大川組子

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.01.26] No.099
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
皆さまご機嫌いかがですか.東京でもちょっと雪が降ったりしました.
今は寒いですが,晴天の日が続いています.日本海側はだいぶ雪が降っているようですが
被害などありませんように.

今回取り上げる伝統工芸の「大川組子」は,FBの友達からの情報と
ブログの友達からの情報で知りました.ウエブやSNSで得られた情報がことの起こりです.
写真は,見事な伝統工芸の格子です.寸分も違わない見事な細工です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/64/17219564/img_3_m?1452480087
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/64/17219564/img_2_m?1452480087

この模様の対称性を鑑賞しましょう.
これらの組子は,正3角形2つでできている菱形の胞(セル)を単位としています.
そして,全体を一貫する格子があり,胞(セル)は格子の中に詰め込まれています.
第二の図の右側コラムに,そこに使われている胞(セル)の中身(5種類)を取り出しました.
これらはどの中身も周期的に繰り返すなら,どれもみんな6回対称(p6mm)になります.
違った中身へと移り変わる境界の状態は,対称性で記述するのは困難です.
その複雑さに,数学がまだ追着かない芸術の深さがあるようです.
胞の中身に変化があっても,格子が同じ一貫したものになっています.
これは,人工結晶などで見られる格子整合という状態を連想させます.

素晴らしい「大川組子」の写真をウエブで探してたくさん鑑賞しました.
「大川組子」の格子は,3角格子(正3角形2つの菱形),正方格子,
六角形格子の3タイプがありました.
多くの工芸作品は,みんなこのうちのどれかで,他の格子は使われないようです.
そこで思い当たったのですが,これは,正多角形のタイル張りが,
正3角形,正4角形,正6角形の3種であることと似ています.
そして,上で述べたように3角形の中に入る胞の中身の対称性は3mです.
正多角形の格子を用いることと,胞の中身も格子の対称性と同じにすることは
安定な釣り合いを考えれば当然のことで,
昔から職人は,寸分もたがわぬ組子を作るために
力のつり合いと対称性を直観的に理解していたことがわかります.