数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.01.16] No.202
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
大変寒い日が続きます.風邪も流行っているようです.
皆さまにとって今日も良い日でありますように.
今日の話題の懸垂曲線にでて来るの石橋の写真は通潤橋です.
この写真を撮影したのは,12年以上前のことです.
石積の橋で,水を台地に持ち上げて運ぶために,サイフォンの原理を使うなど
優れた石工の技術に感心しました.
熊本地震でも残った堅牢さにも感心していますが
現在,石の配管の修理中と聞きます.
■インボリュート曲線
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/556225/47/16380447/img_2_m?1516025270
右図をご覧ください.青い円が糸巻きで,この糸巻きに巻いてある糸を(黒い線)
ほどいているときに糸の先端が描く曲線(赤色)をインボリュートといいます.
ほどく糸の巻き始めは,青い糸巻き表面のインボリュート曲線の出発点です.
糸が引っ張られる方向は,いつもインボリュート曲線に垂直であることに注目してください.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/556225/47/16380447/img_1_m?1516025270
インボリュート曲線は歯車の歯の形に利用されます.
左図のように,青い歯車と黄色い歯車がかみ合っている状態を考えて見て下さい.
歯車の形がインボリュートならば,
これらの歯は回転中いつも互いに垂直に押し合っていて理想的な歯車になります.
インボリュート曲線の方程式の作り方を,下の図に示しました.
■懸垂曲線
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/556225/63/16380663/img_0?1516024764
両端で固定された密度一定のひもが垂れ下がった時の形です(下左図).
石積の橋が描くアーチもこれ(懸垂曲線の上下を逆にしたもの)
右図は円柱を5つ積んでつり合いを保っている状態.
テーブル上の左右のブロックは,一番下の円柱を両側から押しています.
円柱間は点での接触ですのでバランスをとって積むのは非常に難しいが落ち着いてやればできます.
この形は石橋と同じ懸垂曲線です
■ダイヤモンドの価値は,4C[Carat重量,Color色,Cralityキズ,Cutカット]で評価されます.ここでは,数学的に興味のあるカットのプロポーションについて述べました.ラウンド・ブリリアン・カットのダイヤモンドが最も輝くようにしたプロポーションを理想カットといいます.理想カットは1919年にベルギーのMarcel Tolkowsky(数学者でダイヤモンドのカッター)が計算しました.今なら,コンピュータもあるし,光線追跡のソフトウエアもある時代で,理想カットの形(プロポーション)を見つけることは容易でしょうが.1919年にどのように計算したのか,興味深いことです.多分,閉じ込められた光線が全反射を繰り返す光路に注目したのでしょう.
(左図)ダイヤモンドのブリリアン・カットの各部の名称を図に記載してあります.正面の平らな面をテーブル面,上半分をクラウン,下半分をパビリオンと呼びます.真ん中のガードル面に対してクラウン斜面のなす角度をβ,パビリオン斜面のなす角度をαとしました.
(右図)テーブル面の左隅Aに入った光線(赤色)が,ダイヤモンド内部を進み,後方の左パビリオン斜面で全反射され,次に,右パビリオン斜面で全反射され,テーブル面右隅Bに戻り,前方に出て行く光線もありますが,テーブル面右隅Bで一部は反射され内部に戻る光線(青色)になります.この光線は全反射を繰り返し内部に閉じ込められることになります(青色).
この図で追跡した光線は,テーブル面の左隅Aから出て,テーブル面の右隅Bに達する左右対称の光路です.ダイヤモンドの屈折率n≒2.417を用いて,この光路のテーブル面での入射角φ,屈折角γに対する屈折の式,sinφ=n・sinγ から,左右対称になる入射角φ(テーブル面の垂線と入射光線のなす角)を求めると,21°になります.というのは,左右のパビリオン間でテーブル面と平行になる光路ですから,左のパビリオン斜面での反射の法則(反射角αはパビリオン角αに等しい)から,γ=90°ー2α=8.5°となることが決まるからです.ここで,パビリオン角α=40.75°を用いました.
■屈折率の高い媒質中に光が閉じ込められるのは,全反射を起こし易いからで,ダイヤモンドの全反射の臨界角θ(入射角でいうと)は,sinθ=1/nだから,θ=24.4°(反射面から測った反射角で言うと,65.6°)です.
テーブル面の出口で反射されて内部に戻った一部の光線は,パビリオン面とクラウン面で全反射を繰り返し内部に閉じ込められます.パビリオン角α=40.75°,クラウン角β=34.50°というのは実によくできた設計です.
全反射によりブリリアン・カット内に閉じ込められた光線の経路は,一周すると,これに平行な経路に戻ることを証明するために,次の作図をしてみました.BC(赤色)の直線はダイヤモンド内部で全反射を繰り返す光線(青色)を外に引き伸ばしたものです.その代わりに,ダイヤモンドも反射面を共通にしてつないで並べました.結局,全反射を4回繰り返すと光線が平行になるということは,このように配置したダイヤモンドが4つで回転角が0に戻る(初めの向きと同じ)ことからわかります.
■カットの形を評価するには,そのカットの形を磨き直して理想カットにするとしたら,重量がどれだけ減るか(カット減点%)で表します.カット減点5%までは理想カットと見做されます.さて最後になりましたが,トルコフスキーの理想カットのプロポーションを表紙の図に示しました.トルコフスキーはガードル厚には言及せず,ナイフ・エッヂだったそうですが,現実にはナイフ・エッヂは作れず,ガードル厚は必要です.
■(注)ラウンド・ブリリアン・カットとは,58のファセット面を磨き上げた形(キューレットも1面と数えます)です.ダイヤモンドは立方晶系の結晶ですから,複屈折はありません.また,光の分散もそれほど強くなく上品です.虹色にぎらぎらするようならキュービック・ジルコニアなどの疑いがあります.
クラウン面の高さや,パビリオンの深さが最適でないと,テーブル面の中が暗くなります.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.01.02] No.200
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
新年おめでとうございます.良い年でありますように.
皆様は良い新年をお迎えでしょうか.
お陰様でこのメルマガも本号で200号になりました.
本年も宜しくお願い致します.
数学月間懇話会(通常は毎年7月22日に実施)は今年が第14回になりますが,
今年に限り,7月は私の都合が悪いので,8月22日に変更したいと思っています.
決まりましたらご案内を致しますのでご参加ください.
その他,いくつか私の参加するイベント予定があります,興味おありの方はご参加ください.
2月13-16日,京都大学数理解析研究所,RIMS教育数学研究集会
3月上旬,東大出版会,数学月間勉強会,第4回
さて,前号「数学月間とは何か1」の続きです.
2.数学と社会の架け橋=数学月間
数学月間活動がボランティア・ベースである以上,本意ではありませんが活動のメニューを絞らざるを得ません.
数学月間の核心を考察してみましょう.数学月間活動は,数学者のための活動(数学界を応援する)ではありますが,
数学者のための活動(数学内輪の同好会)ではありません.つまり,数学を取り巻く周辺への働きかけです.
国民の数学への関心を高めれば,畢竟,数学者のためになるのだが,現実は,
数学者たちの偏狭さと自由思考のため,献身的な協力は得られていません.
2012年から始まったフランスの数学啓蒙活動(数学週間)を見てみましょう.
数学週間は,国民教育省の企画の下,“現在の活き活きとした魅力ある数学の提示”,
“数学が日常生活で果たしている重要性の提示”などの5つの目的を掲げ,
パートナーと呼ばれる20数団体が参加して,毎年3月中旬に行われます.
毎年,統一テーマが決められます.また,“数学カンガルー”,
“国内数学オリンピック大会”なども同時開催されます.
他分野の例も比較してみましょう.日本化学会など化学4団体が,10月23日を「化学の日」,
この日を含む月曜から日曜までを「化学週間」と2013年に制定しました.
10月23日としたのは何故か? 高校の化学を思い出すと,なるほどと思い当たることでしょう.
化学週間には,全国一斉のオープンキャンパスなどがあり,意匠登録されたロゴマークを,
すべての化学啓発活動に付してビジビリティの向上を目指しています.
提案4団体だけではなく,経産省や文科省,マスコミ,企業など,
産官学一体となった本格的な活動が立ち上がっています.
化学の日イベントは,各地の高校や大学,研究所などで実施され,
月刊誌「ニュートン」,「化学」,「現代化学」,「子供の科学」などへのPR記事の掲載があります.
数学研究は孤高で周辺分野との架け橋は必要ないとの見方もありますが,
数学の影響は社会のあらゆる分野に広がり,化学の比ではありません.
数学月間活動の呼びかけは数学の外周へ向けた広い視野の横断的な活動でなければなりません.
それにもかかわらず,数学者は,抽象化されたものを洗練することに熱中し,
自ら手を染め現実から数学を抽出しようとしたがりません.物理,化学,工学,医学,社会科学,..
のどの分野であろうと形而下には関心がないようです,抽出された数学は美しいに決まっているが,
数学者はその美しさに自己陶酔し,その源泉である周辺分野への配慮がほとんどないので,
国民レベルから数学への共感を得るに至っていません.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.12.26] No.199
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
みなさま2017も残りわずか,やらなければならないことを山と抱えて焦っています.
どうぞ風邪など召しませんように.NHK始め大手メディアの報道姿勢には腹が立つことばかり
「輝く太陽青空を再び戦火で乱すな」国際学連の歌(1949)としみじみ思います.
それにしても,この歌の翻訳は,忠実にして簡潔,実に名訳です.
チーストイネィーバ イ ヤールカエソンッエ
の意味は,清々しい空と明るい太陽,まさに,輝く太陽青空 .
ディーモンパジャロフ ザクリーチ ネェダジム の意味は,戦火の煙で閉ざしてはならぬ
ここを,再び戦火で乱すな と訳したのはうまい.
2番,3番の歌詞も素晴らしい.今こそこの歌が必要なときです.
これを共産党の歌だなどと言っているネトウヨの方,歌詞の意味をじっくり味わって欲しい.
メルマガの読者の方にはネトウヨはいないと思いますが.
お陰様で,メルマガが199になりました.来年1月2日で200号です.
メルマガの表題になった「数学月間」について語ることはほとんどなかったと思うので
この機会に(本号と次号に分けて)初心に戻って,数学月間を語ります.
ーーーーーーーーーーーーーーー
1.数学月間活動とは何か
日本の数学月間は,片瀬豊の提案で2005年に日本数学協会が7/22-8/22を数学月間と定めたことに始まります.
数学啓蒙活動をこの時期に集中し,数学の重要性を社会にアピールする狙いです.
この活動は,片瀬豊が小林昭七からの情報で長年にわたりウォッチングして来た米国MAM
(Maths Awareness Month:1986年4月17日のレーガン宣言により米国の国家的な行事として開始され今日に至る)
に影響されたものです.日本の数学月間をこの期間に定めたのは,山崎圭次郎の発案によるもので,
22/7≒π,22/8≒eに因みます.小林昭七によると,時期限定のMAMのほかに,
米国では数学サークルという日常活動があるそうで,これもぜひ手本したいものです.
国家的な行事の米国MAMは,数学系学協会が参加するJPBM(Joint Policy Board for Maths)が,
毎年,社会を反映した数学のテーマを選定し,この期間(毎年4月)に種々のイベントが展開され,
国民からの事後評価も受けます.皆が知りたいと思う時局の数学を.種々のレベルで学習できるウエブサイトは充実し,
エッセイや論文が集積され,そのテーマの数学を基礎から最先端まで,学生が独習できる優れたガイドになります.
MAM期間には,一般から専門家まで,小学生から大学生まで,色々なレベルのイベントが全国で展開されます.
レーガン宣言で国家的な行事MAMを決断した背景には,国民の数学力が低下し,
米国の産業力も低下するとの焦りがあったと思われますが,日本も同様な状況にあり,
国家的な行事の数学月間が望まれます.数学月間発足当時は,
片瀬豊らが中心に文科省にも働きかけを行いましたが具体的な進展はなく,
大学や研究所などの主催するそれぞれのオープンハウスや講演会などが個別に行われているのが現状です.
ボランティア・ベースの数学月間の会SGKの活動は,7月23日の数学月間懇話会の主催や,
他の団体の主催する数学祭り(とっとりサイエンスワールドなど)に協力しています.
→2018/01/02の200号に続く.良い年をお迎えください!
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.12.19] No.198
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
数学月間勉強会(第3回),12月12日は,楽しく有意義に実施されました.
ご参加のみなさまに感謝いたします.次回は来年3月頭の予定です.
決まりましたら掲示しますのでご参加ください.
■群の考え方は色々な数学分野に現れるし,群論が適用される対象も様々です.
群論を作ったのはガロア,代数方程式の解法にかかわって生まれました.
2次方程式,3次方程式,4次方程式は,解法が発見されていましたが,
5次方程式の解法はどうしても見つからなか時代です.
f(x)=x^5+ax^4+bx^3+cx^2+dx+eという5次式は,連続なグラフで,
xが負で絶対値が大きければ,f(x)<0,xが正で絶対値が大きければ.f(x)>0になるので,
f(x)=0という5次方程式は,どこかでx軸を過るので必ず解xが存在し,
そのxは係数で表されるはずだと誰もが思っていました.しかし,
係数の加減乗除と冪根で表せる解は存在しなかったのです.
根の対称性に注目し,群の理論を作り,ガロワがその証明をしたのは200年前のことでした.
これに至るまでには,ラグランジュ(1770),コーシー,アーベル,ガロア(1832)が関わっています.
■群論が生まれて活躍したのは,方程式の解法に関するものですが,
群の概念は,正多面体の対称性(シンメトリー)でも使われます.結晶の舞台でその活躍を見てみましょう.
水晶のいろいろな面の大きさは個体ごとに違うが,「対応する面どうしのなす角度を測ると,
どの水晶でも同じ値だ」ということを発見したのはステノ(1669).
この現象を,多くの鉱物で調べて「面角一定の法則」としたのは,ロメデリル(1772)です.
この法則は,「結晶の内部構造から生じている」と洞察したのがアウイ(1783)で,
彼は「結晶には単位胞が存在し.この単位胞が繰り返し並ぶブロック細工が結晶だ」と推論しました.
19世紀に入ると,結晶に座標軸(結晶軸)を導入し,結晶面に指数をつける方法が種々定義されました.
それらの方法のうち,ミラー (1801~1880〉によるミラー指数が,今日,最も広く用いられています.
「その結晶の単位胞に合った座標軸をとると,すべての結晶面のミラー指数は,
簡単な整数で表せる」=結晶面の有理指数の法則といいます.
これは,アウイの述べた「結晶=ブロック細工説」を裏付けることになります.
この時期には, 結晶面の方位(=結晶内部の原点から,各結晶面へ垂線を立てて,
結晶を中心とする単位球表面に投影した点)を,2次元平面へ写像する種々の等角投影法(ステレオ投影など)
も生まれています.
3次元の結晶点群は32種(ヘッセル,1830〉,
3次元の空間格子(結晶格子)のタイプ=ブラべ格子(1848)は14種が数え上げられ,
続いて,3次元の空間群の夕イプが230種であることが,フェドロフ,シェンフ リーズ,バーロー(1885~1894〉により,
互いに独立に数え上げられました.これは,すべてX線の発見以前の純粋な数学的業績であるのが興味深い.
結晶を応用の場にしての群論を具体的に学習をすることができます.
空間群をΦとすると,並進群(格子)Tは,空間群Φに正規部分群として含まれるので,
並進を法とした群Φ/Tは,点群Gに同型です.結晶(周期構造,デジタル化された空間)は,
群論をさまざまに適用できる良い場(舞台)です