数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2014.12.23] No.043
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
«Квантик»クバンチク(量子っこ)というロシアの生徒向けの雑誌を知りました.
http://kvantik.org/
数学,言語学,物理学などの自然科学の疑問や問題を楽しく学ぶ新雑誌のようです.
onlineでは12ページまでしか出ていないので,その先は購入しなければなりません.
クバンチクで現在出題されている「4つの課題」を紹介します.
出来た人は解答を kvantik@mccme.ru. に送ると独創的な解答は公開されます.
面白い問題で私は出来ましたよ.問題もさることながら,
ロシア語の題意を解釈するのに時間がかかってしまいました.
翻訳を載せておきますのでご挑戦ください.
(第1問)監獄からの脱出
T字型の監獄で.2m幅の堀で囲まれている.1.9mの板が2枚ある.
ジャンプは出来ない.どのように脱出するか?
(第2問)ビリヤード
1:2のテーブルの真ん中の位置に球を置いて,テーブルの角のポケット
にビリヤードで(反射させて)玉を入れることは可能か?
(第3問)如何にしてビンをぶら下げるか
2本のマッチと50cmの糸がある.
これらを用いて水入りのビンを棚の縁(角ではない)にぶら下げなさい.
(第4問)物体の警護
物体点のまわりに,哨兵を何人か配置し,
物体にも哨兵にもこっそり近寄られることの無いようにすることはできるか?
ただし,各哨兵は,選んだ一つの方向だけまっすぐに100mだけ見ることができる.
解答は載せません.以下は,私からのヒントですーーー
1.Tという形がポイントです.
2.可能です.
3.マッチ2本をどう利用しますか
4.哨兵3人で済みますね.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2014.12.16] No.042
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
パターンがどんどん内部に繰り込まれて行くデザインのいくつかを紹介します.
これらはフラクタルと呼ばれる性質と関係があります.
葛飾北斎(1830年代前半)の富嶽36景,神奈川沖の絵の
波しぶきを見たことがおありでしょう.あるいはこの季節の
すっかり葉を落とした木立の先が美しく枝分かれしていたり
雲や海岸線の輪郭が,拡大しても拡大しても同じような
形が現れてくるのにお気づきでしょう.
同じ形が繰り返し内部に繰り込まれているような仕組みを
フラクタルと言います.
フラクタルの詳しい説明は後回しにして
今回は応用されたデザインの例を鑑賞しましょう.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/16/16306916/img_0_m?1418046938
グラスのこちら側の円が凹レンズになり,向こう側の円模様を
レンズ円内に縮小して映し出しているのが面白い.
(リュミナルク製)
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/16/16306916/img_2_m?1418046938
五芒星と黄金比 外部と内部の比(1+√5)/2=1.618:1
http://blogs.yahoo.co.jp/tanidr/GALLERY/show_image.html?id=16306916&no=1
レオナルドの星型8角形 外部と内部の比1+√2:1
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2014.12.09] No.041
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
◆皆様,お元気でお過ごしでしょうか.選挙が迫り慌ただしい日々ですね.
大事な選挙です.私はもう期日前投票を済ませましたよ.
先週土曜日には,河合弘之弁護士の作ったドキュメンタリー「日本と原発」を
見てきました.皆様の近所でも有料試写会(自主上映)がきっとありますので,
ぜひご覧になることをお勧めします.
「原発は複雑系なので,事故が雪崩を起こす弱点(ここを攻撃されると過酷事故になる)
が思わぬところにある.その引き金となるのは,地震・津波だけではない」と,
メルマガ006に掲載したことがあります.ぜひお読みください.
バックナンバーはブログにもあります.私は,原発だけは止めたいと思っています.
高木仁三郎さんと「宮沢賢治をめぐる冒険」でお話したとき(1997年)のことが
昨日のように思い出されます.この本は,市民科学者として活躍した高木仁三郎さんが
羅須地人協会に打ち込んだ賢治と重なって見える良書です.
これら数学以外のことは,ブログの方に掲載することにしましょう.
ーーーーー
◆双曲幾何の円盤世界
Fig.1の灰色の円盤内の世界は,双曲幾何の世界です.
この世界の直線は,世界の果て(外周円)に直交する円弧
-例えば,Fig.1の赤い円-です.もちろん直径のような本当の直線も
灰色世界の円盤の外周円に直交しますのでこの世界の直線です.
赤い円で2分された灰色世界の左側と右側は
赤い円を反転円として,互いに反転鏡映像になっています.
Fig.1
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/67/16306967/img_1_m?1418046545
2つの平面鏡と1つの円柱鏡で作られる万華鏡(Fig.2)を見てください.
赤く塗った3角形の各辺は,この円盤世界の直線です.
赤く塗った3角形の頂角は,30°-45°-90°.内角の和は165°で180°に
足りませんが,この円盤内の世界は双曲幾何の世界なので当然です.
赤く塗った3角形の辺を紙面に垂直な方向に伸ばした3角柱を考えると
平面2枚と円柱鏡からなる万華鏡ができます.
円柱鏡が生む映像は数学的な反転鏡映像としますと
Fig.2のような円盤内の分割(ポアンカレ万華鏡像)が得られます.
塗られた3角形と白い3角形は鏡映の度に入れ替わるので市松模様です.
Fig.2
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/67/16306967/img_0_m?1418046545
実際に作ってみました.ポアンカレ万華鏡を再現するのは困難です.
円柱鏡での光の反射(物理的)は,数学的な反転操作とは異なり
厳密な数学的な反転鏡映は,光学的には実現できないのが残念です.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2014.12.02] No.040
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
先に,「007_インドラの網と反転円」で言及したことがありますが,
円による反転鏡映について,その性質や利用例を鑑賞しましょう.
◆円による反転鏡映の性質
下図に赤い円による反転鏡映の代表的な例を2つ示します.
・反転円をよぎる直線aを反転すると,反転円の中心を通る円Aになる.
・円bを反転すると,円Bになる.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/78/16304278/img_0_m?1417183249
この性質を知っていると,色々なことに利用できます.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/78/16304278/img_3_m?1417183249
例えば,このような図形はアルベロス(靴屋のナイフ)
といいますが,この中の幾何学世界の面白さなどです.
下図のアポロニウスの窓の中にある黄色の円とピンクの円は,
緑色の円を反転円として,それぞれ反転円内の黄色とピンクの円が
鏡映像になります.これらの鏡映像は平行な直線(黒)に挟まれた
領域内に入ります.
平行直線の左はアポロニウスの窓の外周円の反転鏡映,
平行直線の右はアポロニウスの窓内にある左側の大きな円(灰)の
反転鏡映像です.なぜなら,外周円も左側の大きな円(灰)も
反転円の中心を通っているので,鏡映像はどちらも直線になるからです.
アポロニウスの窓内にある初めの黄色い円もピンクの円も,外周円と
内部の左側の大きな円(灰色)に接しているので,
それらの反転鏡映像でもそのような状態が保たれています.
このようなことがわかると,以下のパップスの定理が導かれます.
アルベロスの中で,右側の大きなピンクの円の上に生じる
黄色の円(ω1),続いて生じる灰色の円(ω2),の系列を考えると,
「円ωnの中心と直径ABとの距離は円ωnの直径のn倍である」
(パップスの定理)ことがわかります
以下の図は,ω2の場合の例です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/78/16304278/img_2_m?1417183249
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/78/16304278/img_1_m?1417183249
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2014.11.25] No.039
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
◆平面のブラベー格子は5つのタイプがあることを036号で学びました.
ここに示す繰り返し模様のそれぞれは,どの格子に対応しますか?
日本の伝統文様には,美しい繰り返し模様がいろいろあり,それらは
着物や食器,籠バック,インテリアなどと色々な所で見られます.
これらの模様には,どのような対称性があるかを鑑賞しましょう.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/32/16234632/img_3?1414573530
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/32/16234632/img_4?1414573530
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/32/16234632/img_5?1414573530