2018年3月の記事一覧

水分子の振動モード★

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.03.27] No.212
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今日,3月27日は,数学月間勉強会,結晶空間群で物理と数学を学ぼう(第4回)をやります.
14:30から,東大出版会,会議室です.ご興味おありの方はご参加ください.
群の表現とその応用例を,一気にやってしまいますので,一寸無謀です.
そこで,メリハリをつけて,基本的な考え方を理解することに全力を使うことにします.
応用例は3つ示そうと思っていますが,残り時間を見ながら消化できる程度に留めます.
用意している応用例は,以下の3つです:

(1)水分子の振動モード,
(2)シクロブタジエン分子の分子軌道エネルギー準位,
(3)ルビーの赤い色の原因の結晶場

■(1)水分子の振動モード

水分子H2Oの形は,O原子を中心に両側にH原子が結合していて,「く」の字型(ブーメランの様な形)をしています.
その形の対称性はO原子を通過する2回回転対称軸$$2_{z}$$,分子全体を載せる鏡映面$$m_{y}$$(これは,$$z-x$$平面),この鏡映面に垂直な鏡映面$$m_{x}$$(これは,$$z-y$$平面)からなります.点群の記号で書けば$$2mm$$です.

$$2_z$$は$$z$$軸を回転軸とする2回軸,$$m_y$$は$$y$$軸方向の符号を変える鏡映面($$z−x$$面),$$m_x$$は$$x$$軸方向の符号を変える鏡映面($$z-y$$面)です.

 

 

 

 

 

 

 

 

この分子の内部自由度は3(O-Hの長さが2つとH-O-Hの角度が1つ)なので,分子振動のモードは3種類あるはずです.
分子の形から,この分子振動の3つのモードは次の3つであることがわかります.

 

 

 


すなわち,非対称モードのB1,対称モードA1の2つです.

 

 

 

 

 

 

 

 

 

 

表の見出し行は,水分子の対称性(点群)$$2mm$$と,その対称要素{$$1, 2_{z},m_{y},m_{x}$$}です.
$$2_{z}$$は$$z$$軸を回転軸とする2回軸,$$m_{y}$$は$$y$$軸方向の符号を変える鏡映面($$x-z$$面),
$$m_{x}$$は$$x$$軸方向の符号を変える鏡映面です.
水分子を$$x-z$$面上に置いてあるとして,それぞれの対称操作を行った時に,
各振動モードで原子の変位を示すベクトルが向きを変えるか変えないかを調べましょう.
上の表で$$A_1$$と$$B_1$$の行の符号を見ると,$$B_1$$の$$2_{z}$$,$$m_{x}$$の場合に-1となっていますが,
$$B_{1}$$と記した分子の変位が,$$2_{z}$$と$$m_{x}$$の対称操作をすると逆向きになることがわかるでしょう.
$$A_1,B_1$$は点群$$2mm$$の既約表現です.点群$$2mm$$の既約表現はこのほかに$$A_2,
B_2$$の計4つがあります.点群$$2mm$$の対称操作(対称要素)は4つあり,
この群はAbel群ですので類の数も4つ.異なる既約表現の数は類の数に等しいので4つです.
この表は,既約表現の指数を記入した表です.
さて表の$$N$$は,各対称操作で動かない(対称操作が通過する)原子数です.
その次の$$χ$$の行は,3つの原子(H,O,H)×3つ($$x,y,z$$)の変位=9次元の変位ベクトルを基底として,
各対称操作の行列表現を作り,その指標を記入しました.
9次元の変位の中には,分子全体としての移動や回転の自由度があり,その指標が$$χ^0$$です.
分子内振動に関与する指標は$$χーχ^0$$で,この中にそれぞれの既約表現がどれだけ含まれるかを調べます.
これは既約表現の直交性という性質を使うと容易に計算でき,$$χ-χ^0=2A_1+B_1$$となります.
こうして,分子の形(原子数と対称性)がわかると,どのような振動モードがあるか知ることができます.

0

群の表現と現象の対称性

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.03.20] No.211
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
来週27日は,数学月間流勉強会,第4回です.
東大出版会,会議室にて,14:00-17:00
お気軽に参加ください.
この勉強会(第4回)のテーマは,群の行列表現と現象の対称性です.
先週のメルマガで,ルビーの赤色の補色をCrのd電子が吸収する話をしました.
正8面体の場に置かれたCrのd電子軌道5つは,縮退が解けてエネルギー準位が2つに分かれて存在し,
これらの準位間を電子が遷移するときに光エネルギーの吸収が起こるのでした.
さて,ここで正8面体場による準位の分裂を知るには,群の行列表現の手法を使います.
数式を使わず言葉ですべて説明したいと思っていますが,このメルマガ発行時点ではまだ不十分です.
読者の方からのご意見ご質問を歓迎します.
大体,群の行列表現には,色々な定理を使い難しく面倒です.言葉で説明した授業も本も聞いたことがありません.
でも,その心は言葉で説明できるはずだと私は思っています.
専門書は完全ですが,数式も定理も段階を踏んでたくさん勉強しなければなりません.
入門書は易しいですが,読んでも結局何の役にも立ちません.
私は,よくある入門書のように言葉でごまかすのではなく,
あるいは,数式を書き連ねてすますのではなく,数式が主張しているその心を普通の言葉で表現したいのです.
残念ながらまだ企ての途中なので,今日はまだ半端に数式が出て読みにくいものです.ご勘弁のほどを.
有限群Gの各元(成分)gに,n次正則行列D(g)を対応させ,群Gの演算構造を行列の集合D={D(g)}の中で再現することを,
群の表列表現と言います.つまり,群Gの任意の2元gi, gjに対し,集合Dでも,D(gi・gj)=D(gi)・D(gj)が成立すれば,
集合Dは群Gと準同型な群をなします.極端な例は,Gの異なる元もDの同じ元1に対応させてしまう対応も,群Gの表現です.
異なるgi, gj∈Gに対して,D(gi), D(gj)∈Dも異なれば,GとDは(1:1対応)同型な群です.
f次元行列表現を得るには,互いに独立なf個の基底関数が必要です.
f個の基底関数に,群の対称操作giが作用すると,これらの線形結合に変換されます.
この変換はfxf次元の行列D(gi)で,対称操作gi∈Gの行列表現と言います.
このようにして,群Gを行列の集合Dに対応させると,群Gの構造は群Dに反映され,
行列を扱う問題になり,固有値・固有関数などの行列の理論が使えるようになります.
行列の対角成分の和χ(gi)=Tr[D(gi)]を指標と言い,行列を指標に対応させるのも準同型写像で,
行列の群を扱わずに,指標の群を扱うことでとても簡単なります.
位数gの群の正則表現というのはg個の基底関数を用いて作りますが,
群の対称操作で基底関数が不変なのは恒等操作eだけで,他の対称操作giを作用すると,
どの基底関数も別の基底関数に変換されてしまいます.したがって,指標で言うとχ(e)=g,χ(gi)=0です.

任意のn次複素正方行列Aは,ユニタリー行列Pによる相似変換(P^-1)APで
固有値が対角上に並んだ上三角行列に変形できます.
相似変換(座標変換による基底関数の変換に相当)は,同値律を満たすので,
互いに相似変換にある行列は同値,固有値は同じです.
群の表現行列に戻れば,群の元(成分)giの共役類とは,
(g^-1)・gi・g (for g∈G)なので,同じ類の元の同じ指標になります.

さて,ここで既約表現の定義をしましょう.
既約表現というのは,相似変換で行列を対角化しようとしてもできない行列表現のことです.
可約表現とは,相似変換により,ブロック行列が対角上に並んだ型に変形可能な行列表現で,
ブロックには既約表現が並びます.
与えられた群の行列表現があったときに,その行列表現を相似変換により,
対角ブロックに既約表現が並ぶようにし,その行列表現の中に
どういう既約表現が何個あるか知るのを,表現の簡約と言います.
これは,既約指標の直交関係を使うと容易にできます.
この手法を用いて,ルビーの正8面体場に置かれたCrのd電子の縮退準位の分離を知りました.

0

対称性からわかること

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.03.13] No.210
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
こちらでは,河津桜は咲きましたしすっかり春らしくなってきました.
皆様のところは如何でしょうか.
今月27日には,数学月間勉強会の第4回を開催予定です.
対称性の話を3回して,4回目の27日には対称性の応用も話そうと思います.
今日は,ちょっとその予告編です.
■対称性からわかることは色々あります.
例として,ルビーの赤い色の原因の説明に使ってみましょう.
ルビーの赤い色は,コランダムという鉱物の結晶構造に関係があります.
コランダムはAlアルミニウムとO酸素で出来ています(Al2O3).
コランダムの構造は,大雑把に言うと
パチンコ玉(O酸素)を並べたシートを積み重ねたような構造で,
下3つ,上3つのOが作る正8面体の中心にAlがあります.
Alは周囲(下3つと上3つ)の6つのO(正8面体の頂点)と結合し,
各Oは,2つのAlと結合しています.
Alを囲むOの8面体は厳密には正8面体ではありませんが,
話を簡単にするため正8面体としておきます.
■ルビーの赤い色は,コランダムのAlの位置の2%程度を
Crクロムで置き換えたもので生じます.ついでに,
サファイアの青い色はFe鉄で置き換えたときに生じます.
■さて,ルビーの赤い色の説明に戻りましょう.
Alには3d軌道に電子がありませんが,Crには3d電子軌道に5つ,
4s軌道に1つ電子があります.
d電子軌道の5つは同じエネルギーですが,もし,正8面体の場に
d電子が置かれると,軌道のエネルギーは2種類に分離します.
そのため,光の吸収に関係のあるのは,エネルギー準位が分離したd電子で,
低いエネルギー状態を占めているd電子が,
緑~青の光を吸収し高いエネルギー状態に移ります.
結局,赤い光は吸収されないので,ルビーは赤く見えるのです.
■ここで,対称性の考え方が何処に使われているかと言えば,
5種類ある同じエネルギーのd軌道が,正8面体の場に置かれると,
どのように分離するかを予言するのに使えます.
■さて,ここから具体的な話をしなければなりません.
5つの3d軌道と,1つの4s軌道の計6つの関数を基底として
正8面体群の6次元の行列表現を作ります.あるいは,
正8面体の対称性の場ができればよいのだから,頂点6つに
単位電荷を基底とした表現行列から出発することもできます.
この表現を,正8面体群の既約表現に分解すればよいのです.
結果は,5つのd電子軌道は,3つのd軌道が属するT1uと2つのd軌道が属するEg,
それに,4s軌道の属する球対称のA1gに分解されます.
この計算は,行列表現の指標だけで行うことができますから,
理屈がわかれば案外簡単です.3月27日の数学月間勉強会でこの説明をします.
■ルビーの赤い色は,T1uからEgへd電子が遷移するときの光吸収の補色です.
T1uに属するd軌道が,Egに属するd軌道よりエネルギーが低いのは,
d軌道の電子雲が周りのO原子の電子雲を避けて納まっているからです.

0

対称性の因果律

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.03.06] No.209
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
前号で述べた平面のデジタル化の2つの様式について,図を掲載しておきます.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/70/18435170/img_0_m?1519856943
左図は,正6角形のタイル張りで,デジタル化された平面の対称性は正6角形と同じ.
右図は,正4角形のタイル張りで,デジタル化された平面の対称性は正4角形と同じ.
これらの例のように,デジタル化され(タイル張りされ)た平面は,もはや連続でも等方でもなくなります.
それぞれの単位タイルのより,それぞれの周期と異方性が生じているのがわかるでしょう.

■数学月間勉強会(第4回,3月29日)予告
さて,206号の復習に戻りましょう.
色々な電子デバイスは,結晶という舞台で起こる電子や光子のパフォーマンスを利用しています.
結晶という舞台で観測される現象の対称性には,それが起きた舞台=結晶の対称性が反映されているはずです.
この因果律は,Pierre Curieの原理(19894)と呼ばれます.
”特性の対称性(点群)をG_{p},結晶の対称性(点群)をG_{cryst}とすると,
G_{p}⊃G_{cryst}である”というのがこの因果律です.
原因となる場=結晶の対称性は,すべて,結果=特性に反映されなければならないが,
原因以上の対称性が結果に生じることは妨げないということです.
実際に場=舞台である結晶の対称性より,その結晶で観測される特性の対称性か高いことは,
色々な現象で観測されています.例えば,結晶で起こるX線回折像の点群G_{X}は,
結晶構造の点群G_{cryst}と対称心Iとの直積G_{X}=G_{cryst}×I(Friedel則)になり,
結晶構造に対称心がない場合でもX線回折像の点群には必ず対称心があります.
さらに,このFriedel則以上にX線回折像の対称性が上昇する特殊な結晶構造があることも知られています.
まず,現象の対称性が舞台と同じ対称性であるG_{p}=G_{cryst}として,
色々な現象の対称性分類に群論を適用してみましょう.
その道具として群を行列で表現することが必要になります.
群の表現は,分子の形対称性から,分子の内部振動モードや,
分子軌道の電子エネルギー状態などを知ることに応用できます.

数学月間勉強会(第4回,来たる3月27日14;30開催)は,群の表現を扱います
ご参加お勧めします.

0