ブログ倉庫

並進群と2色格子

無限に広がる2次元の世界(平面)が,周期的であるとは,1枚のタイル(平行4辺形)を張り詰めて,平面のタイル張りがなされている状態です.
周期的な平面はタイル(単位胞)を単位としてデジタル化された平面といえます.
タイルの辺と辺を合わせてタイル張りをすると,平面は必ず周期的になります.
平行4辺形の2辺は,周期的な2次元世界を張る「基本並進ベクトル」a1,a2です.
(注)2次元だから,互いに独立なベクトルは2本あります.
平行6辺形でも平面のタイル張りができますが,
対向する2辺間の移動ベクトルを,a1,a2,a3とすると,互いに独立なベクトルは2つのみで,残りのベクトルは従属 a3=a1+a2

a1,a2を基本並進ベクトルという.基本並進ベクトルa1,a2の1次結合ーつまり,任意の整数n1,n2に対して,T(n1,n2)=n1・a1+n2・a2 
となるベクトルT(n1,n2)も並進ベクトルで,並進ベクトルの集合は群をなします;
これを並進群といいます.並進ベクトルT(n1,n2)で移動する点はすべて同価で,格子点と言い,格子点の集合全体が格子です.格子は,並進群の具体的な表現とも言えましょう. 

(*注)
並進ベクトルの集合Γは,加法で閉じており,群をなすことは明らかでしょう.

・ T(n1,n2),T(m1,m2)が並進群Γの元なら,
  T(n1,n2)+T(m1,m2)=T(n1+m1,n2+m2)もΓに含まれる.
・ 動かさない並進T(0,0)が存在し,これが群Γの単位元.
・ 並進T(n1,n2)に対し,逆元T(-n1,-n2)が存在する.

基本並進ベクトルa1,a2の関係を,対称性で分類して5つのブラベー格子が出来ることは,前号の図をご覧ください.また,基本並進ベクトルが作る平行4辺形が単位胞で,単位胞と呼ばれる所以は,この面積の中に格子点が1つ含まれるからです.
ただし,面心格子のように複数の格子点(2次元の面心格子では2つ)を含む胞を単位胞(実は複格子点胞)と便宜上呼ぶこともあります.

本来,単位胞はすべて単格子点胞とすべきだが,複格子点胞も混じっている.それは,以下の便宜上の根拠による:
The smallest portion of a lattice with identipoints at its corners which still retains the same point-group symmetry as the entire lattice.
単位胞    unit cell
単格子点胞 primitive unit cell ⇒ 1-lattice point cell
複格子点胞 multiply primitive unit cell ⇒ n-lattice point cell

任意の並進ベクトルの和は,演算の順番によりません.そのような群は可換群(Abel群)と呼ばれます.
格子点を周期的に抜き取った粗い格子は,もとの格子の部分群です.1つの格子(並進群)には,たくさんの粗い超格子(部分群)がありますが,並進群は可換群ですから,並進群のすべての部分群は正規部分群になります.
例えば,(n1,n2)の偶数格子点だけを集めた粗い格子もできます.偶数格子点を「黒」,奇数格子点を「白」に塗り分ければ,黒白の2色格子ができます.

0

伝統模様に見る周期的平面の分類(5つのブラベー格子)

周期的平面を対称性で分類すると,図1に掲載するように5つのタイプ(ブラベー格子)になります.
平面ですから周期を決める互いに独立なベクトルは2種類で,そのベクトルの状態を図1の2段目に赤い矢印で示しました.やはり図の2段目には,この赤いベクトルを2辺とする平行4辺形(グレーに着色,平行4辺形の頂点には格子点がある)を図示しました.これは単位胞と呼ばれます.
図の3段目は,1つの格子点を中心とし,隣接格子点と結ぶ線の垂直2等分線で囲まれた図形を示しました.この図形はデリクレ胞(固体物理の方では,ウイグナー=ザイツ=W-Z胞)と呼ばれます.デリクレ胞の作り方から,”格子点にデリクレ胞を配置すれば平面が隙間なく埋められる”ことは明らかでしょう.それぞれのブラベー格子の対称性はデリクレ胞の対称性に帰着すると言っても良いでしょう.
図1

 

 

 

 

 


■5つの格子のタイプ(ブラベー格子という)の復習はここで終えましょう.
ブラベー格子の内の「一般格子」は,2回回転対称(格子なら自然に生じる)しかないので除外し,他の4つについて,実際の例を伝統模様で見てみましょう.
以下の図2を見て,どの文様がどのブラベー格子に所属するかご鑑賞ください.
図2
イメージ 1

0

周期と平面のデジタル化

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.05.02] No.165
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■モワレ縞
次の図をご覧ください.λ1の正方形目の格子と,λ2の正方形目の格子が,互いに平行のままで重なったときに生じるモアレ縞です,
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/61/18015761/img_0_m?1493248332

生じるモワレ縞の周期 Lは,1/L=1/λ2-1/λ1 の関係で決まります.
子供の頃,織物検査器というのを玩具にしていました.布地の上に硝子板を乗せると,モワレ縞がはっきり表れ面白い.
この原理で1インチの中に何本糸があるか,織物の出来が均一かなどが,調べられる訳で,
ものさしの様なガラス板の中に,既知の間隔の線がたくさん引かれていました.

■周期的な平面(平面のタイル張り)
周期的な平面は,1種類のタイルでタイル張りされています.つまり,デジタル化された平面と言えましょう.
どんな形のタイルが,平行移動のみで平面をすきまなく埋め尽くすことができるかといえば,
(1)平行4辺形,あるいは,(2)平行6辺形のタイルです.
(1)平行4辺形とは下図の(A)のような形です.
これらは,向かい合った平行な辺どうしは同じ長さ.向かい合った辺どうしを突き合わせて平面を敷き詰めることができます.
向かい合った辺に同じような変形を加えて図案のモチーフを作ります.エッシャーの作品の2羽の鳥はこのようにして作られました.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/568616/27/17239427/img_4_m?1493646655

(2)平行6辺形は平行な辺どうしが同じ長さの図形で,下図の(B),(C)のような形です.
これらは,向かい合った平行な辺(同じ色に着色)どうしを突き合わせて,平面を敷き詰めることができます.
向かい合った辺に同じような変形を加え,図案のモチーフを作るとエッシャーの様な繰り返す絵が作れます.
私は, ハロウイン魔女を作って見ました.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/568616/27/17239427/img_5_m?1493646655

(3)平行8辺形以上は平面を敷き詰められないのは何故でしょうか
平面は2次元のために独立な平行移動の方向は2つだけで,3つ目の方向は決まってしまいます.
可能な並進方向は全部で3つで,4つ目の方向は存在できません.
従って,敷き詰め可能なのは平行6辺形までということになります.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/568616/27/17239427/img_6_m?1493646655

■お知らせ
●数学月間勉強会
「結晶空間群で,物理と数学を学ぼう」,
谷 克彦(日本数学協会幹事)
●数学月間の会,日本数学協会

日本数学協会は,7/22~8/22を数学月間と定めました.
数学と社会の架け橋=数学月間は今年で13回になります.
このたび,「数学月間勉強会」シリーズを始めます.
数学月間流勉強会の特徴は,テーマを,数学と社会(今回は,物理/芸術)の両面からとらえることです.
それは,完成した数学の学習ではなく,数学が生まれる現場に立ち会うようでもあります.
”通俗解説書は何冊読んでもピント来ない(私もそうです),一方,補題・定理の証明に終始する抽象数学は味気ない”
と思っている皆さん,とくに若い方々にお勧めします.初心から専門の方まで広くご参加を歓迎します。

●日時:6月28日,15:00~17:00
●場所:東京大学出版会,会議室
最寄り駅は,駒場東大前
●無料
●問い合せ・申し込み: sgktani@gmail.com
●第1回のテーマ:
「周期と空間のデジタル化」,繰り返し模様を鑑賞する     
第2回は,「結晶点群」と部分群を理解する
第3回は,並進群の結晶点群による拡大「結晶空間群」を作る
第4回は,因果律の対称性
の予定です.

0

格子の干渉

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.04.25] No.164
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今日は,まず図をご覧ください.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/79/18011279/img_0_m?1492957285

正方形の網目(格子点)の網(格子)を2枚重ねただけですが,
両方の網目が重なった位置の網目に新しい格子が見えて美しい.
もとの格子の2つの並進ベクトルをa,bとすると,もとの格子は,格子点 na+mb,(n,mは任意の整数)の集合です.
格子を2枚重ねて,新しい周期の2つの並進ベクトル x, yが生じているこの図の状態は,
x=2a+b,y=a+2b です.この基底の変換を行列で書き,行列式を求めると3ですので,
新しくできた格子はもとの格子と比べて面積で3倍粗くなっていることがわかります.
格子というのは,並進ベクトルの作る群=並進群の”図的表現”ですが,
2枚の格子の干渉で生じた新しい格子の周期は,
もとの格子の粗いサンプリングになっていることがわかりますね.
だから,新しい格子はもとの格子の部分群になります.

格子が重なって,拡大された(粗い)格子が見える現象は,干渉(ビート)と同じことです.
実際に,2つの原子網面が重なって,このようなビートが見えることは,
電子顕微鏡で格子像の観察をするときにもよく起こります.
結晶は周期的な構造をしているので,周期的な空間は「結晶空間」とも呼ばれます.
エッシャーの繰り返し模様や,壁紙模様などで,周期的空間の実例をたくさん目にしていると思います.
次回は,周期的空間について,並進群を利用してもう少し詳しく調べていくことにします.

0

ステレオ投影図の利用

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.04.18] No.163
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
先週は,ステレオ投影の原理を説明しました.
ステレオ投影は,角度を保存する(交差する線の角度を変えない)性質がありました.
この球表面から平面への投影法は,
地図を作るのにも利用されていますが,
結晶や多面体の対称性を記述するのに用いますので
先週の続きで応用例まで掲載しておきます.

■点群の表示に使われるステレオ投影図
・多面体を球の中心に置いて,球の中心から多面体の各面に下した垂線が,
球表面を過る点が,多面体の面の球表面への投影点とします.
・球表面の投影点(南半球)を,球の北極と結び,南極での接平面上に投影します.
こうして,多面体の面のステレオ投影像が作れます.
イメージ 1
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/09/18002609/img_0_m?1492443598

このステレオ投影の例で用いた多面体の見取り図を示します,
この多面体は立方体で,稜のに沿って2種類の面があるものです.
この多面体の対称要素の配置も見取り図に記入しました.
イメージ 3
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/585160/76/17100276/img_4_m?1491828971

作成した対称要素のステレオ投影図は以下のものです.
イメージ 2
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/09/18002609/img_1_m?1492443598

この多面体には,各面に垂直にさまざまな回転対称軸があります.
ステレオ投影により,これらの点群の対称要素の配置図を,平面の円内に得ることができます.
各面の対称軸の位置(■,▲など),および,鏡映面(赤い円弧),対称心などが

0