数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.04.11] No.162
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
桜が満開で,良い季節になりましたが,大変なことばかりがどんどん起きて,平気で過ぎ去っていきます.
今村復興大臣などあきれたもの.そんな大臣がぞろぞろ居ります.防衛大臣も,法務大臣も.
第一,首相自体が問題だらけで,展望のない状態だ.それなのに,NHKの世論調査(4/7~9に実施)によると,
内閣支持53%,不支持27%という.相変わらず信じられない数字だ.
今回の調査から,現状にあわせて固定電話だけでなく携帯も含めて,RDDを行ったそうで,
(私事ながら,固定電話を3月末で廃止しました)
2,219人に調査し,1,233人から回答を得た(回答率55.6%)という.
内閣支持の理由の選択肢が,相も変わらず,「ほかの内閣よりよさそう」,「実行力がある」,...云々.
これらは,死因は「心不全」というのと同じで,理由になっていない.
結局,調査項目間の因果関係を無視した矛盾した結論言いぱなしの調査になる.
答えようのない選択肢を並べられても回答に窮する.回答率が55.6%ということがそれを物語っているのではないか.
限定条件をつけなければ答えられないところだが,単純に反応した回答だけがサンプルに拾い上げられる.
これでは偏ったサンプルが集まっていると思える.
理由を明確にするには,具体的な施策・事実を列挙しておいて,その賛否を問うべきだと思う.
ーーーーーーーーーーーーーーーーーーーー
■ステレオ投影
球面を平面に写像する方法の一つが,ステレオ投影です.球表面を平面に写像したとき,
面積,角度の両方を保存することは不可能です.ステレオ投影は,角度を保存するので,
”等角写像”です.ただし,投影円の中心付近の面積に比べて中心から離れた周囲では面積が小さくなります.
このような地図を,きっと見たことがあるでしょう.地図の他に,
多面体の面や,多面体の対称要素の配置の記述などに,ステレオ投影は欠くことができません.
さらに,双曲幾何のポアンカレの円盤モデルの理解のために,ステレオ投影は必要です.
今回は,ステレオ投影の作り方だけ,簡単に説明します.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/585160/76/17100276/img_6_m?1491828971
球の北極Nに視点をおき,球面上の点を南極Sでの接平面上に投影します.例えば,P→P'
赤道(青の大円)の投影像は基円.南半球の球面上の点は基円の内部に,
北半球の球面上の点は基円の外側に投影されます.
(注)投影面を赤道を含む面として,北半球の球面上の点は南極と結び,
南半球の球面上の点は北極と結び投影する流儀もあります.
■写像の性質
この写像は等角写像なので,円は円に写像されます.
(球面)⇔(平面)
大円 ⇔ 基円上の直径両端を通る円弧
小円 ⇔ 小円
等角写像なので角度は保存され,例えば,赤道に直交する小円(南半球球面上の部分,赤点線)は,
基円に直交する円(赤の円弧)に写像されます.
■反転の利用
反転の性質を使うと,パップスの定理の様な難しいものを簡単に証明できます.
このような図形はアルベロス
(靴屋のナイフ)といいます.
この中に面白い幾何学があります.
円弧αと円弧βに挟まれたア
ルベロスの領域に,互いに接す
るように円のチェーンω0, ω1,
ω2, … があるとき, 円ωnの
中心と直径ABとの距離は円ωn
の直径のn倍である.
(パップスの定理)
[以下の証明ができます]
円ω2の中心は,線分ABから円ω2の直径の2倍だけ離れていること.
① 点Aから円ω2へ接線を引く.両接点を通りAを中心とする円γは,円ω2
と直交します.(なぜなら,円の接線は接点での半径と直交するから)
② γを反転円にして,色々なものを反転してみましょう.
円ω2 は自分自身に.円α,β は,それぞれ 直線α’,β’に,
円ω1,ω0 は,それぞれ円ω1’,ω0’に,なります.
③ 円ω2,ω1’, ω0’の直径はすべて同じだから,パップスの定理が証明
された. (なぜなら,平行な直線α‘とβ’に挟まれているから)
■円による反転鏡映の性質
①反転円の円周上の点は,反転しても元の点と同じ位置.
②反転では,円は円に変換される(直線も半径∞の円の仲間)
下図に反転円(赤い円)による,反転鏡映の例を示します.
●図1・反転円Oと交差する円Cは,交差の2点を共有する円cに変換される.
●図2・反転円Oと直交する円Cは,自分の上に変換される.
円周に直交するような反転円で分断された円の2つの部分は,反転円によるそれ
ぞれの鏡像になる.
●図3・反転円Oの中心を通る円Aは,直線aに変換される.
特に,円Bが反転円Oと交差する場合は,交差する2点をよぎる直線bに変換される.
③反転円が直線なら,普通の鏡映像になります.
直線鏡の組み合わせで作られる映像は,良く知られた万華鏡です.
反転円を用いたアポロニウスの窓も拡張された万華鏡の映像と言えるでしょう.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.04.03] No.161
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
東京ジャーミイの玄関ホールの陳列棚に飾ってある美しい皿です.直径30cm程度です.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/585013/91/17866691/img_0_m?1491141557
中心の花の周りに小さい花が6個配置され,中心に6回回転対称があります.
中心(花弁12枚)の大きな花の内部は12回対称[中心にある6回対称の絵は無視します]ですが,全域的には6回対称,周囲の6個の小さな花(花弁9枚)の内部は9回対称[中心にある5回対称の絵は無視します]ですが,全域的には3回対称です.
6回対称軸と6回対称軸の間,3回対称軸と3回対称軸の間には2回対称軸が生じます.
その他,図に実線で描いたように鏡映面があります.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/585013/91/17866691/img_2_m?1491141557
右側の図で水色に塗った部分が単位胞です.
この繰り返し模様は平面群P6mmの対称性で,この皿はこの繰り返し模様から,オレンジ色の円の内部だけを切り取ったものと解釈できます.
■それぞれの花の内部の局所的な対称性に言及しましょう.
中心の花の内部は,12回対称(その部分群としての6回対称は全域で通用),
周りの6個の花の内部は,それぞれ9回対称(その部分群としての3回対称は全域で通用)です.
繰り返し模様全域を支配する対称性で,12回対称や9回対称はあり得ませんので,
このような高い対称性が通用するのはそれぞれの花の内部だけですので,
あたかも,高次元宇宙からいろいろな宇宙の断面が2次元の皿の表面に投影されているようで,
不思議な魅力を感じます.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.03.26] No.160a
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
本日配信した160号の図が2つとも開かないようです.失礼しました.
本文の部分だけ,再度発行いたします.本文はこちらをご覧ください.
*****************
このグラスのデザインは,こちら側の模様の円が凹レンズとして働き,
向こう側の模様の円を円内に縮小して映し出すので,アポロニウスの窓を思わせます.
(リュミナルク製グラス)
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/566714/34/17969934/img_0_m?1490653362
■アポロニウスの窓(円の中に円を詰め込んだフラクタル)
アポロニウス(ユークリッドと並ぶ紀元前3世紀のギリシャの幾何学者)は,
3つの互いに接する円があるとき,これらの3つの円に接する円が2つ存在することを発見しました.
互いに接する3つの円(そのうちの1つが,他の2円を内部に含む外周円の場合もある)に,
接するような円の作図を繰り返して,外周円の中に円を詰め込みフラクタル構造ができます.
これをアポロニウスの窓といいます.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/566714/34/17969934/img_1_m?1490653362
■インドラの真珠とアポロニウスの窓
仏教では,「宇宙のすべてのものが,それぞれのものの原因になっていて,
どの一人にも,無限の過去からの無数の原因が反映されている」と考えます.
これはまさに複雑系の考え方です.
宮澤賢治の小品「インドラの網」は,宇宙に張りめぐらされたインドラの網目に置かれた珠玉が,
互いに映じ合い,かつ,自分自身も輝いているさまです.
インドラの網に置かれた真珠が互いに映じ合う光景を思い浮かべましょう.
自分自身に映り込む他の真珠の映像には,もちろん自分自身も映り込み,
さらにその自分の映像中にも世界全体が.....
球の中に球を詰め込みできる美しいフラクタル図形が,”インドラの真珠”(注)です.
この美しい図形は2次元では,「アポロニウスの窓」とも呼ばれます.
(注)”インドラの真珠”,D.マンフォード, C.シリーズ, D.ライト, 小森洋平 (翻訳),日本評論社