結晶とガラスの数学

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.04.21] No.060
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■結晶とガラスについての話です.
まず,石英(水晶)と石英ガラスの2次元の模式図を見て下さい.
図はwikipediaから借りました.どちらも材料の化学式はSiO2で同じです.
Fig.1 結晶
http://upload.wikimedia.org/wikipedia/commons/f/fd/SiO2_-_Quarz_-_2D.png
Fig.2 ガラス
http://upload.wikimedia.org/wikipedia/commons/thumb/1/19/SiO2_-_Glas_-_2D.png/240px-SiO2_-_Glas_-_2D.png

結晶とガラスの違いは一目瞭然でしょう.
そう,結晶構造には繰り返し周期がありますが,ガラスにはありません.
Fig.3に示すように,結晶には単位となるタイルがあり,これで無限平面を隙間なく張りつめることができます.
石英の例では,正6角形のタイルを,赤点の場所に置けば,無限平面を隙間なく張り尽くせます.
赤点は格子点と呼ばれます.格子は,図中に示した2つの互いに独立なベクトルa1,a2の
一次結合ha1+ka2により生成されるベクトルを集めた無限集合(並進群)の図による表現でもあります.
Fig.3 結晶構造にある並進群
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/26/16652126/img_0_m?1429350335

■結晶空間は並進周期のある空間です.結晶構造は規則正しい秩序のある構造ですから,
並進操作以外にも回転対称操作とか鏡映対称操作などあり,
構造に存在するこれらの操作を続たとき生じる対称操作全体の無限集合は”群”をなしています.
生成される対称操作はこの集合に含まれるし,すべての操作に逆元があり,
何も動かさないという単位元もあります.
結晶空間(周期のある無限空間)の対称操作の集合のなす群を結晶空間群と言います.
今日,ここで扱ったような2次元の平面群(壁紙模様)は17種類あることが知られています.
並進(格子点間の移動)で重なるものは同値と定義すると,
無限に広がる結晶構造を,単位タイルの中に押し込めることができます.数学の言葉で言うと,
「並進群を核とする準同型写像で結晶空間群は結晶点群に帰着する」ということになります.
私はこの理論が大好きでした.しかし皮肉なもので,実際に扱った材料は結晶ではなく
群論の適用ができないガラスが中心になりました.

■ガラスの構造をどう解析し記述するかというのは,今日でも困難な課題です.
結晶で活躍する群論もFourier変換も役に立ちません.ガラス(一般化してアモルファスと言う)には,
単位タイルと言うものがありません.結晶構造では,
無限にある構成原子のパラメータは単位タイルに含まれる有限個に還元することができましたが,
ガラスでは無限個の構成原子のパラメータを減らせません(実際にコンピュータで扱うのは有限個).
結晶空間は単位タイルによってデジタル化された空間,他方,アモルファス空間は連続空間(アナログ空間)です.
ガラス構造では,結晶のようにすべての構成原子のパラメータを記述するのは諦めねばなりません.
そこで古くから,1つの原子を中心に置いて.半径r+Δrの球殻上に何個の原子が存在するのか
というような確率的な記述(動径分布関数)が用いられてきました.
最近は,アモルファス構造を特徴づけるいくつかのトポロジー量を定義することもやられています.
Fig.2を見るとリングがたくさん見えるでしょう.ガラス構造の中に,何員環がどれだけ存在するかとか,
ベッチ数とか連結数などの特性量,さらにパーシステントホモロジーの計算がなされ,
これにより詳細なアモルファスの特徴量が得られるようになりました.
これらのトポロジー量は,大きな原子数のアモルファス構造のモデルから,
シミュレーションにより決定された原子の座標値のビッグデータを土台に導出されます.
******
(編集後記)
今回のメルマガでガラスの構造について書こうと思ったのは,
4月16日の文科省の講演会「数学は世界を変えられるか?」で数学イノベーションの紹介例3つの内に
ガラス構造への応用トポロジー(東北大)があったからです.
この講演会の主旨は,数学と社会・諸科学の連携です(ガラス構造の研究発表ではありません).
数学連携に関する個人的感想は(メルマガ分量オーバーのため).以下のサイトに書きました:
http://sgk2005.sakura.ne.jp/htdocs/index.php?key=joth4d0ko-36