ブログ倉庫

今年の米国MAMの感想☆

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.05.12] No.063
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
2015年米国MAMのテーマ
「数学がキャリアを動かす」
http://www.mathaware.org/mam/2015/highlighted/ より)

自分のキャリアに数学を利用している実在の人物
数学の才能や嗜好を報酬や多様なキャリアに変えた17人

数学が好きだが,数学専攻者にアカデミック以外のどのような仕事があるのかわからない?
幸いなことだが,「数学を専攻するのは今でしょう」というわけだ.
なぜなら,数学がイノベーションの原動力であるようにキャリアも運ぶからだ.
数学の才能と嗜好を,実業界や工業界や政府での多様なキャリアと報酬に替えた17人が紹介される.
彼らが影響を受けたものやそのキャリア・パス選択を見ることは,
アカデミックの外にキャリアを探す数学専攻者にとって,ユニークな見通しや有用なアドバイスになるだろう.

詳しく知るには
http://www.mathaware.org/mam/2015/highlighted/#sthash.gXM8A0oh.dpuf
に17人のプロフィールがあります.17人のうちIBM研究所の人が2人います.
そのほかは,data scientistという人が多いようで,
これらは統計学やコンピュータを用いた数学分野です.

■代表的なプロフィールの例
プロフィール:Jean Steiner
データ・サイエンティスト,Google社,ニューヨーク

私は、工学分野の広告組織Googleのデータ科学者です.
広告主が彼らのgoogle AdWordsアカウントを
どのように管理したらよいかを理解するためにデータを分析し,
彼らに良いツールの提供ができ,彼らのアカウント管理が容易になるようにしています.
私はデータから話を引出し,我々のソフトウエア技術者が良い製品を作るのを助けます.
データ・サイエンティストという役割をする人のほとんどは,
統計学,生物情報学,認知科学,物理学,数学,経済学などの背景を持っています.
私は,アカデミックの場の純粋数学からスタートした
(博士号を取った後,ポスドクフェローシップで研究と教育を行った).
そして,私はやはり定量的であるが,応用的な何かをしたいと思った.
多くの可能なキャリア(例えば、疫学、定量的な金融、経営コンサルティング)
を探しての情報インタビューの結果,Googleで私の関心にぴったり合った仕事を見つけた.
データ解析と,わずかばかりの軽量シェル·スクリプト(コーディング),
ビジネスへの関心が組み合わさっている仕事だ.
当初,私は金融機関で,収益予測,分析,報告をしていたが,
最終的には,より深い分析とより少ない報告を望んでいたので,
データ・サイエンティスの役割に移動した.

■個人的な感想-----
今年の米国MAMのねらいは,数学者の働き場所は大学教授や教員の他にも広範な分野があり
需要があるということにある.「だから数学を学ぶなら今でしょう」という調子だ.
この状況は日本でも全く正しいとは思う.

しかし,今年の米国MAMのキャンペーンのなかで,数学のキャリアは年収が高いとか言うのは眉唾物だと私は思う.
2014年度の高年収職業ベスト10とかワースト10とかは馬鹿げたデータだ.
だいたい高収入が欲しくて数学を専門にするなどおかしな話だ.
17人のプロファイルもそれほど面白くない.
広範な各分野で具体的にどのような数学を用いた仕事や研究をしているのかを知りたいと思ったのだが,
週刊誌の表題程度のレポートで,本年の米国MAMの内容には失望した.

0

不思議な数字6174

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.05.05] No.062
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
ゴールデン・ウイークの最中です.
皆様,よい休日をお過ごしでしょうか.
今週は2つの本を紹介しようと思います.

■「数学を楽しむ」西山豊,現代数学社
6174の不思議はこの本のp.130に出ています.

数学はなんでも証明されているかというとそうでもないらしい.
6174の不思議さを理解するのはちょっと大変.私はまだわかりません.
でも,6174に関する不思議な命題が成立しているのは事実です.
 
6174の各桁の数字の並びを変えて,最も大きい数字を作ると7641,
最も小さい数字を作ると1467です.
最大数字と最小数字の差は 7641-1467=6174 になってしまいます.
6174という数字は不思議ですね.

いろいろな4ケタの数字で実験してみます.例えば,
2005なら
5200-0025=5175
7551-1557=5994
9954-4599=5355
5553-3555=1998
.....
このような操作をカプレカー操作というそうです.
(カブレカーはなんでこんな操作を思いついたのでしょうか不思議です)
頑張って,この先をもう少し繰り返して行くと,結局6174に到着します.
全部同じ数字の場合を除き,どのような4ケタの数かtら出発しても
6174に到達するそうです.不思議ですね.なぜなのだろうか?

西山さんはプログラムを作り,パソコンですべての4ケタの数が,
有限回のカプレカー操作で6174に達することを確かめ,系統図をつくりました.

そのほかの桁数の数字ではどうかというと,
3ケタでは存在するけれど,5ケタでは存在しないそうです.

事実は確かめられましたが,なぜこのようなことが起こるのか?
その仕組みをしりたい.数学の不思議さを感じる例です.

■美しい幾何学, 丸善
高木隆司監訳
Eli Maor and Eugen Jost

ルネサンスの時代は,数学とアートの活動は協力して行われ,
心の中で補い合うものと考えられていた(イーリーによるまえがきより).
オイゲンの数学的アートと数学者(数学史)イーリーの協同でできた本書は珍しい数学の本です.
説明には微積分などは出てきません.子供から大人まで数学アートを鑑賞しながら読み進むことができます.
テーマは系統的な幾何学とは異なります.初級の幾何学もあれば無限級数などもあります.
さらに意外なテーマが現れたり変化に富みます.
取り上げられたいくつかのテーマを見てみましょう.例えば,シュタイナーの円鎖.
これはアルベロスとかインドラの真珠などと呼ばれることもあります.
円の中に互いに接する円を詰め込んだ美しい図形です.円による反転操作もあります.
この図形は和算の算額にも登場しますが,それにも言及しているのは著者の専門が数学史だからでもあり,
本書の構成にもそれが現れています.本書の前半に,ピタゴラスから始まり,
素数,無限級数の収束,ユークリッドなどのテーマが現れます.
さらに続くのは,円周率,積み木による調和級数,自然対数の底,らせんや種々の曲線などです.
これらの説明も,数学アートの図が活きていて面白い本です.
本書の後半には,スノーフレーク曲線,シェルペンスキーの三角形などのフラクタル図形の特徴も,
美しく理解しやすい図による記述があります.

0

面積ゼロで周囲が無限大

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.04.28] No.061
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
面積がゼロで,周囲が無限大のフラクタル図形

フラクタル図形というのは,図形を拡大していくと,
どんどん細部が見えてくるが,それらがいつも同じ図形なのです.
http://upload.wikimedia.org/wikipedia/commons/6/6a/Sierpinski_zoom.gif

そのような図形のうち,ポーランドの数学者シェルピンスキーの図形の作り方を見てみましょう.

(1)シェルピンスキーのガスケット
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/58/16668258/img_2_m?1429928123

正3角形から出発します.正3角形を4分割して真ん中を通り覗きます.
残った3つの正三角形をそれぞれ4分割して,それぞれの真ん中を取り除きます.
この操作を際限なく(無限に)繰り返して得たフラクタル図形はシェルピンスキーのガスケットです.
面積は0に収束し,境界の長さは無限大に発散します.

(2)シェルピンスキーのカーペット
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/58/16668258/img_3_m?1429928123

正方形から出発し,9分割し真ん中の正方形を取り除きます.
残りの8つの正方形をそれぞれ9分割して,それぞれの真ん中を取り除きます.
この操作を際限なく(無限に)繰り返して得たフラクタル図形はシェルピンスキーのカーペットです.
やはり,面積は0に収束し,境界の長さは無限大に発散します.

これらの図形は,1次元でも,2次元でもありません.
「長さがx倍になった領域に,現在の図形をy個詰め込む」という操作を繰り返したわけですが
  x^d=y (dはフラクタル次元) より,フラクタル次元は d=logy/logx です. 
フラクタル次元は,(1)ガスケット3角形では1.585・・・,(2)カーペット4角形では1.89・・・・になります.

0

結晶とガラスの数学

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.04.21] No.060
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■結晶とガラスについての話です.
まず,石英(水晶)と石英ガラスの2次元の模式図を見て下さい.
図はwikipediaから借りました.どちらも材料の化学式はSiO2で同じです.
Fig.1 結晶
http://upload.wikimedia.org/wikipedia/commons/f/fd/SiO2_-_Quarz_-_2D.png
Fig.2 ガラス
http://upload.wikimedia.org/wikipedia/commons/thumb/1/19/SiO2_-_Glas_-_2D.png/240px-SiO2_-_Glas_-_2D.png

結晶とガラスの違いは一目瞭然でしょう.
そう,結晶構造には繰り返し周期がありますが,ガラスにはありません.
Fig.3に示すように,結晶には単位となるタイルがあり,これで無限平面を隙間なく張りつめることができます.
石英の例では,正6角形のタイルを,赤点の場所に置けば,無限平面を隙間なく張り尽くせます.
赤点は格子点と呼ばれます.格子は,図中に示した2つの互いに独立なベクトルa1,a2の
一次結合ha1+ka2により生成されるベクトルを集めた無限集合(並進群)の図による表現でもあります.
Fig.3 結晶構造にある並進群
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/26/16652126/img_0_m?1429350335

■結晶空間は並進周期のある空間です.結晶構造は規則正しい秩序のある構造ですから,
並進操作以外にも回転対称操作とか鏡映対称操作などあり,
構造に存在するこれらの操作を続たとき生じる対称操作全体の無限集合は”群”をなしています.
生成される対称操作はこの集合に含まれるし,すべての操作に逆元があり,
何も動かさないという単位元もあります.
結晶空間(周期のある無限空間)の対称操作の集合のなす群を結晶空間群と言います.
今日,ここで扱ったような2次元の平面群(壁紙模様)は17種類あることが知られています.
並進(格子点間の移動)で重なるものは同値と定義すると,
無限に広がる結晶構造を,単位タイルの中に押し込めることができます.数学の言葉で言うと,
「並進群を核とする準同型写像で結晶空間群は結晶点群に帰着する」ということになります.
私はこの理論が大好きでした.しかし皮肉なもので,実際に扱った材料は結晶ではなく
群論の適用ができないガラスが中心になりました.

■ガラスの構造をどう解析し記述するかというのは,今日でも困難な課題です.
結晶で活躍する群論もFourier変換も役に立ちません.ガラス(一般化してアモルファスと言う)には,
単位タイルと言うものがありません.結晶構造では,
無限にある構成原子のパラメータは単位タイルに含まれる有限個に還元することができましたが,
ガラスでは無限個の構成原子のパラメータを減らせません(実際にコンピュータで扱うのは有限個).
結晶空間は単位タイルによってデジタル化された空間,他方,アモルファス空間は連続空間(アナログ空間)です.
ガラス構造では,結晶のようにすべての構成原子のパラメータを記述するのは諦めねばなりません.
そこで古くから,1つの原子を中心に置いて.半径r+Δrの球殻上に何個の原子が存在するのか
というような確率的な記述(動径分布関数)が用いられてきました.
最近は,アモルファス構造を特徴づけるいくつかのトポロジー量を定義することもやられています.
Fig.2を見るとリングがたくさん見えるでしょう.ガラス構造の中に,何員環がどれだけ存在するかとか,
ベッチ数とか連結数などの特性量,さらにパーシステントホモロジーの計算がなされ,
これにより詳細なアモルファスの特徴量が得られるようになりました.
これらのトポロジー量は,大きな原子数のアモルファス構造のモデルから,
シミュレーションにより決定された原子の座標値のビッグデータを土台に導出されます.
******
(編集後記)
今回のメルマガでガラスの構造について書こうと思ったのは,
4月16日の文科省の講演会「数学は世界を変えられるか?」で数学イノベーションの紹介例3つの内に
ガラス構造への応用トポロジー(東北大)があったからです.
この講演会の主旨は,数学と社会・諸科学の連携です(ガラス構造の研究発表ではありません).
数学連携に関する個人的感想は(メルマガ分量オーバーのため).以下のサイトに書きました:
http://sgk2005.sakura.ne.jp/htdocs/index.php?key=joth4d0ko-36

0

積めば積むほど長くなる

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.04.14] No.059
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━

http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556225/69/16381169/img_0_m?1428931802

計算することも大事ですが,このような感覚を体に身に着けることは有益です.
有限個の積み木を積んで長さの記録を競います.
無限個の積み木を積むなら,少しずつですが無限に伸びる対数曲線ができます.
(例1)発散する無限級数を体験する
  1+1/2+1/3+1/4+.......+1/n+....=∞
積み木の長さの半分を1とする.
一番上の積み木の飛び出している長さは1
その下の積み木の飛び出している長さは1/2
その下の積み木の飛び出している長さは1/3
.....以下同様にいくらでも続きます.

(例2)収束する無限級数を体験する
  1/2+1/4+1/8+1/16+........=1
総和でできる立方体の体積を1とする.
立方体の内部の1/2の体積(オレンジ)を取り除く
残りの体積から残りの体積の1/2(グリーン)つまり立方体の(1/2)^2を取り除く
その残りの体積の1/2(青)つまり立方体の(1/2)^3を取り除く
その残りの体積の1/2(赤)つまり立方体の(1/2)^4を取り除く
......以下同様にいくらでも続きます.

私達は子供の頃,積み木を積んで遊びました.そして自然に重心や釣合の感覚が身に着きました.
水遊びをして流体の性質を自然に身に着けました.
後に学校で物理学を学びますが,そのような理論を学ばずとも重力や力学の法則が身に着いていました.
身に着いていなければキャッチボールもできません.
吹きガラスの職人になるには,熔融ガラスの振る舞いを瞬時に判断できることが
身に着いていなければなりません.数学でもこのような体験は大事なことだと思います.

0