ブログ倉庫

周期的空間の数学

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.03.22] No.107
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
早いもので桜も咲き始めました.皆さまもお変わりなくお過ごしのことでしょう.

周期的空間(2次元に限定すれば壁紙模様)の数学-結晶空間群-の平易な解説法を色々工夫しています.
理論の本質が理解できるようにして,数学的な記述は最小限にしようとしています.
しかし,ある程度の数学的な記述をした方が反って理解し易いのです.
そこで,以下の様な記述に落ち着きました.皆様如何お感じでしょう.ご意見ご感想をお聞かせください.
さらに改良に活かしたいと思っています.
ーーーーー
有限図形の対称性を扱うのが点群.繰り返し模様(周期的な空間)の対称性を扱うのが結晶空間群です.
有限図形の対称性に比べて周期的な空間の対称性はなじみのない人が多いようです.
しかし,周期的な空間はとても重要です.例えば,もし体が縮む薬があり原子の大きさ位になって
結晶の中に入り込んだら,そこは無限に繰り返す世界(=結晶空間)です.
ここで,点群から空間群への拡大方法にちょっと言及しておきましょう.
原理の骨格を簡明に示すために,扱う周期的空間は2次元(平面)に限定しました.
2次元での繰り返し模様(=壁紙模様)は,エッシャー〈1944頃)の作品に見られます.

(1)格子
2次元空間では,互いに独立な2つの基本並進ベクトルa1,a2がとれ,
a1,a2の整数係数の1次結合をすべて集めたT={h・a1+k・a2丨h,kは整数}を,
この平面の格子点の集合(あるいは単に“格子”)といいます.
集合Tは無限集合になりますが, 群の条件を満たしており,Tを並進群とも呼びます.
ブラべ格子とは,結晶点群の対称性を基準に,格子のタイプ分類をしたものです.

(2)点群一有限図形の対称性一
1点の周りの対称操作(点群の対称操作)を考察しましよう.
回転対称軸には,1, 2,3,4,5,6,・・・,∞回(回転対称)軸があり得ます [何もしないのは1回軸].
n回軸Cnとは,360°/nだけの時計回りの回転操作で,n回続けるとCn^n=360°=0°(mod 360°),
これは恒等操作1です.回転操作Cnからは,回転群Cn={Cn,Cn^2,…,Cn^n=1}が生成されます.
その他の2次元点群で見られる対称操作には,鏡映m [対称心-1は,2次元空間では2回軸と同じ]があります.
鏡映操作mが生成する鏡映群はm={m,m^2=1}
(注)mod360°とは360°回転したら同じものとする[360°を法として同値]という意味です.
別の例では,時計の文字盤があります.我々は13時のことを1時とも言いますが,
これは,mod12[12を法として同値]を用いた結果です.

(3)結晶点群一格子と両立できる点群一
結晶では,点群の回転対称性と並進群(格子)の対称性とが両立しなければなりません.
2,3,4, 6回軸は,それぞれに両立できる格子 がありますが,5回軸の場合はどうでしょう.
1つの5回軸が支配する局所的な作用域として正5角形タイルを描きます.
平面に周期があり複数の5回軸が配列している状態を考えると,各5回軸は自分の局所的な作用域
(正5角形タイル)内でのみ有効なのではなく,全域でも有効です.
各5回軸の局所的な作用域は,互いに他の5 回軸により変換し合い,全体として不変な配置となるべきです.
これは2次元平面を正5角形タイルで隙間なく張り詰めることと同じで,そのようなタイル張りは実現不可能です.
したがって,5回軸と両立する格子はあり得ません.7回以上の回転対称軸に関しても同様で,
結局,格子と両立できる(=結晶空間で許される)回転対称は,2, 3,4,6回軸に限られることになります
[ただし,2次元,3次元空間 での話].

(4)空間群の作り方〈2次元の場合)
2次元空間では,10種の結晶点群G:1,m,2=-1,2mm, 3,3m,4,4mm,6,6mm,
および,5つのブラべ格子T:clino-P (斜交単純格子),ortho-P(直交単純格子),
ortho-C (直交C面心格子),tetra-P(正方単純格子),hexa-P(六方単純格子)が数え上げられます.

周期的な空間での対称操作が作る群が結晶空間群で,結晶空間群Φの要素は,
結晶点群Gの要素と並進群Tの要素との積(結合)です.Φ=G×T

壁紙模様の平面群17種の構成を見てみましょう.
壁紙模様は,1つの“モチーフ”(=単位胞の中身)を無限にある格子点の上に配置して構成されています.
格子点は無限にあり,どの格子点にいても常に世界の真ん中ですから,
「格子点距離の倍数だけ移動した点はすべて同価」との見方をします.
これを“格子を法として(mod T)同値”と言います.無限に繰り返す“モチーフ”の分布を,
単位胞内の1つの “モチーフ”に還元できます.
[準同型写像で,Φ/T=G のように表現します.ただし,並進群TはΦの正規部分群であることを用いています]
この見方をさらに進めると,“モチーフ”内部の対称性を記述する結晶点群G自体も,
格子を法として(mod T)閉じればよく,G(mod T)と拡張でき,
拡張された結晶点群G(mod T)と並進群Tとの積で作られる空間群もあります.
このような夕イプの空間群には, 映進面(鏡映 + 鏡面に平行に格子距離/2の並進),
n回螺旋軸(360°/nの回転 十 軸方向に格子距離/nの並進)などの操作があります.
ただし,螺旋軸が現れるのは3次元以上の空間です.
例として,平面群P2mm, P2mg, P2ggの作り方を図示します
(注)頭のPは格子を表し,続く2mmなどが結晶点群の対称要素です.後者の2つ平面群には,映進面gが現れます.
Fig
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/17/17352517/img_0_m?1458546408

http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/17/17352517/img_1_m?1458546408

0

色々な幾何学

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.03.15] No.106
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■ユークリッド幾何
アレクサンドリアにいたユークリッド(300BC)は,「原論」全13巻を著し,これがユークリッド幾何の誕生です.
彼が作った幾何学体系は,演繹を積み重ねて構築されるのですが,その演繹のスタートに,
彼は5つの公準(公理)を設定しました.公準とは無証明の命題で,常識的で直観的に違和感のないものでした.
公準の5番目が平行線に関してです.ユークリッド幾何は,測量や建築や物づくりに古代から活用され,
我々も日常的にその理論の活用をしています.
■非ユークリッド幾何
ユークリッドの第5公準(平行線の公準)を変えると,異なる幾何体系(非ユークリッド幾何)が構築できます.
これを考えたのが,ロバチェフスキー(1829,1840),ボヤイ(1832,1835)です.
ガウスも同時代にすでにいくつかの結論を得ていたのですが発表はしませんでした.
双曲幾何の誕生です.ロバチェフスキーはロシアのカザン大学の数学者,ボヤイはハンガリーの数学者,
ガウスはドイツの数学者で当時すでに大御所でした.これらの研究はそれぞれ独立になされたものでした.
双曲幾何に続き,ドイツのリーマンは楕円幾何を生み出しました.
さらに,リーマン(1854)は,高次元の曲がった空間を扱うリーマン幾何を生み出します.
空間の曲率が楕円的であったり双曲的であったり位置ごとに変わるような空間の幾何学です.
これはアインシュタイン(1915)が一般相対性理論を構築する際に必要となる理論でした.
■非ユークリッド幾何とユークリッド幾何の整合
19世紀末から20世紀初頭に,ケーリー(イギリスの数学者,弁護士),クライン(ドイツの数学者),
ポアンカレ(フランスの数学者)などが,射影幾何やユークリッド幾何空間の中に非ユークリッド空間のモデルを作ります.
機会をあらため,ポアンカレの円盤モデルはもう一度紹介するつもりです.
■射影幾何から非ユークリッド幾何へ
ダビンチなど画家たちは,遠近法や透視図法を古くから用いていました.
デザルグ(17c初頭,フランスの数学者建築家)は,透視図法を発展させた射影幾何の祖です.
ポンスレー(19c中葉)はフランス革命で開設されたエコール・ポリテクニークでモンジュの下で学び,
ナポレオンのロシア遠征に従軍.ロシアで捕虜になっている間に射影幾何学を研究しました.
射影変換というのは,物体から影を作る演算です.射影法には.平行光線や点光源からの発散光線を用いるなど色々あります.射影変換で失われる図形の性質もありますが,保存される性質もあります.
射影変換では,直線は直線に変換されるし,2つの直線の交点の性質も同様に保存されます.
しかし,長さや角度は保存されません.例えば,円を投影すると歪んでしまいます.
それぞれの変換で保存される性質に注目すると,色々な幾何学が生まれます.
群という概念も変換の集合に関する構造で,群に注目してた幾何学もあります.
クラインは,ユークリッド空間を運動群で規定されるものとして定義しました.
射影幾何やアフィン幾何もあるし,ポアンカレらによる位相幾何(図形のつながり方に注目)なども生まれています.
次のデザルグの定理を見るとわかるように,デザルグの定理を3次元で証明するのは容易ですが,
2次元で証明するのは非常に困難です.それは3次元から2次元への射影により,
長さの情報が失われてしまうからです(比率は保存されます).
ーーーーー
■デザルグの定理
△ ABC と△A'B'C'があり,AA',BB',CC'が一点 O で交わるなら,
AB とA'B'の交点 P,BC と B'C'の交点 Q,CA と C'A'の交点 R は同一直線上にある.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/84/17335884/img_0_m?1457866730

(これを3次元の中で証明するのは非常に容易です)
この図が紙面に垂直な方向に高さをもつ3次元世界の中に置かれているものと想像しましょう.
△ABC と△A'B'C' は平行でなく,それぞれの三角形を含む平面は,線分QRを含む直線で交差しています.
当然,線分ABは△ABCを含む面内に,線分A'B'は△A'B'C'を含む面内にありますから,
ABとA'B'の交点Pは,両平面の交差する線分QRの延長上にあることになります.
ーーーーーーーーーー
(参考)ユークリッド幾何学と非ユークリッド幾何学
色々な幾何空間があります.大きく分けて,ユークリッド幾何空間と非ユークリッド幾何空間です.
非ユークリッド幾何空間には,楕円幾何,双曲幾何の支配する幾何空間があります.
我々の常識が通用するユークリッド幾何の世界では,
“直線l外の1点をA通り,その直線に平行な直線“は,唯一本だけ引けます.
平行線が1本も引けない世界や,無数に引ける世界とはどんな世界でしょうか?
これら3種類の幾何空間を,平面を例にとり比較します.

(1)ユークリッド幾何平面  (2)楕円幾何平面  (3)双極幾何平面
例⇒我々の常識の世界     球の表面      ポアンカレの円盤モデル
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/28/17335928/img_0_m?1457866699

それぞれの空間で,“直線の定義を変えれば”,そのようなことが起こる世界があることを納得できるでしょう.
2点間を結ぶ直線とは,その世界で2点間の距離を最小とするものです.
(1)常識の通用するユークリッド幾何平面
2点間の距離が最少なのは我々の知っている直線です.
(2)球の表面は楕円幾何平面の例
球表面の世界では,大円(球中心を通る平面で切った球の表面)が直線です.
地球自体は3次元ユークリッド空間の物体ですが,表面だけなら楕円幾何平面です.
地球上の2点間の距離が最小のものは大圏コースと呼ばれますが,これは地表の大円上の線分のことです.
異なる2つの大円は必ず2点(直径の両端)で交わるので,直線外の1点を通る平行線はありません.
また,地球儀の緯線のようなもの(小円)は大円でないのでこの世界では直線になりません.
(3)双曲幾何平面の例(ポアンカレ円盤モデル)
双曲幾何の世界のポアンカレ円盤モデルでは,円盤のフチに直交する円弧を,直線と定義します.
この世界では,ある直線に対する直線外の1点を通る平行線は無数に引けます.
円盤モデルの世界では,円盤のフチ(地平線)に近づくほど見かけの距離はどんどん縮んで見える
[あるいは旅をする自分がどんどん縮む]ので,永久に地平線に到達できません.
このような世界の最短距離(直線)は円盤のフチに直交する円弧となるのは納得できるでしょう.

0

数学月間について

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.03.08] No.105
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
このブログやメルマガの表題になっている「数学月間」についての言及は少なかったように思います.
今日は,初心にもどって「数学月間」のことをお話します.
<数学と社会の架け橋>「数学月間」は,毎年7月22日~8月22日です.私たちはこの期間を中心に,
市民が数学に関心を向けるようなイベント開催を奨励しています.「数学月間」は,
市民が数学に関心を向けると同時に,数学者が社会に関心を向ける双方向の架け橋を目指しています.
何故7月22日~8月22日かと言えば,22/7≒π(円周率),22/8≒e(自然対数の底)
という数学の基本定数にちなんでいます.日本の「数学月間」は,今年で11年目.
毎年,初日に“数学月間懇話会”を開催し,今年の7月は第12回です.
正式アナウンスは4月末の予定ですが,以下の案で只今準備中です.
遠方の方もおられましょうが,ぜひ多くの方のご参加をお待ちしております.
今年のテーマは,現代社会で正しい理解が必要になる“確率や統計”がテーマです.
■第12回数学月間懇話会 7月22日(金)14:00-17:00(開場13:30)
場所●東京大学(駒場)数理科学研究科棟002号室
最寄り駅●京王井の頭線「駒場東大前」
参加費●無料
内容[演題は仮]●数学よもやま話(亀井哲治郎),医学と統計学(田渕健),社会と統計学(松原望)
問合せ先●数学月間の会(SGK),sgktani@gmail.com(SGK世話人)
17:30から構内(イタリアントマト)で懇親会(各自めいめい払い)
ーーーーーーー
■フランスの数学週間
2012年から始まったフランスの数学啓発活動-数学週間の今年(第5回)のテーマは“数学とスポーツ”です.
今年は,3月14日~20日が実施週間です.
http://www.education.gouv.fr/cid59384/la-semaine-des-mathematiques.html
パートナーと呼ばれる20数団体が参加して,毎年3月中旬に行われ,毎回一つのテーマが決められます.
“数学カンガルー”テスト・暗算大会と国内数学オリンピック大会とが同時開催されます.
数学カンガルーとは,1978年,オーストラリアの数学教授が考案した多項目選択式数学(算数)学力テストを,
フランスの二人の数学教授が更に発展させたもの(1991年)で,
現在は,“国境なきカンガルー協会”が,毎年3月の第3木曜日に実施し,
EUを中心に,世界50か国(600万人)以上が参加しています.
ーーーーーーーーー
■米国の数学月間
1986年4月のレーガン宣言で始まった米国の数学月間MAM(Maths Awareness Month)は,
長い歴史があります.米国MAMのスタートとなった歴史的なレーガン宣言は,
Webでは見当たらなくなりました.このブログの初期の項目に翻訳しておいたものがありますので,ご覧ください.
http://rdsig.yahoo.co.jp/blog/article/titlelink/RV=1/RU=aHR0cDovL2Jsb2dzLnlhaG9vLmNvLmpwL3Rhbmlkci8xNTc0NTU4My5odG1s
今年のテーマは“予測の未来”です.数学月間の先進国ですが,昨年あたりからあまりパッとしないように感じます.
ちなみに昨年のテーマは,“数学はキャリアを運ぶ”でした.
あまり数学の功利的な面を取り上げるのは私は好みません.
今年は数学に地道に根差したものになることを期待しています.
米国MAMの実施月は4月ですが,まだ準備が遅れているようです.
http://www.mathaware.org/mam/2016/essay/

0

ペンローズ・タイル張り

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.03.01] No.104
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
平面の非周期なタイル張りの一つが,
ロジャー・ペンローズが考案した(1966)ペンローズ・タイリングです.これは
2種類のタイルによる規則的ではあるが,周期的ではないタイル張りです.
2通りの方法でペンローズ・タイリングを作る.
(1)正10角形から出発して,分割・拡大を繰り返して作る
ペンローズ・タイリングに出てくる2つの2等辺3角形 A型とB型は,
正5角形の中にあります.この図形には黄金比1:φがたくさん出てきます.
A型やB型の2等辺3角形の等辺と底辺の比はφ:1(A型)や1:φ(B型).
ただし,φ=1.618・・・
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568616/95/17313295/img_0_m?1456754314
黄金比の3角形は,分割すると同じ型の3角形が含まれている性質があります.
A型およびB型の2等辺3角形は,それぞれ図示したように分割できます.
この性質を利用して,正10角形から出発して,分割とφ倍の拡大を繰り返すと
平面全体をA型とB型の2等辺3角形で埋め尽くすことができます.
こうしてペンローズのタイル張りを得ることができます.
タイルの分割が十分進んだときの,AのタイルとBのタイルの個数の比は,
φ(=1.618・・・):1の黄金比になります.
図は3回の分割と拡大を繰り返して得た図形です.
この図形で見られる形は,凧(2A)と矢(2B)です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568616/95/17313295/img_1_m?1456754314

(2)正5角形のフラクタル配置を繰り返して作る
正5角形を一回り大きな正5角形の内に並べます.
これをさらに一回り大きな正5角形の内に並べます.
これを次々繰り返すと,全平面を埋め尽くすフラクタル図形ができます.
図上段は,この操作を3回繰り返したところです.
ギャップができますが,気にしないで配列を進めます.
実は,後でギャップの中も正五角形(白色)で埋めます.
すると最終的には,王冠型や星型のギャップが残されることがわかります.
この図をよく見ると,図中段のような2種類のタイル(黄色と青色の菱形)で
置換えると,図下段のようにペンローズ・タイリングであることがわかります.
図下段右の大きなペンローズ・タイリングはこのようにして得たものです.
このペンローズ・タイリングには,中心に5回回転対称が残っていますが,
中心の回転対称を消す配置も可能です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568616/07/17050507/img_3_m?1456754576

0

凍土遮水壁

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.02.23] No.103
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今回は,話題の凍土遮水壁についての解説にしました.海への汚染を止めねばなりません.
■福一の事故から5年が経った.メルトダウンした原子炉の中がどのようになっているのか,
燃料棒のデブリが地下どこまで汚染しているのか,見た者はまだ誰もいない.
廃原子炉からデブリ取り出しの開始は,早くて2021年である.この間毎日,多量の地下水が原子炉建屋の下を流れ,
デブリを浸している高濃度の放射性汚染水と混ざり海に流れ込んでいる.豊富な地下水の流量は日に400トンと言われる.
読者も航空写真を見たことがおありかと思うが,汚染水貯蔵タンクが1,100基も立ち並び,
もはや敷地内にタンクを作る余地のない状態である.1~3号炉の冷却のために注入する水は400ton/日,
建屋地下を流れ去る地下水400ton/日のほかに,原子炉建屋を浸し冷却水と混合する地下水が400ton/日,
従って,建屋地下から汲み出す冷却水が800ton/日で,分離されてタンクに貯蔵される高濃度の汚染水は400ton/日という.
■従って,地下水を原子炉建屋のデ ブリに触れさせずに,バイパスさせ汚染のないまま海に放出したらどうか
という案は当初からあった.地下水脈は地上を流れる川のように迂回させるという工事 はできない.
緊急に短期間で実施できる対策に,トンネル工事などの水止めで実績のある凍土遮水壁を提案したのは
鹿島建設でこの案が採用された.
凍土遮水壁は原子炉建屋と建屋の周りのサブドレインを取り囲む周囲1,500mで,
深さ30mまで冷却パイプを打ち込み地盤,あるいは流水を凍らせるものである.
事業費約350億円は全額国費で賄われ,完成後も凍結を保つために,年間約20億円の電気代がかかるので,
「国による東電の救済策」との批判もある.(北海道新聞,2/18社説)
■2014.4月に凍結し難い箇 所の試験凍結.5月に山側全体の凍結開始が,2015.3月に凍結開始,
さらにもっと計画がずれ込んだ.凍土遮水壁の工事は2014.6月に 開始し,
毎日約500人が働き,2年を費やしてやっと工事が完成したのだ.工事は犠牲者もでる難工事で現場の努力は評価したい.
凍土壁は,トンネル工事での短期間とか,局所現場に適応実績のあるもので,
このように周囲をぐるりと塀のように囲んだり,何年にもわたって凍結を維持した実績はない.
地下水脈の深度が深かったり,多量の地下流水が熱を運び去ったりして凍結できないのではないかと私も心配している.
原子力規制委員会は,凍結を実施 して地下水の侵入を止めると,サブドレインの水位より原子炉建屋中の水位が高くなり,
デブリに触れている高濃度の汚染水がサブドレインの方に出てくるリス クを懸念し,
やっと完成した凍土壁の稼働にストップをかけている.いまさら何を言っているのかと思う.
規制委員会,田中俊一委員長は効果が期待できないと,この件に関しては冷淡である
(2/17田中俊一委員長定例会見,iwj中継).
3月初めに,水位の影響の少ない海側(建屋からの汚染水の排出側)だけ凍結 し,
様子を見ながら徐々に全周の凍結を行うという案を東電が提出し,これを規制委員会が認可して即実施に入る見込みである.
凍結が始まって順調だと8ヶ月 後に,流入地下水は日に90トンに低減されるという(2/15東電定例会見,iwj中経)
■凍土壁工法は,ローコストな救 急的な工法で,すぐ実施でき海洋の汚染を防止することに意味があったのだが,
計画より2年以上遅れ,今稼働しても凍結までまだ8ヶ月もかかる.この間汚染水は海に漏れま くっており,
対策時期を逸しいる.現場の苦労に同情しうまくいくことを望むが,抜本的な解決策ではないのが残念だ.
■規制委員会は,規制値内の汚染水なら海洋に放出してかまわない(抜本的な手立てを打っていない)との方針だ.
しかし,排水規制は放射能の濃度のみで総量は規制されないので,汚染水放出が続くと海洋汚染は深刻になる.
廃液の規制はCs134で60Bq/L,Cs137で90Bq/L,Sr90で30Bq/Lであり,これらの核種が混ざっていれば合計の放射能で規制され,
これら部分成分の濃度はさらに低く規制されるはずである.
ところが敷地内の海側の井戸水から規制値の何千倍もの汚染が観測されているのが現実で,
地下水も高濃度に汚染されている可能性が高い.
海水のモニタ値に変化が出るなら,海水の量を考えればそれはとんでもない汚染で死の海である.
現地漁協は風評被害というが, 食物連鎖による魚の汚染は進んでいる.
このことを考えると,一刻も早い汚染水の排出を止めるべきで,
規制委員会が効果が期待できないなどと無関心を決めることは許されることではない.
-------
(注)ちょっとわかりにくいのだ が,原子炉建屋をぐるりと取り巻く凍土遮水壁は全部,陸側遮水壁とも呼ばれる,
それは,現存する海側遮水壁に対する名称で,海側遮水壁は,鋼管矢板594 本を使用し
海の前に作った全長約780mの壁(凍土ではない)で,2015年10月26日に作業終了している.
大雨の折などポンプの能力が追い付かずK排水路から高濃度の汚染水がオーバーフローすることがあるのはこの海側遮水壁である.
本文中で,陸側,海側と使われるのは凍土遮水壁の陸側の部分,海側の部分という意味である.

0