限図形(単位胞)の対称性(点群)との関係は,
「繰り返しの規則(並進群)を核(法)として,空間群は点群に準同型」
ということになります.あるいは,
「並進群を点群で拡大して空間群が得られる」ということもできます.
準同型という概念の心は,集合のもつ特徴を見つけるのに,
集合の要素の持つある特徴を同値と見做せれば(小異に目をつぶれば),
別の特徴が顕著に見えてくるという事.
日常生活の色々な場面でこの考え方が使えます.
「小異を捨てて大同に就く」といいますが,
「小異を同値と見做すなら,別の違いが見えてくる」
そして,「別の違いがない場合は,大同に就ける」という事でしょう.
平面のデジタル化の一つに,1種類の正多角形で平面を分割すること(正則分割)
がありますが,非ユークリッド平面の正則分割タイル張りに関しても言及しました.
■空間のデジタル化
最近の交通信号は,発光ダイオードのドットが円盤内に配置されています.
本来,円盤内は連続平面ですが,ドットの配置で表現される円盤は,
離散化(あるいはデジタル化)されています.
デジタル化された世界では,ドットを1つ2つと数えることができます.
ドットを十分小さくすれば,ドットはいくらでもこの世界に入ります.
このような世界を,“可算無限”の世界といいます.一方,連続平面は,
点を数えることすらできない“非可算無限”の世界です.
(例)整数や有理数(分数で書ける数)は可算無限個,
無理数(分数では書けない数)は非可算無限個です
■無限に続く繰り返し
周期的な空間-結晶世界
黒と白のタイルでできる市松模様が無限に広がっています.
もし,白いタイルのどれか一つの上にいたとしても,
市松模様の世界は無限に続いているのですから,
そこがいつも世界の真ん中に思えます.
つまり,どの白いタイルもすべて同価です.
この市松模様の世界の周期がわかりますか? 図には,
白いタイルから,隣の同価な白いタイルへの移動を示すベクトル(矢印)
が記入されています.
2次元の世界ですから2つの独立なベクトル a, bが基本周期になります.
白いタイルを基本周期a, bを繰り返して平行移動することを並進といいます.
(注)na+mbは,a方向にn個,b方向にm個の移動(並進)の意味です.
na+mb(整数n,m)の点(格子点)はすべて同価な点で,
これらの集合を格子といいます.
格子点の集合(格子,無限集合)は加法で閉じており
群という代数系になります(これを並進群といいます).
上図の2つの市松模様は全く同じものですが,見渡す方向でずいぶん景色が違います.
このような性質を異方性と言います.
格子点に配置して,重ならず隙が出来ずに平面を張りつめるとき単位となる
ブロックタイル(単位胞)の形はどのようなものでしょうか?
これには色々なものを採用できますが,例えば,横並びの黒白ペアのタイル,
あるいは,a, bで囲まれた平行4辺形などがあります(上図の右側に図示).
その面積はどちらも同じです.
無限に続く周期的な平面は,一つのブロックタイル(単位胞)で平面を張りつめる
こと(デジタル化)ができ,扱うのが簡単です.これに比べて,
周期的でない平面はアナログ平面で簡単化できません.つまり
一様な(平面のどの場所も同価であるような)デジタル化ができません.
デジタル化された信号のような円盤内も,一様でもなければ周期的でもありません.
周期的なデジタル化された空間は“結晶空間”と呼ばれ,
その性質は“格子”で抽象的に表現されます.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.10.06] No.083
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
メルマガ09月29日号は休刊しました.ご了承ください.
実は,28日の朝6時50分に母は息を引き取りました.
救急車で入院した時は寒い冬で,病院の庭の梅の蕾も硬くこの梅が咲くころには退院しているだろうと
漠然と思ったものです.その梅が咲き,桜が咲き,つつじが咲き,暑い夏を越し,
帰るときには金木犀の香りが満ちていました.259日の病院生活を,ベットの上だけで過ごしました.
百歳の誕生日まで病気知らずで,寝込んだことは一度もありません.
いつも「大丈夫よ」「有難う」と言っていた母でした.
でも今回は,「いつ帰れるのか.さあ帰ろうか」と言ったことが一度ありました.
しかし,その後すぐ点滴づけになり帰る場所がなくなりました.
それでも負けずにこの長期間を頑張りぬきました.
最期の夜も最後の最後まで頑張りましたが朝に遂に力尽きました.スーパームーンの日でした.
葬儀は4,5日に,幡ヶ谷の代々幡斎場で,香典供物は辞退して母を知るご近所と身近な親戚で済ませました.
幡ヶ谷は,母と父が新所帯を持ち,つかの間の母の楽しい時期であった思い出の地です.
敗戦まじか,私はその家で生まれました.父がフィリピン・ボルネオの戦地にいるときです.
母は一人で,赤ん坊の私を押し入れで布団を積み上げ高射砲の破片から守ったのです.
幡ヶ谷の家は空襲で皆焼けてしまいました.父はジャングルでトカゲを食べたりマラリアになったり
破片で背中を負傷したり捕虜で働かされたりしましたが,終戦後3年たってから無事帰国できました.
母と私は父と再会し,暮らし始めた家は幡ヶ谷から1kmほど離れた所です.
ここには現在まで70年近く住んでおります.葬儀には母を知るご近所の方々が参列されましたし,
母方と父方の従兄弟たちも久しぶりに会しましたので,楽しい一時になりました.
ご報告とお詫びまで.次号から数学月間の話題にもどります.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.09.22] No.082
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
戦争法案が多くの世論を無視して強引に可決してしまいました.
本来,違憲である法案が国会に出されること自体あり得ないことですし,
国会の議論でもまともな答弁がなされていないことは誰の目にも明らかです.
政府の宣伝機関になったNHK始め大手メディアの罪はたいへんに重い.
さて,翁長沖縄県知事の国連人権理事会で演説に期待しよう.大手メディアの世論操作に負けてはならない.
イギリスで投獄を覚悟してインドの独立を主張したガンジーの姿が重なって見えます.
ーーーーーーーーーーーーーーーーーーーーーーーーーーー
戦時中の“科学朝日(1944年3月号)”に,「特集・戦争と数学」があります.
この特集号には,多くの著名な数学者が寄稿しており大変興味深い.
その中で,巻頭の弥永昌吉先生の論説が群を抜いており,言論も不自由であったろう戦時下に,
実に立派な意見を展開しておられます.
さらに,数学月間の考え方と同じ所も見受けられ我が意を得たりの感があります.
まず,弥永論説(対話形式)の概略を紹介します.
1年くらい前から始まった戦時下の米国の数学動員(米数学協会の記事の記憶)が紹介されます.
遅ればせながら日本でもこのような動きが始まっています.
米国の数学動員
委員長(モース)の下に6つの委員会がある
1.工業技術,2.航空力学,3.弾道学(ノイマン),4.確率統計,5.計算法,6.暗号解読
1は数学と工業の連携強化,2,3は微分方程式,高射砲の照準や電波兵器の数学,4は大量生産管理,5は計算機.
ーーーー以下抜粋-----
■数学は魔術ではなく,合理的なものの中でも最も合理的なものですから,使い方も合理的でなくてはなりません.
この際,数学者の側で,数学を使えば何も彼も容易にできるというようなことを言いふらしたり,
まだ十分の研究を積まないのに現場の人たちのやり方が悪いと言ったりするようなことは一番いけないと思います.
ーーーーーーー
■大和魂が第一でも,それだけでは戦争に勝てないことがだんだんわかってきて,科学研究の動員が必要になった.
第一次大戦では「化学」,第二次大戦では「物理」→「数学」が必要だ.
米の他,ソ連,独,伊でも同様な数学動員の状況がある.
ソ連は,コルモゴロフ(確率の基礎)飛行機の乱流,ヴィノグラドフ(整数論)などがスターリン科学賞を受賞した.
ドイツからは,開所したばかりの米プリンストン研究所などに科学者が流出しており,
米国に最も豊富な人材が集まっている.
ーーーーーーー
■学問としてお留守にならず,その品位を下げぬような動員の仕方をすることが,戦争に勝つ道であると信じる.
日本では,それぞれの分野が功を急いだせいかも知れませんが,
学問が専門化しすぎて,それぞれ孤立化する危険がある.
この機会に横の結びつきが強化されるのは良いことだ.お互いに学問の理解を深め,
基礎理論の整備進展,新理論の展開という方向へ導かれれば日本の学問全体にとってもこんな有り難いことはない.
ーーーーー
■問題解決のためにも,数学では個々の小さな問題をそれぞれに突っつくよりも,
根本的なところまで遡って考えた方が,大きな成功を収めることがよくあるのです.
この戦争のために,目先のことばかりを考えてよいのでしょうか.
長期建設戦」ともなれば,文化が直接ものを言うことがますます多くなりましょう.
世界中のだれが見ても頭を下げるような高い立派な文化を我々が戦いつつ築きあげて行くことがぜひとも必要です.
この頃,この点について偏執な,浅慮短見の説をなす人があるのを慨いて,
渡辺慧さんはそれを「文化的敗北主義」と言っている.
戦争法案を多くの世論を無視して強引に可決してしまいました.
本来,違憲である法案が国会に出されること自体あり得ないことですし,
国会の議論でもまともな答弁がなされていないことは誰の目にも明らかです.
政府の宣伝機関になったNHK始め大手メディアの罪はたいへんに重い.
さて,翁長沖縄県知事の国連人権理事会で演説に期待しよう.
大手メディアの世論操作に負けてはならない.
イギリスで投獄を覚悟してインドの独立を主張したガンジーの姿が重なって見えます.
ーーーーーーーーーーーーーーーーーーーーーーーーーーー
■戦争と数学
戦時中の“科学朝日(1944年3月号)”に,「特集・戦争と数学」があります.
この特集号には,多くの著名な数学者が寄稿しており大変興味深い.その中で,巻頭の弥永昌吉先生の論説が群を抜いており,言論も不自由であったろう戦時下に,実に立派な意見を展開しておられます.さらに,数学月間の考え方と同じ所も見受けられ我が意を得たりの感があります.まず,弥永論説(対話形式)の概略を紹介します.
1年くらい前(1943年)から始まった戦時下の米国の数学動員(米数学協会の記事の記憶)が紹介されます.遅ればせながら日本でもこのような動きが始まっています.
米国の数学動員
委員長(モース)の下に6つの委員会がある
1.工業技術,2.航空力学,3.弾道学(ノイマン*),4.確率統計,5.計算法,6.暗号解読
1は数学と工業の連携強化,2,3は微分方程式,高射砲の照準や電波兵器の数学,4は大量生産管理,5は計算機.
ーーーー以下弥永論説からの抜粋-----
■数学は魔術ではなく,合理的なものの中でも最も合理的なものですから,使い方も合理的でなくてはなりません.この際,数学者の側で,数学を使えば何も彼も容易にできるというようなことを言いふらしたり,まだ十分の研究を積まないのに現場の人たちのやり方が悪いと言ったりするようなことは一番いけないと思います.
ーーーーーーー
■大和魂が第一でも,それだけでは戦争に勝てないことがだんだんわかってきて,科学研究の動員が必要になった.第一次大戦では「化学」,第二次大戦では「物理」→「数学」が必要だ.米の他,ソ連,独,伊でも同様な数学動員の状況がある.
ソ連は,コルモゴロフ(確率の基礎)飛行機の乱流,ヴィノグラドフ(整数論)などがスターリン科学賞を受賞した.ドイツからは,開所したばかりの米プリンストン研究所などに科学者が流出しており,米国に最も豊富な人材が集まっている.
ーーーーーーー
■学問としてお留守にならず,その品位を下げぬような動員の仕方をすることが,戦争に勝つ道であると信じる.
日本では,それぞれの分野が功を急いだせいかも知れませんが,学問が専門化しすぎて,それぞれ孤立化する危険がある.この機会に横の結びつきが強化されるのは良いことだ.お互いに学問の理解を深め,基礎理論の整備進展,新理論の展開という方向へ導かれれば日本の学問全体にとってもこんな有り難いことはない.
ーーーーー
■問題解決のためにも,数学では個々の小さな問題をそれぞれに突っつくよりも,根本的なところまで遡って考えた方が,大きな成功を収めることがよくあるのです.
この戦争のために,目先のことばかりを考えてよいのでしょうか.
長期建設戦」ともなれば,文化が直接ものを言うことがますます多くなりましょう.世界中のだれが見ても頭を下げるような高い立派な文化を我々が戦いつつ築きあげて行くことがぜひとも必要です.この頃,この点について偏執な,浅慮短見の説をなす人があるのを慨いて,渡辺慧**さんはそれを「文化的敗北主義」と言っている.
*ノイマンはゲームの理論で有名になった若手でした.ドイツから米プリンストン研究所に多くの科学者が流出しました.そのうちの一人です.
**理論物理学者
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.09.15] No.081
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
前号では,周期律表113番目の元素発見の話をしました.
今回は,原子番号96番のアメリシウムの話です.
原子番号92のU(ウラン)より大きい原子番号の元素(超ウラン元素)は天然には存在せず,
原子炉や原爆で人工的に生成された放射性の核種です.
これらの元素が我々の環境で検出されたなら,
原爆実験や原発事故や使用済核燃料の再処理などで排出されたものです.
これらの元素は大変不安定で,α線やβ線やγ線や中性子を放出して他の元素に姿を変えます.
超ウラン元素は,93番Np(ネプツニウム),94番Pu(プルトニウム),
95番Cm(キュリウム),96番Am(アメリシウム),の順で発見されました.
キュリウムやアメリシウムはマンハッタン計画(1944年)で発見されましたが,
発表されたのは1945年11月のことです.アメリシウムの中にも多くの核種がありますが,
質量数241のAm(アメリシウム)は,α線(5.4MeV),γ線(60keV)を放出して,
質量数237のNp(ネプツニウム)に変わります(半減期433年).
241Am → 237Np +α +γ
さてアメリシウムはどのようにして生まれるのでしょうか.
稼働中の原子炉では,核燃料中の238Uは中性子を取り込み239Puに変わります.
生まれた239Puは,また中性子を取り込み241Puに変わり,これはβ線を出して241Amに変わります.
239Pu(2.41万年)+2n → 241Pu(14.4年)→ 241Am +β
■
電気出力100万kWの軽水炉を2年間運転すると,使用済核燃料には1トン当たり,
アメリシウムが5g(放射能強度0.65×10^12Bq)含まれます.
奇妙に思えるでしょうが,原子炉から取り出した使用済核燃料の中で,
時間の経過とともにアメリシウム量が増えます.10年後に40g(放射能強度5.2×10^12Bq),
100年後には93g(放射能強度12×10^12Bq)という具合です.
使用済核燃料中には,核分裂生成物としてプルトニウムやアメリシウムを始め,
数百種類の放射性核種が生まれています.
使用済核燃料は,未使用の核燃料の1億倍もの放射能強度になり手に負えません.
だから原発を再稼働させてはいけないのです.
http://www.cnic.jp/knowledge/2611
原子力発電によって生み出される放射性物質は,「死の灰」あるいは「高レベル放射性廃棄物」と呼ばれます.
未使用燃料(1トン) ーーーーー→ 使用済燃料(1トン)
U-235(45kg) U-235(10kg)
U-238(955kg) U-236(6kg)
核分裂生成物(46kg)
プルトニウム(10kg)
その他超ウラン核種(1kg)
U-234(0.2kg)
U-238(926kg)
http://www5a.biglobe.ne.jp/~genkoku/kohza-002.htm
■アメリシウムの性質
Amは空気中で表面が酸化されAm2O3となり,また塩酸に容易に溶けます.
アメリシウムは,α線とγ線を放出するが,人体影響では,α線による内部被曝が怖い.
アメリシウムからのγ線のエネルギーは60keVでγ線としては低エネルギーの部類です.
ただし,人体影響では細胞に吸収されるエネルギーが細胞にダメージを与えるので,
低エネルギーの方が吸収されやすいということもあり,安全というわけではありません.
■核燃料中のアメリシウム-241
プルトニウムを核燃料として用いる立場からは,プルトニウム-241の核分裂に必要な遅い中性子を,
アメリシウム-241が無駄食いするので,核燃料中の阻害物です.
再処理によって分離したプルトニウムを核燃料として用いる場合には,
アメリシウム-241の量が増加しないうちに,核燃料として用いる必要があります.
http://www.cnic.jp/knowledge/2611
■川内原発
九州電力川内原発1号機が営業運転に移行し,川内2号機も炉心への燃料装荷が
11日から始まり13日朝に完了しました.10月中旬の再稼働を目指しています.
川内原発の1号機,2号機とも,軽水減速・加圧水型PWRで,出力89万kWで,
低濃縮(U-235が4~5%)二酸化ウラン(72トン/年)を使用します.
http://www.kyuden.co.jp/sendai_outline_index.html
ウラン燃料は,ペレットの型(直径8mm×10mm)で,ペレットを350個程度積み上げて棒状にした
燃料棒(長さ4m)を17×17あるいは15×15本まとめて燃料集合体(20cm角程度)を作る.
ただし,PWRの場合には制御棒クラスタや炉内計測用の案内管もあるので,集合体に燃料棒の入らない位置がある.
川内原発1号機,2号機ともにこのような燃料集合体が157体装荷された.
(注)沸騰水型BWRの原発の燃料は,燃料棒を9X9にまとめ燃料集合体として原子炉に装荷する.
制御棒の入る位置は燃料集合体の間になる.
http://www.nfi.co.jp/product/prod02.html
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.09.08] No.080
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
ウラン(原子番号92)より重い元素は,天然には無く人工的な手段でのみ得られる.
ウンウントリウムは原子番号113の元素だが,まだ認定されていない(元素の名称も仮のもの).
理研・森田らは,線形加速器で亜鉛原子核をビスマス原子核に打ち込んで生じた不安定な元素が,
α崩壊する過程でウンウントリウムが存在することを発見した.2004年7月のことだ.
ウンウントリウムは,0.667msでα崩壊し次の元素へ姿を変える.次々とα崩壊が続き,
結局6回姿を変え135秒で101Md(メンデレビウム)に変わる.
http://www.riken.jp/pr/press/2012/20120927/
このようなウンウントリウムの詳細な崩壊経路をきちんと調べ上げた(2012年までかかっている)ので,
森田ら(理研)に,近々この元素の命名権が与えられるのではないかと思う.
しかしながら,2004年2月に,ロシアと米国のチームは、
カルシウムとアメリシウムの核融合で現れた元素115のα崩壊過程で0.48秒間113番元素を観測したと発表しており,
最初の発見者であると主張している.
https://www.youtube.com/watch?v=giuZaoxeKtY&feature=share
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.09.01] No.079
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
電波干渉計の観測データから,ブラックホールの像を求める話題を
メルマガNo.070_統計数理研オープンハウス で取り上げたことがある.
ここで用いられるスパースモデリングという手法はとても興味深いので,
NHKのサイエンスzero再放送(2015年8月23日)の
「情報科学の名探偵!魔法の数式 スパースモデリング」を楽しみに視聴した.
この題名は,ばかにおどろおどろしい.
「魔法の数式」とか実に持ってまわった言い方で嫌な予感がしたが,
案の定,題名も題名だが内容にも失望した.
番組中で,E(x)=||y-Ax||^2+λΣ|x_i|という式が何度も瞬間的に表示されるのだが,
この式をまともに説明する気は全く無い.実に視聴者をバカにしたプログラムで腹が立った.
この式自体は,測定した信号から画像をどのように推定するかの計算式で,
この式がどのようなことをするのか,素人にわかるように説明するのは
そんなに手間でもないし高度なことでもない.決して魔法の数式でもない.
それにもかかわらず魔法の呪文(ブラックボックス)のよう何度も表示される.
数学を魔法のように扱うのは,何の意味もない.
サイエンスカッフェなどで良くあることだが,結果ばかり紹介し手法の説明がない.
どのような考え方で得た結果なのか手法が納得できなければ,その結果を受け入れることはできない.
詳細な数式を説明されても困るが,素人相手だからこそ式の心を言葉で説明すべきであろう.
そのような努力を全くしない専門家は多いのだが,
特に,今回のサイエンスzeroの番組作りは踏み込みが全く足りない.大いに不満である.
ただし,今回の番組で良かった点にも触れておこう.
スパースモデリングがいろいろな分野で応用されていることが紹介され,
特にMRIの測定では,ほぼ同じ解像度の画像が1/3の測定時間で得られる例は興味深かった.
腹立ちついでに脱線し,物分かりの良すぎる国民に苦言を呈しておこう.
なぜ原発が必要なのか,戦争法案が必要なのか全く理解に苦しむ.
物分かりの良いふりは止めてわからないことはわからないと正直に言おう.
子供電話相談室を聞いていると,一寸違うんじゃないかな,本質の説明ではないなと思うことが多い.
「わかりません」「なぜですか」とさらに訊ねろとイライラしながら聞いているが,
子供は「なるほど」とか「判りました」とか答えている.どうして納得したふりをするのか
私はこういう予定調和は大嫌いだ.このような同調の習慣がいじめの温床であると思う.
■さて,サイエンスzeroでは説明されなかったが,私の理解している範囲で以下の数式を解説しておこう.
E(x)=||y-Ax||^2+λΣ|x_i|
yは観測データでxは得られた画像.評価関数E(x)が最小となるように画像が推定されるのだ.
右辺の第1項は最小二乗法であり,第2項は得られた画像のノルムである.
第1項の最小二乗法は元画像とフィルタを通した復元画像の誤差を最小にする画像処理でもよく使われる.
x線を観測しブラックホールの像を得る例では,AはFourier変換で,
像xのFourier変換が観測値yになるべきだから,両者の2乗誤差が最小になるところで落ち着く.
さて式全体の形をみれば,ラグランジュの未定乗数法を思い浮かべる方もいるだろう.
そうです.得られた像のノルムΣ|x_i|を最小にする条件下で,
最小二乗法を満たす解xを求めようとしている式にほかなりません.
スパースモデリングは新しい分野で,私は全く素人ですが,
像xは至る所ゼロの疎(スパース)行列だということから,そう呼ばれるのでしょう.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.08.25] No.078
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■8月22日にとっとりサイエンスワールドim鳥取が開催されました.今年で9年目です.
市民の参加者は700人ほどで,万華鏡のワークショップ参加者は110人弱,
先生方および高校生2名のボランテアを得て無事実施できました.
全体で高校生ボランティア50名,特に今回は中学生のボランティア10名が加わりました.
写真などは
http://blogs.yahoo.co.jp/tanidr/16933900.html をご覧ください.
このブログには,鳥取城址,久松山,仁風閣 の記事も掲載しました.
鳥取市歴史博物館,やまびこ館で,70年目の夏「昭和の戦争と鳥取」特別展がありました.
このテーマに関しての私の印象は,以下のブログにあります.どうぞお読みください.
http://blogs.yahoo.co.jp/tanidr/16935089.html
■さて,サイエンスワールドのワークショップの一つに
立体模型,小梁修(OSA工房)があります.
その中の問題の一つ「黄金三角形」の紹介をします.
正五角形の中を図のように分割して作った3種類の三角形
(これらはどれも2等辺三角形ですが何故でしょう)
の面積に関して,以下の関係があります.
(水色の三角形)+(黄緑の三角形)=(オレンジの三角形)
これを証明してください.図は以下にあります.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/82/16936782/img_0_m?1440421136
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.08.18] No.077
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
皆様,厳しい暑さの日が続きました.お元気でしょうか.私も関東で連日39℃を更新している日に
関東で一番熱い地域に黒服を着て行っていました.暑い暑い.
■地球温暖化のウソ
伊藤公紀(横国大教授)のIWJインタビューが以下のサイトにあります.
http://iwj.co.jp/wj/open/archives/256431
詳しくは,同氏らの「地球温暖化論のウソとワナ」KKベストセラーズ(2008)などをお読み下さい.
複雑系である気候決定の仕組みには,多くの要因が関与しており,現状の気候モデルではまだ説明できていない.
これらの要因には,人為的なものと自然的なものがあるが,人為的なもののうち温室効果ガスのCO2の増加
によるものだけが強調されている.
現実に起こっている現象は,グローバルな(地球全体としての)温暖化ではなく,
温暖化の地域と寒冷化の地域の両方が生じており,温室効果ガスCO2の増加で説明できるような単調なものではない.
種々の自然的な要因が気候の大勢を決めていることが近年の研究により明らかになってきた.
それは太陽風が影響を与えている北極海水温の振動や,海洋での熱移動などである.
海洋のコンベアベルトモデルも単純なものではなく,海洋での垂直熱移動は大きな関与をしているし,
大気の大循環のゆらぎもある.これらの影響が大きいことがわかってきたのだが,
現実を説明できるシミュレーションのできるモデリングにはほど遠いこともあり,
IPCCの報告書は,いまだに温室効果一辺倒に偏向したものになっている.
地球は閉じた系ではなく,エネルギーの出入りがある開放系なので,理論的に取り扱うのはとても難しい.
その上,都市化や大規模工事や砂漠化により気候が変わるのを実感し,
温室効果も現象としては真実(温室効果ガスはCO2だけではないH2Oもあるが)なので,
CO2排出削減ですべて解決するがごとく説得され,政策やビジネスに利用されている.
もちろん人為的な要因排除は我々の責任ですべきではある.
しかし,この問題は人間には手の下せない自然的な要因が大勢を決めているので,
CO2排出量削減をしても解決はしない.地球温暖化を原発推進の免罪符にするのは誤りである.
原発はCO2を出さないので温室効果を低減できるという論理は,
原発で生じる熱の大半が冷却水を介して海水に捨てられ海水を直接熱汚染していることを見れば
破綻していることがわかる.
■参考ー温室効果について
私は地学を教えていた(37年前のこと)ことがあるのだが,その頃は,温室効果と石炭消費量と温暖化の話をしていた.
地球の兄弟星の金星(400℃を越える)は,限度を超えたCO2の増加と気温上昇の正のフィードバックが暴走した結果
H2Oがなくなり,現在の金星大気の98%はCO2である.H2Oがなくなる前の金星の原始大気のCO2は多くて一割と推定されている.
現在の地球の大気のCO2濃度はずっと小さいが,ハワイのマウナロア山腹で,継続観測のデータがあり,
320ppm(1960年)から370ppm(2000年)と増加しているのは事実だ.
しかし,CO2増加による気温の上昇は,せいぜい2℃程度と計算される.
地球外から到来する可視光が地表を温め,地表が宇宙に放射される赤外線を温室効果ガスが吸収するので
地球が保温される.仕組みがシンプルで見積もり易いのだが,これだけで現実を説明しようとするのは無理がある.
■地球温暖化のデータ解析は信頼できるか?
・採用したデータ自体の信頼性
経年のデータの測定条件が一定でない.恣意的なデータ採用が行なわれた.
・統計学の正しい運用
主成分分析に誤りがあったらしい.
・シミュレーションの信頼度
シミュレーションはパラメータが3つもあれば,どのような結果にも合わせられるので,
モデリングの理論的根拠が大切である.
・相関関係よりの因果関係を問う
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.08.11] No.076
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
とっとりサイエンスワールド2015が始まりました.
鳥取県と鳥取県数学教育会が主催です.8月2日が米子,コンベンションセンター,
8月9日が倉吉,未来中心,8月22日が鳥取,とりぎん文化会館で実施の予定です.
とっとりサイエンスワールドの開催時間は,各会場とも10:00~16:00です.
小さい子から大人まで,新しい人から顔なじみまで多くの市民の方々に定着した
楽しいイベントになっています.とっとりサイエンスワールドは今年で9年目です.
お近くの方,今年もお寄りください.
今年の万華鏡は次の3つを用意しています.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/29/16895829/img_0_m?1439204340
■米子
8月2日の米子,コンベンションセンターでは,全体で815人の入場者で盛況でした.
スタッフは,小・中・高の先生方および高校生ボランティアです.
万華鏡は,24人のクラスを5回実施し120人が自分の万華鏡を作りました.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/29/16895829/img_1_m?1439204340
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/29/16895829/img_2_m?1439204340
■倉吉
8月9日のとっとりサイエンスワールドin倉吉は未来中心で実施され,
小,中,高の先生方90人+高校生ボランティア40人のスタッフが働き,1024人の市民参加者がありました.
万華鏡のワークショップは110人分用意し,先生や高校生ボランティアの助けを得て
平均22人のクラスを5回順調にこなせました.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/11/16907511/img_0_m?1439205601
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/11/16907511/img_1_m?1439205601
■鳥取
次の開催地は,8月22日,鳥取のとりぎん文化会館です.
こちらでは,万華鏡は160人分用意する予定です.
--------
万華鏡は合わせ鏡の仕組みから話を始めます.
平行な合わせ鏡により1つの物体が一直線上に無限に並んで見えます.
終わりというものがない.最後の映像があったとしてもこれが鏡に映れば
その先の映像が生まれてしまうからです.
次に,2枚の合わせ鏡が平行でなく角度θで傾いている場合を考えましょう.
生じる映像は一直線上でなく円周上に並びます.
そして,円周の向こう側ではきちんと重なって欲しい.
この条件から,360/θ=偶数で割り切れる という万華鏡の条件が生まれます.
今年の万華鏡は,鏡の交差角が作る3角形の1つの角度に 260/θ=偶数 という条件が
わざと成り立たなくしたものです.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.08.04] No.075
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今回は,数学らしくないと思うかもしれません.立体異性体の話です.
これは,右手と左手のように互いに鏡像となる分子の立体構造が関係しています.
この記事は,日刊ベリタに掲載(7/30)したものです.
暑さ厳しい夏です.健康に悪い油やマーガリンの取り過ぎに注意しましょう.
米食品医薬品局(FDA)は16日,食用油などに含まれ,肥満や心臓病との関連が指摘される
トランス脂肪酸を,2018年6月までに食品添加物から全廃すると発表しました.
日本でもトランス脂肪酸の低減をうたっている企業が出始めました.
トランス脂肪酸は,マーガリンやクッキーを焼くのに使うショートニングオイルなどに
含まれているそうです.トランス脂肪酸は悪玉コレステロールを増やすと言われています.
また,アトピーなどにも悪影響がありそうです.
脂肪酸のシス型とトランス型の分子構造について簡単にまとめておきます.
以下のサイトが参考になります:
http://www.maff.go.jp/j/syouan/seisaku/trans_fat/t_wakaru/
https://ja.wikipedia.org/wiki/%E3%83%88%E3%83%A9%E3%83%B3%E3%82%B9%E8%84%82%E8%82%AA%E9%85%B8
脂肪酸は,炭素原子が鎖状に並び,最後の炭素に=OとーOHが付いた分子です.
つまり, CーCーCー・・・・ーCOOH =は二重結合,-は一重結合
Hを省略せずに詳細に書くと
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/08/16882908/img_0_m?1438241054
この例は,背骨となっている炭素原子の鎖は,すべて一重結合でできているので,
すべての結合手がふさがっており飽和脂肪酸と呼ばれます.
不飽和脂肪酸と言うのは,炭素原子の鎖の何ヶ所かに二重結合のあるものです.
二重結合でつながれた両側の炭素は回転できませんから(裏返しにできない)
シス型(左図)とトランス型(右図)の構造の区別ができます.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/08/16882908/img_1_m?1438241054
天然にある不飽和脂肪酸は,ほとんどシス型です(わずかな例外はあります).
不飽和脂肪酸は酸化などで劣化しやすいし,大豆等の植物油の不飽和脂肪酸は常温で液体なので,
固体状にするため水素Hを付加してを飽和脂肪酸に変えることが工場で行われます.
このときトランス型の不飽和脂肪酸も生じ混ざるそうです.
(注)よく知られた不飽和脂肪酸の例
炭素の数18個で二重結合1個はオレイン酸,二重結合2個はリノール酸,
炭素の数22個で二重結合6個はドコサヘキサエン酸(DHA).
■なぜシス型脂肪酸は安全な栄養で,トランス型脂肪酸は害があるのか
シス型,トランス型のような立体構造に差異があるものを“立体異性体”といいます.
炭素原子からは4本の結合手(二重結合ならそのうちの2つを使う)が出ていて,
それぞれの手に結合する原子が入れ替わると立体的に異なる構造になります.
右手と左手のように互いに鏡像である異性体も,この立体異性体の仲間です.例えば,
味の素はグルタミン酸ですが,立体異性体の右型と左型があり,
左型には旨みがあるが右型にはありません.これはおそらく,
人間のアミノ酸が左型であることに関係ありそうです.
不飽和脂肪酸の場合も,天然にあるものがほとんどシス型であることが
シス型が相性の良い理由と思われます.
サリドマイドでは,立体異性体の一方が副作用のない薬であるのに,他方には催奇性があった.
まるでジギルとハイドだが,このような大きな性質の違いがある理由はわからない.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.07.28] No.074
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
暑い日が続きます.皆様いかがお過ごしでしょうか.
7月22日の数学月間懇話会(第11回)は無事に終了しました.参加の皆様ありがとうございました.
今回のゲスト講演者,細矢治夫先生は瑞宝中綬章を春に叙勲されました.
多角形百科(丸善)細矢・宮崎,および,七金三パズルの販売もありました.
今年も暑かったです.高校生5人を含む30人を超す参加があり熱心に質疑もなされました.
参加者の過半数が懇親会にも参加されました.
教室付近の構内は自動販売機がないし,飲み水に不便し私も熱中症気味.
でも今年は良い方です.一昨年の米沢興譲館の高校生がバスで団体参加したときのことが思い出されます.
バスから降りて炎天下グラウンドを歩かされて気の毒でした.
彼らはトイレも給水もそこそこ休む間もなく参加したのでした.
暑い最中に毎年こんな状況では,水くらい飲めるように改善したいものです.皆様ご要望などお寄せ下さい.
数学月間(7/22~8/22)はまだまだ続きます.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/558900/79/16871179/img_0_m?1437962932
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/558900/79/16871179/img_1_m?1437962932
---------------------
■
私の講演内容 “繰り返し模様の観賞法” は,blog別項に掲載しています.
(そちらをご覧ください)http://blogs.yahoo.co.jp/tanidr/16859852.html
繰り返し模様の対称性は有限図形の対称性にくらべて,なじみのない人が多いようです.
教科書で取り上げているのは有限図形の話だけですからね.
しかし,周期的空間は,結晶などが実在する重要な世界です.
私は「空間を均一にデジタル化する」ということからスタートする教程を
構想しています.人間の視細胞を始め自然界のほとんどのものがデジタル空間です.
勉強会など機会があれば,繰り返し模様の数学の愛好者を増やしたいものです.
数学らしくいうと,繰り返し模様と有限図形との関係は
「並進群を核(法)として,空間群は点群に準同型」という事になります.
ここで,繰り返しの規則が「並進群」,繰り返し模様を表すのが「空間群」,
有限図形を表すのが「点群」です.「法として」というのは時計を想像してください.
12を法として無限に続く時間を表示しています.
準同型という概念の心は,集合のもつ特徴を見つける(整理する)のに,
集合の要素の持つある特徴を同じと見做せれば(その小異に目をつぶれば),
別の特徴が顕著に見えてくるという事.
日常生活の色々な場面でこの考え方が出てきます.
「小異を捨てて大同に就く」というは,この考え方に関係がありそうです.
つまり,「小異を同値と見做すなら,別の違いが見えてくる」
そして,「別の違いがない場合は,大同に就ける」という事でしょう.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.07.21] No.073
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
数学月間(=数学と社会の架け橋)は今年で十年目になりました.
7月22日~8月22日を数学月間とすることは,2005年に日本数学協会が提唱しました.
この期間は,数学の土台となる2つの重要な定数
(円周率)π=3.14・・・≒22/7と(自然対数の底)e=2.71・・・・≒22/8に因みます.
数学月間の会SGKは,月間初日の7月22日に「数学月間懇話会」を開催しています.
(注)今年の数学月間懇話会の案内は文末にあります.
我々は,この期間に各地で数学を楽しむイベントが盛んになるよう応援しています.
皆様の周りに数学イベントの情報などありましたらお知らせください.
SGK通信に掲載し連携イベントとして広報いたします.
漢字が読めないのは恥だが,数学なんて知らなくても構わないと思っていませんか.
数学は浮世離れしたものではありません.我々の社会は至る所で数学に支えられています.
数学月間は,“社会が数学を知るとともに,逆に数学が社会のニーズを知る”機会でもあります.
数学月間懇話会では,色々な分野で活躍する数学を鑑賞したり,
数学が生まれた現場に立ち戻りその生い立ちを観賞します.
完成された抽象数学は巨大山脈のようで,一般人には近寄りがたく感じるのものですが,
このように数学を見ることで共感できるのではないでしょうか.
我々の数学月間の手本となった米国の数学月間(スタート時は週間)の原点
“レーガン宣言(1986年)”を,以下に掲載します.今読んでも味わい深く格調高いものです.
ーーーーーーーーーーーーーーー
アメリカ合衆国大統領による宣言5461----
「国家的数学認識週間」1986年4月17日
宣言(National Mathematics Awareness Week)
およそ5000年前、エジプトやメソポタミアで始まった数学的英知は、科学・通商・芸術発展の重要な要素である。
ピタゴラスの定理からゲオルグ・カントールの集合論に至る迄、目覚ましい進歩を遂げ、
さらに、コンピュータ時代到来で、我々の発展するハイテク社会にとって、数学的知識と理論は、益々本質的になった。
社会と経済の進歩にとって、数学が益々重要であるにも拘わらず、数学に関する学課が、
米国教育システムのすべての段階で低下する傾向にある。
しかし、依然として、数学の応用が、医薬、コンビュータ・サイエンス、宇宙探究、ハイテク商業、
ビジネス、防衛や行政などの様々な分野で不可欠である。
数学の研究と応用を奨励するために、すべてのアメリカ人が、日常生活において、
この科学の基礎分野の重要性を想起する事が肝要である。
上院の共同決議261で、国会が1986年4月14日から4月20日の週を、国家的な数学認識週間として制定し、
この行事に注目する宣言を出す事を大統領に要請した。
今日、アメリカ大統領、私、ロナルド・レーガンは、1986年4月14日から4月20日の週を
国家的数学認識週間とする事を、ここに宣言する。私は、すべてのアメリカ人に対して、
合衆国における数学と数学的教育の重要性を実証する適切な行事や活動に参加する事を勧告する。
その証拠として、アメリカ合衆国の独立から210年の西暦1986年の4月17日、ここに署名する。
ロナルド・レーガン(Ronald Reagan)
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.07.14] No.072
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
ここでは,新国立競技場のキールアーチの不都合な力学についてのみ論評します.
その莫大な予算と環境破壊が不評な新国立競技場問題では,
発注前に設計図面の確定があったか,合意形成に必要な情報公開があったのか,
何処の誰が決定責任者なのか,全く見えないプロセスが最大の問題点ではあります.
工期がないと言ってはなし崩しに進めて行くやり口には,もう散々です.
以下の為末氏のブログの意見は全くの正論だと思います.
http://tamesue.jp/20150710/
-----------------
キール(竜骨)とは,船の船首から船底を通って船尾に至る鉄骨の背骨のことです.
新国立競技場の設計(ザハ案)には,巨大なキールアーチが2本使われています.
1本500億円かかると言われています.http://togetter.com/li/841805
この構造の問題点は,以下で評論されています.
http://ameblo.jp/mori-arch-econo/entry-11873045351.html
アーチの形は, http://blogs.yahoo.co.jp/tanidr/16586546.html で述べたことがあります.
アーチの曲線は,上下ひっくり返すと懸垂曲線と同じ形です.
中心から曲線に沿って測った距離をs,その点の曲線の接線の傾きをθとすると,
tanθ/s=一定 の関係があることをそこで説明しました.
アーチの形は,曲線内部の全ての位置で圧縮応力でつりあっているのが特徴で,
大きな荷重を支えることができます.
しかし,あまりにも曲率の大きい平べったいアーチになるとポッキリ折れそうな気がしませんか.
圧縮応力よりもせん断応力の方が圧倒的に優勢になってしまいますからね.
アーチは最終的に,両側の接地点にすべての荷重がかかります.
370mのキールアーチ1本の重量は3万トンと言われていますので,
両端の各接地点はW=1.5万トンの重量に耐えねばなりません.
アーチの頂上の高さをどれくらいに抑えるかによりますが,
ザハ案のデザインのように低く抑えたい(大きな曲率にしたいなら)接地点の傾きθ0が小さくなりますから,
接地点での水平分力W・sinθ0は大きくなります(θ0=30°なら,1.3万トン).
アーチ橋の所で述べたように,アーチ橋の根元には大きな水平抗力が必要で,
両側が山に挟まれた峡谷などは,アーチ橋に適した立地条件です.しかし,
新国立競技場の場合は平地なので,アーチの根元の外側からガッチリ固定したい所ですが,
地下に地下鉄大江戸線があるのでできそうにありません.
そこでアーチ端の内側同志を鋼材で引っ張る(アーチを弓とすると弦のように引っ張る)ことにする.
この鋼材は両側から引っ張られますから,2.6万トン重ほどの大きな張力になります.
軟な鋼材では耐えられませんね.
ちなみに,コンクリートは圧縮には強いが引っ張りには弱い.
鉄筋コンクリートの鉄筋はコンクリートの引っ張り強度をカバーするために入れるのです.
アーチは圧縮力に強いコンクリートが使えますが,キールアーチでは使えません.
いろいろ補助手段を工夫するでしょうが,合理的な設計ではないので工夫のし甲斐がないでしょう.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.07.07] No.071
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
この所,雨の日が続いています.皆様如何お過ごしでしょうか.
7月22日は数学月間懇話会を開催しま.どうぞお出かけください.
昨年(2014年7月22日)の数学月間懇話会の話題の一つに,
中西達夫さんの「スパゲッティを巡る旅」がありました.
これはスパゲッティを適当に砕くと,破片の長さ分布がどのようなものになるかという興味ある実験でした.
興味おありの方は,「数学文化」第21号をご覧ください.このとき観察される「べき乗則」は,
社会の関心事の一つである「地震」にも関係があります.
この地震のテーマは,メルマガNo.031('14/09/30発行)で,
複雑系(原発)の事故雪崩のテーマは,メルマガNo.006('14/05/15発行)で,
取り上げたことがあります.
地震のマグニチュードMは,エネルギーの対数です.マグニチュードを決めるのにリヒターが発案した当初の定義は
便宜的なものでしたが,現在ではもっと理屈に合ったモーメント・マグニチュードが採用されています.
(注)震度というのはその地の揺れ(加速度[ガル])の程度の段階です.
地震で解放されたエネルギーは,生じた断層面の面積×平均変位×地層の剛性の積です
(大雑把にいえば生じた断層の長さに比例します).
生じた断層の長さが長い方が解放されたエネルギーは大きいし,
地層の剛性が大きいほど大きな歪エネルギーが蓄えられます.
これらを踏まえ,起こりうる地震の最大エネルギーを見積もるとM9.5程度と考えられています
(1960年のチリ地震ではM9.5が観測されている).
地震のマグニチュードMと発生頻度(回/年)nの間にn=10^{a-bM}の関係があるのを,
グーテンベルクとリヒターが発見しました.a, bはその地域の地層の剛性などを表す定数で,
b≒1ですので,地震のマグニチュードが1つ大きくなるごとに,地震の回数は1/10に減ります.
ゆえに,これを「べき乗則」とも言います.
地震では多く発生するマグニチュードというものがありません(正規分布ではない).
大きな地震ほど少なくなりますが,M9あたりも起こり得る.そんな巨大な地震に見舞われたなら壊滅的です.
地震被害の低減対策は,被害のコスト(Mの関数)×発生確率(Mの関数)を小さく抑えることです.
従って,頻度は小さいけれど致命的な被害を惹起する巨大地震に対して,
被害が最小となるように備える必要があります.広域の汚染と何十年では済まない年月を要する
原発事故の被害コストは致命的です.原発の再稼働は止めましょう.
クリーン・ルームのチリのサイズ分布も「べき乗則」だと言われています.
もし正規分布のように頻度の高いサイズがあるなら,
そのサイズのチリの発生に特化した対策ができるのですが,「べき乗則」では特別な対策は困難です.
でもこの場合は,大きなサイズのチリが桁外れに大きな被害コストを与えると言う訳でもありません.
中西氏の実験したスパゲッティやクラッカーのほかに,分布関数を求める実験には色々あります.
凍ったジャガイモを投げて砕き,破片のサイズ分布を調べた人(南デンマーク大,1993年)などもいます.
ここでも「べき乗則」が確認されました.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.30] No.070
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
6月も末になりました.今年は梅雨らしい雨がありません.
皆様の方は如何でしょうか.いよいよ数学月間(7/22~8/22)
の月になりますね.
----------------
6月19日に統計数理研究所のオープンハウスがありました.
(統計数理研究所は立川にあります)
統計数理研究所には,
モデリング研究系,データ科学研究系,数理・推論研究系
の3つの系があり,各系にはそれぞれ3つのグループがあります.
オープンハウスでは,100件に近いポスター展示
(大学院生のポスター発表も27件含まれる)がありました.
午後は,「統計よろず相談室」や講演などがありこれも人気でした.
ポスターで興味深かったテーマを一つだけ紹介します.
--------------------------------------
電波干渉計の新たなイメージング法について,池田思朗准教授ほか
電波望遠鏡(アンテナ)を地球規模で複数個配置し,
各アンテナで受信する信号の相関処理をして,一つの仮想的な
巨大望遠鏡としたものを電波干渉計と呼ぶそうだ.
受光電波はcmオーダーのミリ波らしい.
(注)
* ALMA望遠鏡(チリ共和国北部にあるアタカマ砂漠の標高約5000メートル
の高原に建設される)は,66台以上の電波望遠鏡を並べ,
これらの受信データを組み合わせて一つの巨大な仮想望遠鏡とする.
* 赤外線に近い電波を「サブミリ波」波長=1~0.1mm,周波数=300GHz~3THz
少し波長が長い電波を「ミリ波」波長=10~1mm,周波数=30GHz~300GHz
ブラック・ホールからは光が来ないと思っていたが,
ブラック・ホールの口で生じるプラズマから光(電波)が来るそうだ.
この光を受光して,光源の像を得ると円環状で,
ブラック・ホールの穴の形が見えるらしい.
これは宇宙オーダーの話だが,物質からのX線散乱を観測して
物質の原子的構造(nmオーダー)を見る話と非常に似ている.
そこで,私になじみのある結晶の例で理解を試みようと思う.
結晶(物体)ρ(r)からでる散乱X線F(R)は,Fourier変換の関係にあり
F(R)=W・ρ(r), ここで,WはFourier変換の演算行列.
もし,F(R)がわかれば,逆変換ρ(r)=W^-1・F(R)で,
ρ(r)が求められる.しかし,実際に観測できるのは,
複素数F(R)の大きさ|F(R)|のみで,位相はわからない.
だから,位相の推定法が,結晶学の主要な課題になっている.
位相推定には,逆空間をNyquist周波数以上でサンプリングする
オーバーサンプリングの測定も最近やられるようになった.
(注)
* 我々のいる観測空間は,物体ρ(r)のFourier変換スペクトルF(R)
の観測をするので,逆空間(R-空間)と呼ばれる.
これに対し,物体のある空間を実空間(r-空間)と呼ぶ.
宇宙からの電波の受光では,位相は計測できるようだ.
問題は,受光アンテナを乗せている地球が,
観測空間(逆空間)内の限られた軌道上を動く(自転や公転)だけなので,
限られた逆空間のデータしか観測できないところにあるらしい.
位相はわかるにしても,圧倒的に狭い逆空間内の観測データだけから,
逆Fourier変換で光源の形を求める課題である.
つまり,F(R)を観測できずに,圧倒的にゼロの多い2次元行列Fo(R)
しか得られず,この2次元行列を逆Fourier変換し,
光源のイメージ(2次元画像)を得なければならない.
おそらく,観測スペクトルFo(R)とモデルイメージのFourier変換像W・ρ(r)
との差||Fo(R)-W・ρ(r)||が最小となるように最小2乗法でρ(r)を求める
と同時に,観測できなかった範囲の逆空間の推定値も決まるのだろう.
もしかして,このプロセスで,光源の中心対称性などの光源の形に関する
何らかの束縛条件を仮定して推定を進めるのかもしれない?
(注意)この解説は私の推測を補っています.
発表内容の詳細を全部把握したわけでないので
不正確な部分があることをお断りしておきます.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.23] No.069
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
◆数学と諸科学・産業技術との連携
日本学術会議シンポジウム,“礎(いしずえ)の学問:数学
-数学研究と諸科学・産業技術との連携”-が,日本数学会,
日本学術会議数学委員会の主催で,2006.05.17に開催された.
このシンポジウムの狙いは,先端数学研究と異分野
(社会,医学,諸科学,産業など)との連携研究の拠点づくりにある.
その後数回の成果報告会がもたれ,直近では
“数学は世界を変えられるか?「忘れられた科学:数学」から10年
-数学イノベーションの現状と未来”が,2015.04.16に開催された.
異分野の課題の中に,数学が適用できるニーズや,
新しい数学が生れるシーズを発見できるかも知れないのだが,
数学者側から積極的に異分野の課題を理解し,課題の数学的命題化に
力を貸すことが必要だとの意見が出ている.
現実の課題から数学の命題を抽出する所が一番難しいのであり,
数学者はこの段階にも積極的に関与すべきである.
◆数学月間テーマから見る数理科学のトレンド
数学月間は,数学の価値を社会が知ると同時に,
社会からの要請を数学側が知る機会でもある.
国内外の数学月間テーマのトレンドを見ると,ビッグデータや統計学,
複雑系や非線形,モデリングやシミュレーションの話題が増加した.
これらはすべてコンピュータを駆使した数値計算によって
可能になった分野である.具体例を2つ紹介する:
(1)エネルギーの保存される系は,オイラー-ラグランジュ方程式を
立てることができるのだが,一般にはこれは解けない.
物理演習で学んだものは,線形近似で解けるようにしたものだった.
そして,解けない一般の場合にも解の挙動は似たものだろうと想像していた.
しかし,これがだいぶ違う.1900年ポアンカレは,
独立な因果列からなる可積分の方程式はわずかで,
大部分の方程式は非可積分(干渉し合う因果列)であると警鐘をならした.
明日の一つの出来事には,今日の全ての出来事が反映される
-遠方の地で過去に起きた蝶の羽ばたきが,
この地の明日の大風を引き起こす要因になり得る「バタフライ・エフェクト」
の世界である.初期パラメータのわずかな違いで分岐が起きカオスが生じる.
これらは方程式を積分して関数で書き表すことは不可能だが,
コンピュータを用いた数値計算で現象の追跡が可能である.
モデリングとシミュレーションにより現実現象を理解する
「現象数理科学」がさまざまな分野で盛んである.
(2)アモルファス(ガラス)物質の記述にトポロジーが登場した.
結晶は周期的な構造であるので,並進群を核とする準同型写像で
無限に広がる空間を単位胞の中に還元でき記述は簡単である.
アモルファス材料は均一ではあるが周期性はないので
多数の原子を全部記述せねばならず困難である.
アモルファス材料の記述は,古くは動径分布関数による統計的記述であった.
しかし,この記述では,特性の大きく異なるアモルファス構造でも,
同様な動径分布関数を与えてしまう.
そこで,アモルファス構造を特徴づけるいくつかのトポロジー量の定義が
導入された.ガラス構造のネットワーク中に,何員環がどれだけ存在するとか,
ベッチ数や連結数などの特性量,さらにパーシステントホモロジー群
の計算がなされている,これにより詳細なアモルファス構造の記述ができる.
これらのトポロジー量は,大きな原子数のアモルファス構造モデルで,
シミュレーションにより決定された全原子の座標値のビッグデータを
土台にして導出される.
◆市民のための数学月間
完成された抽象的な数学は,取りつき難くそびえる巨大な山脈だ.
身の回りの課題にどのような数学概念が使われているかを具体的に知ると,
数学学習へのモチベーションが高まる.
欧米は日本に比べこのような啓蒙活動がとても充実している.
多くの数学者が,他の領域の科学者と共同研究をしているのは
日本も同様であるが.英国では数学研究の大学生を学校に派遣し,
研究内容を説明させる(大使計画).これは日本もぜひ見習ってほしい活動だ.
当協会の「数学月間」活動のような一般への啓蒙活動は,
成果が不明確なため国家的なプロジェクトから放置される傾向にある.
そして,危機意識のある数学愛好者によってボランテア・ベースの活動が
行われているのが現状である.