掲示板

note.com投稿記事

多元構造グラフ・亀井図

2019.10.26に開催した数学月間企画講演会では,約数の構造をわかり易く表示するグラフ(亀井図)を取り上げました.例えば,210の約数の系統的な構造を示すグラフは以下のようです.

 

210は4つの互いに素な素数の積210=2・3・5・7から出来ているので,4次元超立方体と同じこのような構造になります.210の約数は,自分自身の210と1を含めて全部で16個ありますが,系統的に並べると上の図のように整理できます.

頂点1のレベルには1個,頂点2のレベルには4つの素数,頂点6のレベルには2つの素数の積で4C2=6個,頂点30のレベルには3つの素数の積で4C3=4個,頂点210のレベルは4つの素数の積で1個です.4次元の超立方体には対称心があり,互いに点対称な頂点の積は210になることも理解できます.


このようなグラフは,数学のいろいろな分野で出会います.半順序を表現するハッセ図というのは,このグラフを逆順に描いたものと同じです.
210の約数の構造といえば,210をトップに置き逆順(ハッセ図と同じ)に並べる表示もありでしょう.
約数の構造に関しては,数学Aの研究課題として高校生にもなじみやすいものであるし,このグラフは高次元立方体の理解にも役立ち興味深いでしょう.

(注)数学ではハッセ図と呼ばれるものですが,美しくバランスのとれた4次元立方体は,亀井のアルゴリズムで描けるので亀井図とも呼ばれます.

 

4次元の超立方体の1つの次元(例えば,素数2の方向)を消すと,3次元の立方体の2つに分離します(下図).同様なことを,それぞれの3次元立方体で考え,例えば,素数7の方向の次元を消すと,3次元の立方体は2次元の面(例えば1-3-15-5)に分離します.このような性質は高次元の超立方体の成り立ちの理解に役立つでしょう.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(演習)2310=2・3・5・7・11ですから,2310の約数の構造を示すグラフを描いてください.これは5次元の超立方体になるはずです.
解答

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(演習) $$420=2^2・3・5・7$$ の約数の構造を示すグラフを描いてください.

数学は映画の出演者(下)

←wikiより

■3Dへ

 

 

 

 

 

 

 

 

  Broone橋にある記念プレート,
Hamiltonが4元数を発明したときこの橋の下を散歩していた.
数学者William Rowan Hamilton卿はDublinのTrinityCollegeが産んだ最も著名な子であろう.
彼は最後の20年,複素数が2次元の回転を表すのと同様な
3次元の回転の表現を捜し求め,人生の最後にHamiltonは,4元数という答えを見出した.

 
$$q=a_{0}+a_{1}i+a_{2}j+a_{3}k$$

ここで,$$i^{2}=j^{2}=k^{2}=ijk=-1$$, $$a_{0}, a_{1}, a_{2}, a_{3}$$は実数.

 

 

複素数でしたように,4元数を幾何学的に記述し,回転の表現に用いよう.
今度は2次元でなく3次元の回転だ.
$$i, j, k$$は,3次元内の単位平面:$$i$$は$$yz$$平面,$$j$$は$$xz$$平面,$$k$$は$$xy$$平面で,外側向き法線はそれぞれ$$ x,-y,z$$方向である.

 

$$i, j, k$$は,3次元空間の単位平面という幾何学的解釈ができる.

 

 

 

 

 

 

 

 

 

 点$$ a=(a_{1},a_{2},a_{3}) $$を,角βだけ原点を通る$$b=(b_{1},b_{2},b_{3})$$軸の回りに回転してみよう.

2つの4元数$$q_{1}, q_{2}$$を$$b, \beta $$から作る.
$$q_{1}=\textrm{cos}(\beta /2)+\textrm{sin}(\beta /2)(b_{1}i+b_{2}j+b_{3}k)$$
$$q_{2}=\textrm{cos}(\beta /2)-\textrm{sin}(\beta /2)(b_{1}i+b_{2}j+b_{3}k)$$
$$a$$($$x,y,z$$方向の単位ベクトルの線形結合)に,これら2つの4元数を乗じて
$$a'=q_{1}aq_{2}$$
この積で得られる点$$a'$$は$$a$$を与えられた軸の回りに角度$$\beta $$だけ回転したものだ.
複素数は平面内の回転記述,4元数は3次元空間内の回転記述に用いられる.
ダブリンの橋の下を通りかかったとき,Hamiltonのひらめきは,
3次元で物体を回転させる最も効率の良い方法であることがわかった.
だが彼の新しい乗法で,だれも幸福にならなかった.
物理学者Kelvin卿は4元数のことを:”....美しく巧妙だが,とにかく,これに触れるものには,純粋邪悪である...と評した.
とりわけ厄介なのは,2つの4元数を掛け合わせるとき,答えがかける順番で変わることだ.この特性を非可換という.
Hamiltonの積則をみれば,$$ij=k, ji=-k$$が示せる.
もし,$$i, j, k$$を単位平面のように扱えば,Kelvinや彼の同時代の人々を困らせた特性は直接導ける.
■映像を生活へ
Hamiltonの発明はいまや多数の物体を動かしたり,運動の創出へのグラフィック応用に使われる.コンピュータグラフィックで最も重要なツールの2つは,変形と補間である.
補間とキーフレーミング技術は,物体の初めと終わりの形と位置の特定と,その間の様子をコンピュータに計算させることだ.以下に示す映像のように:


一連のフレームにわたって徐々に変形するティーポットの形
諸君は,未発達のへびのアニメーション(Richard Wareham製作)を見ることができる.
ここではへび全体が,いくつかの特定な点の運動から,
補間を用いてコンピュータで作られた.
[訳注:ファイルのダウンロード先は略]
変形は単純なものから複雑なものを作り出す方法だ.
下の映像のように,変形球を覆っている布は,
普通の球面で起こる同じ光景を数学的な変形をして得られる.
変形も補間も速くて安定な数学的技術を必要とし,
4元数関連の手法がこれを提供する.


http://plus.maths.org/issue42/features/lasenby/sphere.png
http://plus.maths.org/issue42/features/lasenby/deformed_sphere.png

 

 

 

 

■ガーラムを信じさせる

 

 

 

 

 


http://plus.maths.org/issue42/features/lasenby/motioncapture1.jpg
http://plus.maths.org/issue42/features/lasenby/dots.jpg
http://plus.maths.org/issue42/features/lasenby/skeleton.jpg

 

 

 

 

 

 

 

 

 

データは体の色々な部分に付属しているリフレクターの運動からキャプチャーされる.....
....骨格は,データに数学的にフィットさせる.
上で記述したテクニークは古典的なアニメーションでも基本的なツールである.
漫画キャラクターでは,我々はその結果が信じられるのはとても幸せだ.
しかし,人間のアニメーションでは,たちまち偽者とわかってしまう.
現実味ある動きを作り出すにはモーションキャプチャーが必要になる.
ロードオブザリングズのフィルムバーションから,ガーラムのような
多数のキャラクターを作るにはモーションキャプチャーによる.
これらは,身体,頭,肩,ひじ,ひざなどの回転点に,本当の人のリフレクターを付加して作られる.それぞれは,多重のカメラによってフィルム化されリフレクターの位置の変化をコンピュータに記録する.
骨格は3次元データでフィットされる.
最後に,上に記述された技術はすべて,骨格上に具体化し,生活し,呼吸し,動くキャラクターを作り出す.
もしまだ諸君がタイトルロールを完全に見るために留まっているなら,首尾よい映画作製で使われた種々の製作タレントに気づくだろう.作者,ディレクタ,俳優,衣装デザィナー,プロップビルダー,....
これらのクレジットリストが続々流れる.
しかし一つの名前がしばしばタイトルロールから忘れられている-数学だ.
今日の映画の多くは,光線追跡の幾何学,4元数による空間内の回転なくしてはできない.
次回は,あなたの映画シートで,CGスペクタクルを楽しむために,数学に対してポップコーンを掲げよう.ショーの隠れたスターへ.
(訳:KT)
-----------------------
著者


http://plus.maths.org/issue42/features/lasenby/jl_small.jpg
Joan Lasenbyはケンブリッジ,トリニティカレッジで数学を専攻し,
電波天文学グループ物理学科のPhDをとった.
マルコーニの企業で短期間働いた後に,大学に戻り,現在,
ケンブリッジ大学工学部の信号処理グループの講師や
トリニティカレッジの研究のディレクター,研究員である.
彼女の興味は,コンピュータビジョン,コンピュータグラフィックス,
画像処理,モーションキャプチャと幾何代数の分野にある.

数学は映画の出演者(上)

Maths goes to the movies By Joan Lasenby
Submitted by plusadmin on March 1, 2007

http://www.plus.maths.org/issue42/features/lasenby/index.html

今回も,MMP,plusマガジン42号の筆者KTによる翻訳です(2回に分けて掲載).

数式が読みにくい場合は,数学月間の会http://sgk2005.saloon.jp,社会を支える数学科学でご覧ください(ホームページではTexを用いている).これは,2007年の数学月間懇話会で配布したものです.この後の13年でコンピュータビジョンの分野は非常に進化しましたが,原理の紹介には非常によく書かれたこのエッセイが役に立ちます.

------------------------------------------------------------------
ポップコーンは手に入れたか?よい席は選んだか?座り心地は良いか?それではタイトルロール....


■数学が誇らしげにプレゼント....
映画の中の信じられないほど真に迫ったコンピュータで作られた映像に皆な驚く.ジュラシック・パークの恐竜,ロード・オブ・ザ・リングズの不思議 ---- 特に,ガーラムの出演者 --- は,数学なしではできなかったということを知らない人が何と多いことか.どのようにして,これらの驚くべき映像が作られるのだろう?
コンピュータ・グラフィックス,コンピュータ・ビションは大きな課題だ.この記事では,完成作品に使われる数学のいくつかを簡単に概観する.最初に映画の世界を創造し,次にそれを生活へ持ち込もう.


■場面を作る
pblk0001.png


最初の対象物は,三角形のような単純多角形よりなる針金骨格として作られる.
コンピュータ生成映画を作る第一ステップは,物語中のキャラクターや,
それらが棲む世界を創造することだ.これら対象物のそれぞれは,
接続された多角形(通常は三角形)で構成された表面として作られる.
各三角形の頂点は, コンピュータメモリにストアされる.
どの三角形のどちらの面が,物体やキャラクターの外側であるかを知ることは重要だ.この情報は, ストアされている頂点の順番として,右ネジの規則に従い記号化される.これで,どちらが外か一意に決まる.
[頂点の順番に従い,三角形の周りを右手の指を人差し指,中指,..と回したとき]
諸君の親指が向いているのが三角形の外側だ.例でやってみよう.
三角形(A,B,C)の外側方向(外側法線)は,三角形(A,C,B)の外側方向と反対であることがわかるだろう.
pblk0002.png


右ネジ規則で定義された(A,B,C)の外側法線は(A,C,B)とは反対方向

 

 

 

 

pblk0003.png


諸君の視点からファセット面までの光線を追跡しよう.光線は反射して光源を通過するか?
いまや対象物の表面は三角形の針金網だ.網のコンポーネントのそれぞれを彩色する準備ができた.
我々がモデル化している光景のライティングを,実際と同じにすることが重要である.これは光線追跡と呼ばれるプロセスを用いなされる.視点から物体へと遡り光線追跡し,反射させる.もし,目から出た光線がファセット面(針金網三角形の中の一つ)で反射され,光源を通過するなら,そのファセット面は光源に照らされ明るい色,もし,反射された光線が,光源を通過しないなら,そのファセット面は暗い色の影付をする.
光線を特定のファセット面まで追跡するには,表面を数学的に記述し,光線とファセット面の平面とが係わる幾何学方程式を解くことが必要になる.これはベクトルを用いなされる.光景の3次元座標系に,視点となる原点(0,0,0)を加える.
ベクトル v =( a, b, c ) は,原点から発し座標 a, b, c で終わる矢である.
例えば, v にスカラー2を乗ずるのは,規則 2v =2( a,b,c )=(2a, 2b, 2c ) に従い行う.
2v は v と同じ方向で2倍長い矢だ.
表現 λ v を見よう. λ は変数(言い換えれば,任意の実数).これはもはや,ある長さの矢ではない.長さが変数になったのだから.矢の方向だけを表している.別の言葉でいえば,この表現はベクトル v を含む直線を表す.
それは我々の視点からベクトル v の方向に発する光線を記述する.
三角形のファセット面で定義される平面は,3つの情報で表現される:
3頂点のうちの1つの位置頂点 $$a_{1}$$と, $$a_{1}$$から $$a_{2}$$へのベクトルと, $$a_{1}$$から $$a_{3}$$へのベクトルである.
下の囲みの中に,目とファセットで決定される面から発する一本の光線の方程式を与える.
光線がファセットをよぎるか否か,何処でよぎるかを知り,反射された光線の方程式を計算するには,
これらの2式を解かねばならぬ.
------------------------------------------

 



-------------------------------------------
(光線追跡の数学の詳細は,Turner Whittedの革新的な論文 ”影付け表示のための改良された照明モデル”,
Communication of the ACM,Vol.23,Isuue6に見ることができる.)
光線追跡は現実味ある光景を作り出すことができるが,たいへん遅い.
これはコンピュータが作る映画の製作には用いることができるが,コンピュータゲームのようにリアルタイムで照明を変化させることが必要な場合問題である.
影や火線束(コースティク)[収差による回り込みでできる光像],多重反射のような複雑な現象は,モデル化が困難で,動的あるいはもっと巧妙な数学的な手法,事前計算放射輝度伝搬(PRT)やラジオシティ(R)が使われる.
pblk0004.png


コンピュータゲームDOOM3,Neverwinter nights はダイナミックライティングが必要だ.

 

 

 

 

 

■必要なのは若干の想像力

光景,照明が出来てしまえば,監督が”アクション!”と叫び,キャラクターが動き出すのを待っばかりだ.いまや,数学がイメージに命を吹き込むのを確かめよう.
最も基本的な物体の動きの一つは,与えられた軸の回りの与えられた角度の回転である.
座標幾何学は,回転後の物体各点各点の位置を計算するツールを提供する.だがこれらのツールは効率的で高速であることが重要だ.これらのツールを見るにあたり,数学授業に一寸立ち寄って見る....
[この後,複素平面のこと,複素数に虚数iを乗じると反時計回りの90度回転になること,などの説明があるが略]

 ........


1806年にアマチュア数学者Jean Ribert Argandは複素数とiに幾何学的な解釈を与えた.複素数を乗ずることは,幾何学的には回転を表す.

 

 

 

 

 

 


■3Dへ
pblk0006.png


Broone橋にある記念プレート,Hamiltonが4元数を発明したときこの橋の下を散歩していた.
数学者William Rowan Hamilton卿はDublinのTrinityCollegeの最も著名な子であろう.
彼は最後の20年,複素数が2次元の回転を表すのと同様な,
3次元の回転の表現を捜し求め,人生の最後にHamiltonは,4元数という答えを見出した.

 

 

 

⇒次号に続く

 

べき乗則


中西達夫さんの「スパゲッティを巡る旅」は,スパゲッティを適当に砕くと,破片の長さの分布がどのようなものになるかという興味ある実験でした.
興味おありの方は,「数学文化」第21号(2013年)をご覧ください.数学月間懇話会(第10回,2014)でも講演していただきました.このとき観察される「べき乗則」は,社会の関心事の一つである「地震」でも見られます.

地震のテーマはメルマガNo.031('14/09/30)に,複雑系原発の事故雪崩のテーマは「数学文化」第16号(2011年)やメルマガNo.006('14/05/15)に掲載しました.今回は地震のマグニチュードと頻度のべき乗則の話です.

地震のマグニチュードMはエネルギーの対数です.マグニチュードを決めるのにリヒターが発案した当初の定義は便宜的なものでしたが,現在ではもっと理屈に合ったモーメント・マグニチュードが採用されています.
(注)震度というのはその地の揺れ(加速度[ガル])の程度をもとにした段階区分です.

 

地震で解放されるエネルギーは,生じた断層面の面積×平均変位×地層の剛性の積です(大雑把にいえば生じた断層の長さに比例します).
生じた断層の長さが長い方が解放されたエネルギーは大きいし,
地層の剛性が大きいほど大きな歪エネルギーが蓄えることができます.
これらを踏まえ,起こりうる地震の最大エネルギーを見積もるとM9.5程度と考えられています(1960年のチリ地震ではM9.5が観測されている).

地震のマグニチュードMと発生頻度(回/年)nの間にn=10^{a-bM}の関係があるのを,グーテンベルクとリヒターが発見しました.a, bはその地域の地層の剛性などを表す定数(b≒1)ですので,地震のマグニチュードが1つ大きくなるごとに,地震の頻度(回数)は1/10に減ります.ゆえに,これを「べき乗則」とも言います.

地震では,多発しやすいマグニチュードというものがありません(中心値があるようなガウス分布やポアソン分布ではない).べき乗則では,大きな地震ほど少なくはなりますが,M9あたりも起こり得ます.めったにないことですが,そんな巨大な地震に見舞われたなら壊滅的で,大きな地震の被害コストは莫大です.
地震被害コストの総額=Σ被害コスト(Mの関数)×発生確率(Mの関数)
を小さく抑えるのが,最善のリスク対策です.

工場の品質管理を考えましょう.不良品の多くでる日と少なく出る日がありますが,不良品の個数とそのような数の不良品を出す頻度の分布は,ガウス分布,ポアソン分布,ワイブル分布などの中心値を持つ分布ですから,中心値を出した普通の日の対策を検討すればよいわけです.

しかしながら,分布がべき乗則の場合は全く異なります.
頻度は小さいけれど致命的な被害を惹起する巨大地震に対して,
被害が最小となるように備える必要があります.
広域を汚染し人間の尺度に合わない百年もの年月要する原発事故の被害コストは致命的です.原発の再稼働は止めましょう.

クリーン・ルームの塵のサイズ分布も「べき乗則」だと言われています.
もし正規分布に従い,頻度の高い塵サイズがあるなら,そのサイズの塵の発生に特化した対策ができるのですが,「べき乗則」では特別な対策は困難です.幸いなことにこのケースでは,大きなサイズの塵が桁外れに大きな被害コストを与えると言う訳でもありませんし命に係わることもありません.
べき乗則は,大規模停電,原発事故,ハリケーン被害などの複雑系でみられます.べき乗則は,小さな事故が雪崩をうって全体に広がる性質と関係があります.関連テーマのバタフライ効果は稿を改めます.

■砕いた破片の分布関数を求める実験は,中西氏の実験したスパゲッティやクラッカーのほかに,凍ったジャガイモを投げて砕く(南デンマーク大,1993年)などいろいろあります.砂山が雪崩を起こす限界傾斜の実験も面白いものです.これらでも「べき乗則」が確認されました.

鳥の群れのシミュレーション(下)

 

 

 

 

 

 

 

◆揺動させる
もう一つの重要なモデリングパラメータはランダムジグリングである
(プログラム中にrandomJiggleと記す).
「各鳥の周囲の鳥の平均飛行方位の査定が,いつも正確になされている訳ではない」という事実を考慮に入れる.プログラムが時時刻,各鳥の方位を更新するとき,ランダムジグリング変数により与えられる範囲内のランダム角に調整される.
10°より小さいrandomJigle値なら,群れは最終的に一方向への一体運動になる.randomJiggleを180°にセットすると系は塵微粒子のブラウン運動の
シミュレーションと同じになる.
ガス分子の例のように,このモデルをさらに自然に近づけるいくつかの方法がある.このヒントのいくつかはプログラムファイルの末尾にある.

◆単純さと速度
モデル記述で重要な因子は,用いるアルゴリズムの効率である.
”アルゴリズム”の起源は,アラブの数学者al-Khowarazmiの名前であるが,
”仕事を完成させるための一連の指示”を意味するようになった.
鳥の群れの例で用いたアルゴリズムは,おそらくそれほど自然ではない.
本当の鳥は,他のすべての鳥の位置を記録し,
自身と他のすべての鳥間の斜辺距離を計算し,
正確に5m内のものを選択し,
それらの進路の算術平均の方位に向けて舵を切るなどということはしない.
これらのステップは,追従が容易で,望ましい結果が得られるので,モデルとして選ばれたのだ.これは,なかなか冗長な方法だ.
一つの鳥から他のすべての鳥までの距離を計算しなければならない.
これを順番にそれぞれの鳥について,各時間ステップごとに行う.
高速なデスクトップコンピュータでも,鳥の数が500より大きいとシミュレーションはゆっくりゆっくり進む.

そこで,モデルのデザインでは,仕事をどのように達成するかを考える必要がある.可能な限り速いアルゴリズムを使うか,系でできる限り現実の方法に近づけるか,効率は悪いが仕事が達成できる方法にするか.

プログラミングで,しばしば,特定の仕事部分のアルゴリズムを関数にするのは良いアイディアだ.こうすればプログラム内で特定の計算が必要になったときいつでも呼び出せる.
(鳥の群れのコードを見れば,MeanHeading()関数でこれがなされる
のを見るだろう.)
見守る間にシミュレーションがずっと速く走るようにしたければ,
プログラムを2つの段階に分割するとよい.
最初は,コンピュータを貪り尽くすようなすべての計算を通して行い,
各時間ごとに系の状態を別々な行列として記録する.
この計算の後は,例えば1000回の時間間隔の行列リストの束のような3次元行列に行き着く.
シミュレーションを一回通しで行えば,すべての情報が保存される.
第二のステージは時間ステップごとに順番に表示する
(今度は計算処理のために待つ必要はない).
あたかもアニメーションを見るのに,行列の本の頁をパラパラするようなものだ.我々は,鳥の群れの単純なシミュレーションに絞ってきた.
コンピュータプログラムの構造,特定の仕事をするアルゴリズムや関数の記述などのコンピュータモデリングの重要な様相が浮彫りになるからだ.
このように単純なモデルでも,複雑で大変自然に近い群れのふるまいが作れる.これはまさに,動物研究者が作ろうとし,理解しようとした鳥の群れのふるまいや,魚の群れのコンピュータモデルだ.
例えば,Iain Couzin博士が動物のふるまいを理解するために巨大グループのコンピュータモデルを使つている.彼のモデルは,この論文で見てきたものとまったく同じ原理に基づいており,同様の複雑性がみごとに出現する.
モデルはさらに複雑になっており,(我々の2次元平面を超え)
3次元で動き,冗長だが現実に近い各個体のふるまいを制御する規則の集合を持つ.
-------------------------------------------------------------------------
◆Iain Couzin
イアンは,プリンストン大学とオックスフォード大学の両方に拠点を置く
動物行動の専門家だ.バッタから魚,鳥に至るまでの群れのダイナミックスのコンピュータモデルを作った.
彼の研究は,如何に動物の群れが集団としての決定をなすか驚異的な特徴を見いだすことと,アフリカの政府機関の行うバッタの致命的な群移動コントロールを手伝うことだ.最近まで,イアンは群れがどのように肉食動物の
アプローチに反応するかに集中していた.
諸君はイアンの研究の詳細を
http://www.princeton.edu/̃icouzin/で読むことができる.
下の映像は彼のモデルの一つから作ったビデオの静止画だ.
BBCのドキュメンタリシリーズ”肉食動物”で使われた.
http://plus.maths.org/issue42/features/dartnell/SimImage.jpg

 

 

 

 

 

 

 

 

 

 

------------------------------------------------------------------------

◆重力モデル
この種類の粒子運動モデリングの拡張は,画面をよぎって伸びる効果を含めることである.このわかりやすい例は,重力である.
重力は消えそうなほどわずかかもしれないが,太陽の重力の影響は非常に長距離まで達する.processingを使い単純な重力モデルを作るには,太陽としてスクリーンの中心に小円を描き,他のすべての点から太陽までの方位と距離を計算する関数を記述する.これで,諸君のモデル化した世界にある
粒子が影響を被り速度を変じる重力を計算できる.
ランダムな位置に置かれランダムな速度を持った惑星でシミュレーションを初期化し,これらの太陽の周りの円弧運動をアニメートしよう.
次の時間ステップのこれらの位置は,現在の重力と速度で決定される.諸君はプログラムを,各惑星が後ろに軌道の軌跡を残すように変更することもできる.
(draw()関数BYの背景コマンドを取り除く.ラインの始めに//でコメントにする).
http://plus.maths.org/issue42/features/dartnell/collision.jpg

 

 

 

 

 

Fig. 何十億という星がアンテナ銀河の衝突の間に形成された.
下に示した銀河衝突モデリングで色々見いだそう.
このイメージはハッブル宇宙望遠鏡で撮影された(NASA提供).

 

 

 

 

 

太陽系の表示のために,各惑星の円軌道を生む速度を注意して解く必要がある.太陽系の圧倒的な支配力,太陽の重力だけを含めば,第一近似で正確なモデルができる.だが,巨大ガスの木星は他の惑星に注目すべき影響を与える.このような二次的な効果を含めるなら,さらに正確なモデルができる.
水星の軌道を完全に観察に合わせるには,もっと複雑なレベルが必要で,
アインシュタインの相対性理論-これはNewtonの重力の法則よりも,
ある特定の状況では正確-を含める必要がある.
繰り返すが,モデリングのコツは,無視できない詳細の最小量を巧妙に考慮することだ.月面に人を着陸させたアポロプログラムは,単純な Newtonの重力モデルで地球と月の影響以外のすべてを無視した.
すべての粒子が互いに相互作用するもっと大きな重力系ダイナミックス
のモデリングは,非常に高速なコンピュータを使い膨大な計算が必要で,
極端な”計算浪費”である.
しかし,そのような数値シミュレーションも多くの研究者にとって
極めて重要だ.例えば,下の枠中に,2人の主導的な研究者の仕事に焦点を合わせ,過去と未来の数十億年のイベントを見ることができる.
世界を打ち砕く衝突を通して月が作られ,我々自身の銀河と我々に最も近い隣人銀河が,巨大な重力で引き合い,数十億年の先に互いを分裂させられるであろう.
----------------------------------------------------------------
◆Robin Canup
ロビンはテキサスのサウスウエスト研究所の宇宙科学者だ.
彼女は月がいかにして形成されたかに興味を持ち,
太陽系生成の初期に,若い地球がより小さい原始の惑星に衝突した時の
イベントから月が生まれたという理論をテストした.
彼女のコンピュータモデルは衝突の熱で地球全体が融け
大量の岩が宇宙に放出され,その多くは衛星の軌道でに合体し月になった.
http://www.boulder.swri.edu/̃robin/でもっと多くを見ることができる.
http://plus.maths.org/issue42/features/dartnell/Moon_impact1.jpg

 

 

 

 

 

 

 

-----
◆John Dubinski
ジョンはトロント大学で全銀河のダイナミックスを研究している宇宙物理学者.我々の銀河,天の川,アンドロメダと呼ばれるらせん銀河の隣人は
重力的に互いに引き合っていて,500,000km/時間でお互いに向かって落ちて行く.

ジョンはスーパーコンピュータを使用し,これらの2つの巨大な銀河が合体し始め,2つの星が互いに引き裂かれるときに星の大きな帯を引き裂き始める約30億年後の時間をモデル化した.驚くべきことに,このすべての混乱にもかかわらず個々の星の間のギャップは非常に大きいため,実際には一つも衝突はないであろう.

我々の太陽の運命は不確実である.太陽は銀河間の宇宙の暗虚に排出されるか,混合銀河の密集しているコアに飛び込むかである.諸君は,
http://www.cita.utoronto.ca/̃dubinski/tflops/で,
地球の夜空の景色も含めて,さらに色々な映画を見ることができる.
http://plus.maths.org/issue42/features/dartnell/galaxy1.jpg   

 

 

 

 

 

 

 

 

-----
◆著者:Lewis Dartnell

 

著者のルイスはオックスフォード,クイーンズ・カレッジで生物科学を専攻している.現在[訳注:2004年当時],生命科学と実験生物学の数学と物理センター,学際科学のロンドン大学センターの生物学的複雑系モデリングの
4年間のMRes-PhD課程にいる.彼は宇宙生物学の分野で研究している.
火星の放射線レベルのコンピュータ・モデルを用い,火星の表面付近で
生命が生きられるかの予測をし,最近ニュースで報じられた.
彼はデイリーテレグラフ/ BASFの若手科学ライター賞などを4回受賞した.
彼のポピュラーサイエンス本,宇宙での生活:初心者向けガイドは,
2007年3月に出版された.彼のウェブサイトで多くの作品を読むことができる.(訳:KT)

鳥の群れのシミュレーション(上)

proccessingという使いやすいオープンソースのプログラムがあります.私も使っています.現在はver.3.5.4が出ています.これで何ができるか粒子モデルの紹介です.
この記事は,英国MMPのplusマガジン42号(2004)の翻訳(訳:KT)です.
http://plus.maths.org/issue42/features/dartnell/index.html 

Matrix: Simulating the world Part I - Particle models by Lewis Dartnell


鳥の群れが黄昏空に飛び交う様,魚群が敵をかわす様を見たことがあるなら,その完璧に振り付けられた動きに驚愕したことだろう.この行動は,
複雑に思えるかもしれないが,コンピュータでそのモデル化を行うのは,
それほど難しくはない.Lewis Dartnellが諸君自身のシュミレーションの
実地ガイドをする⇒経験不要.
粒子モデルにより,鳥の群れの運動,銀河系誕生,原子分子の物質構成,
などをシミュレート!

■マトリックス[訳注:1999年アメリカ映画]
世界をシミュレート   第1部---粒子モデル

モデルの構築は,科学や工学の多くの研究分野の核心である.
モデルの本質は複雑な系の表現であり,複雑な系のふるまいを理解するのに
異なった種々の方法で系の単純化がなされてきた.例えば,航空技師は,風胴テストのために戦闘機のミニチュア模型を作るかもしれないが,現代は,数学モデルをコンピュータ上でたいへん高速に走らせるモデリングが,ますます盛んになっている.超音速気流のコンピュータモデルは,信じられないくらい複雑だが,プログラムのデザインとシミュレーションは非常に基礎的な原理に基づいている.
モデルのふるまいに関するこの論文の前半で,たいへん興味深い自然系研究のコンピュータモデルが,いとも簡単にプログラムできることを述べる.
先端研究にこのようなモデルを用いている科学者の何と少ないことか.

◆はじめよう
http://plus.maths.org/issue42/features/dartnell/fish.jpg

 

Fig.1 どちらに行くのか?魚の行動をシミュレートする方法を見出せ.

 

 

 

 

 

 

 

 

 

これは,数学的なモデリングとコンピュータ・シミュレーションへの体験入門である.だが,プログラミングそのものの学習には深入りしない.これまでにプログラムを見たことがないとしても,心配は要らない.
シミュレーションのすべては,このウエブサイトでJavaビデオとして見ることができる.もし諸君がコンピュータプログラミングをすこしやったことがあるなら,この論文で用いた全コードをダウンロードして,改良したり調節したり試してみたいだろう.これらのシミュレーションを書いたり,アニメーション作りに用いたソフトウェアはプロセッシングと呼ばれ,無料でダウンロードでき,PCやMac バージョンで利用可能だ.
プロセッシングはコンピュータ科学者とアーティストの協力でリリースされ,自分で容易に改良や開始ができる.http://processing.org/download/index.html
プロセッシングが使われた世界中の種々のプロジェクトすべてのリストを
ホームページで一見されたし.http://processing.org/
よいモデルを組み立てる本質は,複雑な問題をいかにうまく単純化し,
系の重要な特徴を抽出し,モデルのふるまい解析を混乱させるものは取り除くように考えることだ.
例えば、ライフル銃から発射された銃弾弾道の単純なモデルは,明らかに重力の影響を考慮する必要があるが,空気抵抗のわずかな影響は無視してよい.この場合の空気抵抗は,2次オーダーの効果と呼んでよい.
別の系のモデリング,航空機の翼による揚力では,空気の影響を無視することはできないが他の因子は無視できる.
コツは,そのふるまいが理解しやすいように,モデルをできうる限り単純に保つことと,意味のない結果が生じないように重要と思われる因子をあまりカットしないようにし,入力因子の一つを変えて全系の応答の影響を見ることとのバランスにある.
この最初の論文のすべての例は,各点が空間内を色々な規則に従い動き回る粒子モデルとして知られるものである.

◆箱の中のガス分子
最初のモデルは,箱につめられたガス分子の大変基礎的な物理シミュレーションだ.見やすく単純にするため正方形内に閉じ込められた2次元粒子とする.この場合の物理は簡単である.各粒子は,箱の壁に当たるまで,
出発したときと同方向・同スピードで直線運動し続ける.壁に衝突すると,粒子は跳ね返り方向を変えるがスピードは変えない.映画と同じで,この論文のアニメーションは流体の運動を印象づけるフレームのシリーズからなる.
プログラムの仕事は各粒子の位置,方向,スピードを各時間ステップごとに前のステップの情報に基づき計算することである.この論文のすべての例では,各時間ステップごとのデータを配列または行列に蓄える.
行列の各行は異なる粒子に関する必要な情報を蓄える.このガスの例では,各粒子の状態は4つの数で記述される.
これらのうちの2つは平面内の位置(x,y)である.残りの2つは,粒子の運動の2成分を記述する.これらはdeltaX, deltaYと呼ばれる(”X位置の変化”,”Y位置の変化”の意).粒子の速度も定義する.
この場合の行列は4つの列と,全粒子に対する十分な行数を持つ.
シミュレーションの各時間ステップごとに,各粒子の位置(x,y)は,その速度に依存した更新を受ける.このプロセスのモデルを記述するプログラムの構造は,かなり直接的である.
どのように機能するか一般的な要点がつかめるかコードを見てみよう.
http://plus.maths.org/issue42/features/dartnell/Gas_molecules.pde
最初にするのは,モデルの最も重要なパラメータ(含まれる分子の数,各粒子の位置と速度の情報を格納する行列など)
の定義である.次に,プロセッシングは,世界の大きさ-この例では正方形,アニメーションのフレームレート-を決め,シミュレーションのセットアップをする必要がある.
それからシミュレーションの初期化をする.これはデータを蓄える行列で,各粒子の初期位置,速度の必要な情報を順次蓄える.今回は,粒子のランダム散布を選んだ.
次に,トルコ石色の背景と各粒子の(x,y)位置に置かれた赤い円で系の現状を記述するコードがある.
最後に,シミュレーションの中核,アップデート関数が来る.
各時間ステップごとに,この関数は,行列中の各粒子に順番にあたり,時間ステップ内に,その速度が箱の境界を越えその粒子を飛び出させないかどうか計算する.
もし飛び出すなら,箱の壁で跳ね返り,粒子速度は変化するが,そうでなければ,その速度ベクトルで決められる距離だけ前進し続ける.
かくして,各粒子は新しい位置と新しい速度ベクトルをもち,行列は新しい値にアップデートされる.

http://plus.maths.org/issue42/features/dartnell/Gas_molecules_web.jpg

 

Fig
箱に閉じ込められたガス分子のモデル.Java始動には映像をクリック.
全プログラムは,粒子が系をアップデートした後,再び描画し,
粒子はもう一度アップデートされ,これが繰り返されるように,
ループにセットされる.高速な現在のコンピュータでは,
これがたいへん高速に行われるので,ガス分子のスムーズなアニメーションになる.
この絵はプログラムのJAVAバージョンを開くようになっているので,
プロセッシングソフトウエアをインストールしなくても,動作を見ることができる.

 

 

この過剰に単純化したモデルは,2つの問題点があることに気づくだろう.第一に,我々のプログラムではdeltaX,deltaYに整数値だけ使っていること.このため粒子が動ける異なる方向の多くがなくなってしまう.
粒子のいくつかは,両サイドでバウンドし往ったり来たりするので,完全に水平や垂直に動くのが見られる.
第二に,このコードは,分子間の相互作用を考慮していない.分子は決して互いに衝突せず,箱の中を跳ね回るだけで,
完全予測可能である.周期的に,はじめがそうであったように,全分子が外向きに散らばる前に,真ん中で密なクラスターが形成される.これは明らかに部屋の中の空気分子では起こらないことだ.
空気分子は絶えず互いにぶっつかりあい予測不可能な運動を生み出している.
もし諸君が,少しコンピュータプログラム知っているなら,この単純な例をスタートとして,もっと洗練され現実的なものを作りたいと思うだろう.これをどのように行うかの若干の助言は,プログラムファイルの末尾にある.
運動のモデリングのもう一つの例に移ろう.今度は,粒子の相互作用の規則がもう少し複雑である.

◆鳥の群れ
モデル化する系は鳥の群れである.分子の例のように完全に独立に動くのではなく,各粒子は他の粒子の動きに反応して動く.
同様な標準構造をガスのプログラムにも用いるだろう.
最初はパラメータと世界の大きさを決め,全粒子の位置と速度を初期化する.次に,系の現在の状態を表示する関数のループをまわし,
次のタイムステップでの系の変化の計算を行う規則を実施する.
最初の例は,閉空間に閉じ込められた粒子の運動のシミュレーションをねらった.
今度は,開かれた戸外で飛ぶ鳥がどのように群れを作るか調べるのが関心事だ.エッジがあるような世界は困る.なぜなら,そのような人工的な特徴の周りでは,シミュレーションが適切にふるまわないであろうから.
モデリングの共通のコツは,世界空間を,粒子が左から去れば右から現れる,上下も同様[周期的境界条件]に世界空間を定義することだ.
上下は互いにつながりチューブのよう.左右端を丸く曲げてつなぐ.
ドーナツの表面の世界のようだ(数学ではトーラスという).

http://plus.maths.org/issue42/features/dartnell/flocking_index.html

 

Fig
鳥の群れモデル.単純な規則の集合が,他の鳥との相互作用を定義し各粒子の運動に作用する.燈色の円は視野範囲を示す.イメージをクリックすると
シミュレーションのJavaバージョンが走る.
再スタートは[Ctrll]+[F5](Windows)または,[z]+[R](Mac).

このモデルでの第二の発展は,直線運動を続ける粒子のかわりに,
鳥たちは互いに相互作用をし近隣者に依存し飛ぶ方向を変化させることだ.
各時間ステップごとに,プログラムは,次々に各鳥を選び,選んだレンジ内で他のすべての鳥の飛行方向の平均を計算し,選んだ鳥はこの方向に舵をとる.


ランダムに選んだある鳥の視野レンジの場を燈色の円で表示させる.
プログラムで値を蓄える変数はeyeSight.
プログラムがどのように機能するか一般的な要点を拾い上げるため,
コンピュータ・コードを一寸見てみよう.
http://plus.maths.org/issue42/features/dartnell/Flocking.pde
次に左のイメージのシミュレーションを走らせて見よう.
始めはランダムであった鳥たちの運動が,直ちに秩序のある振る舞いに変わる.
鳥の巨大な群れが,大体同じ方向に飛び行くように自己組織化される.
孤立した鳥が一団の中に引き込まれる.そして時折2つの大きいグループがお互いに近づいて迷うとき,個々の鳥は他の群れに参加するために引き剥がされる.2つの雲がスムーズに混ざり合うようだ.
ちょっと迷って,そして次に新しいグループの先頭が決まる.
この設計された行動を本当の鳥一団の動的関係と比較してみよう.
これを書く時点で,あるホップベースの飲物の英国テレビで放映されている素晴らしい広告がある.
夕映え空のツバメの群れに魅せられる.タグ ライン「属します」で終わる.
この広告はYouTube から見ることができる.たとえすでに消されていたとしても,他の鳥の群れビデオを見いだすのは全く容易であろう.


http://www.youtube.com/watch?v=RHHfynLYW1I
Fig 巨大スケール鳥群れを示すYouTube広告

この運動は優雅な振り付けに見える.
個々の鳥が次に何処に飛ぶか正確に知っているように見える.
鳥の巨大な流れが,滑らかに調和し一斉に方向を変える.
群れの中にリーダーはいない.基本計画もない.
すべての決定はグループ力学だけで決まる.
何千という群れをなす鳥の魅了される複雑さのすべては,
最近接の隣を越えた残りのグループが何をするかを知ることなしに,
個人が行動するというたいへん単純な規則から発する.
これはボトムアップ制御として知られる.
単純な規則で相互作用している個体から,
たいへん複雑なグループ行動が出現する例だ.
たくさんの動物,ミツバチ,スズメバチ,アリ,シロアリ,...が,
この種の「群れ知性」を使う.
しかし,群れの振る舞いの基礎となっているこれらの単純な規則は異常な環境では,まったく馬鹿な行動を惹き起こすことがある.
自分自身ではまだ試す機会がなかったが,友達の友達から,
諸君が羊の一団と一種にやれる面白いトリックの信頼できる情報を得ている.
羊達の前で突然走ったとする.羊達は脅威を察知し動き去ろうとする.
まだ可能な限り,諸君の隣人に近い状態を保って,同じ方向に動作することが最も安全であるという規則は働いている.
もしあなたが羊より少し速く走り続けるなら,あなたは追いつき,
そして一団の中央を通過して先頭で今走っている.グループの動的力学が,
侵略者から逃げ出すという初期の個体の決断から引き継がれていて,
あなたは,群れ全体をあなたの後ろに従えていることになる.

◆コウモリとタカ
プロセッシングソフトとこのモデルのプログラッミングコードをダウンロードしたら,グループ全体のふるまいにどのように影響するかモデルのある特徴をいじることができる.
例えば,鳥同士は何処まで見えているのか,eyeSight変数はたいへん重要なパラメータだ.我々のプログラムでは,この変数は20にセットされている
(とりの視野を表している燈色の円の半径が20単位).
このパラメータは諸君の望む如何なる値にもセットできる.
2つの異なるシナリオを見てみよう:
”コウモリのように目が見えない”eyeSightは1とする.
もう一つは地図をよぎって見渡せる”タカの目”eyeSightは100とする.

下の2つのリンクの図をクリックすればjavaが動き,どちらのシミュレーションも見ることができる.
http://plus.maths.org/issue42/features/dartnell/eyeSight1_web.jpg
http://plus.maths.org/issue42/features/dartnell/eyeSight100_web.jpg
Figコウモリのように目が見えないeyeSight=1  タカの目eyeSight=100

 

 

 

 

 

 

 

 

 

 

第一のシナリオでは鳥たちは相互作用をまったくしない.だから実際は世界空間内でランダムに走るガス分子と同じだ.
第二のシナリオでは,鳥たちはグループの反対側にいる個々の鳥の飛行方向に反応するくらい,たいへん遠くまでコミュニケーションする.グループのふるまいはたいへん速く一体化した固まった運動になる.
どちらの場合にも,少なすぎるか多すぎる相互作用のために,すべての複雑な群れのふるまいは失われる.
系のアウトプットはこのパラメータにたいへん敏感である.気体的ふるまいと固体的なふるまいの間にある種の相転移がある.興味あるダイナミックスの見地ではどちらも死んだも同然だが,自然ではeyeSightの値がこれら両極端の中間値のときにのみ緊急行動が起こることが見られる.

パンデミックに数学はどう戦うか(全文)

このエッセイは,2020年3月30日にマリアンヌによってプラスマガジンに提出されたものの翻訳(by KT)です.
How can maths fight a pandemic? By Marianne Freiberger ,https://plus.maths.org/content/

■ケンブリッジ大学の疫学者であるジュリア・ゴグは,「人生は長期間同じように過ごすことが許されない」と語った.ゴグ自身の人生は2月の初めに突然変化した.彼女は数理科学センターの通常の職務を辞し,緊急事態のための科学諮問グループ(SAGE)に結果を供給するモデリンググループであるSPI-Mに専念することになった.

 SPI-Mは,インフルエンザパンデミックへ備えて活動をしてきたが,現在はCOVID-19のパンデミックに焦点を当て活動が引き継がれている.ゴグは,王立協会が率いる全国コンソーシアムの運営委員会にも所属し,パンデミックに対処している.

SPI-Mの仕事は,次に何が起こり,さまざまな介入でそれがどのように変化するかを予測するのに役立つ数理モデルを開発し使用することだ.COVID-19パンデミックがどのように進展し,我々の生活している社会の介入はどのような影響を与えるのか.これらのモデルは何か,それらは正しいか?

 

モデル
COVID-19パンデミックの報道については、こちらをご覧ください:https://plus.maths.org/content/tags/covid-19

諸君は意識しないで,数理モデリングを使っている可能性は十分にあります.COVID-19の感染数が3日ごとに2倍になると聞いて,きっと予測計算をしたことでしょう.今日$$ x $$件があり,この傾向が続くと,

3日間で$$ 2x $$件,6日間で$$ 4x $$件,9日間で$$ 8x $$件,一般的に,3 $$ n $$日で$$ 2 ^ nx $$.

このように急増加して今回の災害に至りました.

この外挿は単純ですがモデルの基本的な要素,時間の経過とともに起こる変化の一般的な性質を表す数式と,変化の正確な形状を特定するパラメーターがわかります.

この例では,時間の経過とともに指数関数的に増加し,この増加の急峻さは2倍に増加する時間パラメーター(3日間)で決まっています.

ーーーーーーーーーーーーーーーー

SIRモデル
$$ S $$を感染しやすい人の数,$$ I $$を感染した人の数,$$ R $$を回復した人の数とする.

SIRモデルの方程式は次のとおりです。

 $$ \displaystyle \frac {dS} {dt} $$ $$ \displaystyle = $$ $$ \displaystyle-\beta SI $$
 $$ \displaystyle \frac {dI} {dt} $$ $$ \displaystyle = $$ $$ \displaystyle \beta SI-\nu I $$
 $$ \displaystyle \frac {dR} {dt} $$ $$ \displaystyle = $$  $$\displaystyle \nu I $$
ここで、$$ \beta $$は感染速度で,$$ \nu $$は回復速度, $$ d / dt $$という表現は,時間の経過に伴う変化率を表すため,$$ dS / dt $$は時間の経過に伴う感受性の数の変化率の意味.

数値$$ R_0 = \beta / \nu N, $$($$ N $$は母集団のサイズ)は、疾患の基本的な複製数と呼ばれる.

SIRモデルの詳細については,この記事https://plus.maths.org/content/mathematics-diseasesをご覧ください.

ーーーーーーーーーーーーーーーーーーーーーー

長期の予測や介入の影響を詳細にシミュレートするには,さらに洗練されたモデルが必要です.短期予測,長期予測,学校閉鎖など特定の介入効果のシミュレーション,さまざまな目的のためにさまざまなモデルが設計されています.モデルが異なっても,それらのモデルは1910年代以降のアプローチであるSIRモデルに基づいて構築される傾向があります.

SIRモデルの背景となる考え方の理解には,すべての人を,病気にかかりやすい(S),感染している(I),回復し免疫がある(R)のどれかの集団に属するとします.人が,SクラスからIクラスに,IクラスからRクラスに,進む方法を数式によって記述します. これらの方程式は,病気の感染率と回復率にも依存します. Iクラスの人口が少ないモデルから開始し,時間の経過とともにモデルを進化させて,病気がどのように広がり,人々が回復して免疫力を得て治まるかが見られます.

単純なSIRモデルは,寄宿学校の生徒などの単純な母集団に対して適切な予測を提供します. より複雑な母集団に関しては,さまざまな地理的場所やサブ母集団を表す個々のSIRモデル(個々の町や学校など)を繋ぎ合わせます.

接触がカギ
背景で非常に重要なのは人の接触パターンです:誰が誰にどのくらい会ったか.これに関する情報は,社会混合研究から得られます.例えば,BBCとGogチームのコラボレーションとして2018年に実行された大規模な市民科学プロジェクトがあります.人々は彼らの動きを追跡するアプリをダウンロードし,彼らに出会った人々(すべて適切に匿名化されている)を追跡するように求められます.このような接触データは,モデルに組み込まれている数値の配列( 行列 )(下図を参照)によって数学的に表されます.

 

 

異なる年齢グループ間の平均的な接触を表示する接触マトリックス.濃い色はより多くの接触を示します(ここでは,マトリックスを理解しやすくするために,数値ではなく色が使用されています).図は論文

Contagion! The BBC Four Pandemic – The model behind the documentaryから許可を得て使用.

 

 

 

 

 


学校閉鎖などの特定の社会的介入が,病気蔓延にどのように影響するかを確認するには,介入に関連する部分を削除または縮小して,接触データを適宜調整してみます.

ただし,「学校要因を完全オフに切り替えるのは現実的とはいえません.子供たちがまだ学校に通っているので減じるだけです」とGog氏は言います.「そして明確なガイダンスがない場合,学校外の子供たちは他の方法などや,祖父母と混ざってしまう可能性があります.これは,考慮に入れるべき追加の接触が発生していることを意味します.それらの範囲での推測になります」. 教師のストライキ中に何が起こったかに関する情報などの既存のデータは,接触データを補正し介入による流行への影響を予測するのに役立ちます.簡単に言うと,これが疫学モデリングの仕組みです.

だが,モデルは正しいか?
英国,ヨーロッパ,さらには世界全体を表すように設計された壮大なモデルは1つだけではありません.代わりに,さまざまなことを実行するように設計された多くの異なるモデルがあり,SIRモデルのコンパートメントアプローチは支配的なパラダイムですが,モデルの性質は依然として異なる可能性があります.完全に確定的なものもあれば,ある程度のランダム性を含むものもあれば,特定の要因の役割を示すために1回だけ実行されるように設計されているものや,不確実性に直面して予測の範囲を取得するために何度も実行されるものもあります.

大きな問題は,モデルが現実的であるかどうかです. 1つには,COVID-19が新しい病気で,既存モデルは季節性インフルエンザのために開発されたものなのです.「私たちのモデルは,みなインフルエンザから始まったもので,コロナパンデミックモデルは誰も作っていませんでした」とGog氏.COVID-19とインフルエンザのためとでは構築した典型的モデルで何が違うのかを調べなければなりません.

パンデミックのダイナミクスはインフルエンザとコロナウイルスで似ていますが,違いもあります.1つは,COVID-19にはかなりの潜伏期があるということです.人は何の症状も示さずに感染する可能性があります.「インフルエンザの場合は数時間かかるかもしれませんが,このコロナウイルスの場合は数日かかる可能性があります」モデルは,SEIRモデルを用いることを意味します.E「露出」が追加されます.このクラスの人々は感染していますが,まだ症状はありません.Eクラスは,人に感染させる人と感染させない人にさらに分けることができます.すべてのモデルは近似であり,「インフルエンザの場合,目的によってはSIRを回避できることがよくあります.ただし,このウイルスの場合,潜伏期間を無視すると,近似が非常に悪くなる.特に,短期予測のときは,これを考慮する必要があります」とGog氏は語った.

これは,単純SIRモデルによる典型的な結果で,感染しやすい(可能性がある)人の数は青,感染した人の数は緑,回復した人の数は赤で表示されます.

 


COVID-19について私たちが知らないことが他にもたくさんあります.「1日目や2日目の感染力など詳細はわかりません」.「不完全なデータからそれを推測することは非常に困難ですが,現在,中国や他の国からのデータがいくつかあり,クルーズ船からのデータも非常に興味深い.限られた情報から推測するために最善を尽くしています」 十分な情報がない場合,モデラーは不確実性を取り除くために何が最も重要な未知数か決定します—これがモデリングで非常重要なことです.

1つのパラメーターの重要性は,実行しようとしていることに厳密に依存する場合があります.「明日何件の発病があるかを予測するためには,多くのことを知る必要はありません.現時点では指数関数的です」.「しかし,第2波が発生するかどうかを予測するには,非常に異なるいくつかのことを知る必要があります」

長期予測の重要な数値は,疾患の基本的な再生産数です(多くの場合,$$ R_0 $$と表示される).人口の全員が疾患感受性がある(かかる可能性がある)と仮定すると,感染者が平均して感染させる人の数(それは 伝送速度に関連する,上記の枠記事を参照).COVID-19の場合,これは2から2.5の間にあると推定されます.モデラーは,可能な値の範囲ごとにモデルを実行し,対応する予測の範囲を考えます.

感染したが病気ではない
現在,多くの疫学者に必要なもう1つの重要な数は,集団内での感染の真の症例数で,これには,病気にかかったが症状を示さなかった人々の症例数が含まれます.「無症候性の数は,私が現時点で睡れなくなる数です.これを知ることは,私たちの出口戦略にとって非常に重要です」とGog氏は言います.

現在の指数関数的成長を減らすことができるものが基本的に2つあります.「1つ目は,学校の閉鎖や身体的な距離などの介入により接触率が変化することです」とGog氏は述べます.「指数関数的プロセスを変える2番目のことは,感受性の枯渇です」 病気になったことでしばらくの間免疫があり,無症候性を含む真の症例数を知ることで,感受性の高い人々のクラスがどれほど速く小さくなるかがわかります.議論されている集団の免疫のメカニズムは,感受性の数が減少するにつれて,病気の指数関数的成長が平らになり,その後指数関数的減衰になることを意味します.

幸いなことに,無症候性に関するデータを知ることに関しては望みがあります. 人が病気にかかっているかどうかを知ることのできる抗体検査をしていますが,これらの最初の波は当然NHSスタッフにのみ公開されます.

しかし、不完全な情報があったとしても,モデリングの予測は,特に不確実性の範囲を考慮して提示する場合,暗闇の中で突き刺すだけではありません.優れたモデルは,私たちが持っているすべての関連情報で構成されています.優れたモデラーは,モデルの制限とモデル内の不確実性を注意深く追跡します.多くの場合,可能なパラメーター値の範囲を含み,予測の範囲につながります.これは,さまざまな介入戦略の下で発生する可能性のある将来のシナリオの範囲です.予測は完璧ではありませんが,私たちが持っている情報を使用して実行できる最善の予測です.

では何が起こるのでしょうか?
誰も何が起こるか正確に言うことはできません.地平線に見える大きな望みはワクチンの到着です.これは,群れの免疫を構築するためのもう1つの手段であり,最も脆弱な人を優先的に保護するオプションを備えています.問題は,最小限のダメージでどのように自分自身をそのポイントに到達させるかです.

誰もが同意することの1つは,これには長期的な犠牲が伴うということです.「1週間だけシャットダウンして,この状況がなくなることを期待することはできません」とGog氏は言います.「それはまだここにあり(社会的距離の措置が早すぎる場合),集団の免疫はありません.現時点では,ヘルスケアシステムが容量を超えないようにするためにシャットダウンせざるを得ません.しかし,これは恒久的な戦略ではないことは十分に認識しています」

先週 ,Gogの元博士課程の学生であるスティーブンキッスラーとハーバード大学の同僚によって発行された論文では,季節変動も考慮して,再発の問題について詳細に検討しました.呼吸器疾患の発生は,秋と冬に悪化する傾向があります.季節性インフルエンザの発生と同時に,ヘルスケアシステムにさらに大きな負担をかけます.キスラーと彼のチームは,そのような季節変動を反映する要因を含むSEIRモデルを使用しました.社会的距離測定の効果は,COVID-19の基本的な生殖数が最大60%減少することでモデルに反映され,中国で観察されたものと同等です.

この最新の研究の結論は,必ずしも明るいものではありません.社会的距離の1期間では、救急医療能力が圧倒されるのを防ぐのに十分ではありません(調査では,英国ではなく米国の救急医療能力を調べましたが,英国でも同様の結果が当てはまります).「[この調査によると]シリアルロックダウンの期間を検討しています」とGog氏は言います.「批判的なケアが始まろうとしているときにロックダウンするという考えです.しかし,英国で起こっていることは,NHSが規定を拡大しているため,ロックダウンがより短く,それほど深刻ではなく,あまり頻繁ではないことです」

これらの社会的距離の断続的な期間がどれだけ長く,頻繁に異なる仮定(米国の数値に基づく)になる可能性が高いかを,論文から抜粋した以下の図に示します.

 

これらのグラフは,断続的な社会的距離(青色の領域)の下でのウイルスの有病率(黒い曲線)と重大なケース(赤い曲線)を示しています.最初と3番目のグラフには,季節的な強制がありません.2番目と4番目の季節の強制.クリティカルケア能力は、水平の黒い実線で示されます.最初の2つのグラフは現在の米国の救急医療能力のあるシナリオであり,3番目と4番目のグラフは現在の救急医療能力の2倍のシナリオです.基本再生数の最大値は冬期は2であり,季節的なシナリオでは夏期は1.4です.この図は,キスラーらによるCOVID-19の流行を抑制するための社会的距離戦略の論文からのものです.許可を得て使用.


悲観的状況ですが,希望の光がいくつかあります.1つは,COVID-19の重症例に対する投薬とより良い治療プロトコルが,ある時点で到来する可能性です.これは,人々が短期間で病気にならないことを意味し,NHSへの圧力を軽減します.社会的距離を縮める措置の深刻さの多くは,NHSが崩壊しないようにする必要があるため,深刻な病気の人々を効果的にケアすることができ,短期間の過酷な措置が少なくなる可能性もあります.

もう1つの希望の光は,軽度で無症候性の感染者の未知な総数です.これがモデルで想定されているよりもはるかに高いければ,より多くの人々が病気になり免疫力があれば,上記の図が示唆するほど見通しは悪くありません.私たちはこれが事実であることを期待し,それがわかるまでは,ルールを守って家にいるだけです.

 
この記事について
Julia Gogはケンブリッジ大学の数理生物学の教授です.彼女は,その結果を緊急事態用科学諮問グループ (SAGE)にフィードするモデリンググループSPI-Mのメンバーです.彼女は王立協会が率いる全国コンソーシアムの運営委員会のメンバーでもあり,COVID-19パンデミックに対処しています.

プラスマガジンの編集者,マリアンヌフライバーガーは,2020年3月24日にGogにインタビューしました.

ロンドンシティホール設計の数学

 

 

 

 

 

 

 

 

 

 

http://plus.maths.org/issue42/features/foster/LCH_web.jpg

  

 

テームス川にかかるロンドンシティホール.内部の巨大な螺旋階段ケースに注目.映像©Foster + Partners

 

 

 

 

 

 

 

 

 

 

 

■Foster+パートナーズについて

Foster+パートナーズは,Norman Foster とシニアーパートナーグループ
が指導する国際的に著名な建築スタジオである.
ロンドンのガーキンGherkin(キュウリ)として知られる建物や,この
ロンドンシティホールや,大英博物館の大広場の屋根のようなランドマークは彼らの設計です.地上最大建設の一つワシントンDCのスミソニアン研究所の中庭,ロンドンのウエンブリースタジアム,北京国際空港第3ターミナル(龍のイメージ)なども手掛けています.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

大英博物館の大広場の屋根                                     ガーキンの全貌


■Foster+パートナーズのプロジェクトがもつ共通点は:巨大

巨大は,環境に最大限の影響を与えます.巨悪のデザインとならずにすむかどうかは,微妙なバランスの技であります.
建造物は構造的に健全で,美的に快いものであるだけでなく,
設計規制,工費の制約,目的に良く合うこと,エネルギー効率の極大化
など,多角的に満たさなければなりません.デザインの過程は,複雑な最適化問題になります.この問題を解く方法が,モダーン建築術と古代エジプトの建築術とでは異なるのです:
先進的なデジタルツールが,制約の膨大な配列を分析統合し,最適解を見出します.数学は建設される構造の形,要求される物理的特徴を記述できます.数学はコンピュータの言語で,モデリングのすべての段階の基礎になっています.
■ロンドンシティホール
ロンドンシティホールは,ロンドン市長,ロンドン議会,大ロンドン当局を収容します.ガラスの使用と内部の巨大ならせん階段が,透明性と民主的プロセスへの親近感を象徴しているかのようです.
外見の強いインパクトは,この建物の奇妙な形です.

テムズ川の土手の上に置かれて,建物は川原の小石を思わせます.
その丸みも民主的な理想を思わせます.けれども,ガーキンと同じように,
形が決められたのは,みかけの形のためだけではなく,エネルギー効率を最大化するためでもありました.
これを実現する1つの方法は,建物の表面積を最小にすること(望まない熱の損失と流入を防ぐことができる)です.諸君は,体積が同じあらゆる形の中で,球形が最も表面積が小さいことを知つているでしょう.
これが,ロンドンシティホールが球に近い形をしている理由です.

建物を非対称にしたのもエネルギー効率に貢献しています:南面のオーバーハングが,ここの窓を上階の床で陰にして,夏季の冷房需要を低下させる.
ガーキンの場合と同様に,コンピュータ・モデリングで建物の中の気流が如何動くか把握でき,自然の換気が最大になるように建物内の形が選ばれました.実際,この建物は冷房を必要としないといいます.
同程度のオフィススペースのエネルギーに比べ,たつたの1/4と伝えられます.
螺旋階段さえ,単に審美的理由で選ばれたのではありません.それらの分析の一部として,ロビーの音響効果,人々の声が適切に聞こえるような建物をSMG(専門家モデリンググループ)は設計しました.
初期の音響効果は,広いホール内をエコーが跳ねるという状態でひどく,
何らかの対策が必要だったが,Foster+パートナーの過去のプロジェクトの1つが手がかりを提供したのです:
ベルリンの Reichstag は大きいホールがありますが,大きい螺旋の傾斜路があり反響が起きません.SMG はロンドンのシティホールに同様な螺旋階段のモデルを作り,Arup Acoustics会社がこの新モデルの音響効果を分析しました.諸君は,以下のアニメーションで,音が階段後ろに閉じ込められ,エコーが減じるのを見ることができます.このアイデアは最終設計に採用されました. (アニメーション © Arup Acoustics)
https://plus.maths.org/content/sites/plus.maths.org/files/Flashfix/arup.mov

 
arup.mov1.62 MB

 

 

 

 

 

 

 

 

 

 

◆この記事は,Marianne Freiberger(プラスマガジン編集者)による,MMP, plusマガジンVol.42の記事を,筆者が翻訳し若干編集しました.原著エッセイを,3つに分割して(その1)に当たるものです.

ガーキン設計の数学

◆専門家モデリンググループ(SMG)について
Foster+パートナーズの専門家モデリンググループ(SMG)は,De KestelierとPetersがメンバーになっており,1997年に設立された.SMGの仕事は,建築家を助けて,プロジェクトのバーチャルモデルを創造することだ.
「通常,チームは概念を持って我々のもとにやって来る」と,De Kestelierは語る.「それはスケッチのようなものであったり,より発展させたものであったりする.そこで我々は,CADツールを用いるかツールを開発し,モデル作りで彼らを助ける」

http://plus.maths.org/issue42/features/foster/populated_surfaces.jpg
パネルを収めた数学的表面.映像提供 ΕBradyPeters

 

 

 

 

 

 

 

コンピュータの助けを借り,その物理から外観まで,建物のほぼすべての様相を設計することができる.コンピュータ モデルで,建物の周囲を風が流れる様や,建物内部の音波の反響をシミュレートできる.グラフィックプログラムで,異なった数学的な表面を探究し,それらに異なった柄のパネルをはめてみることもできる.
そして,これらのモデルから手に入る情報のすべては,近年の建築 CAD ツールで最も重要な発明であるパラメトリックモデリングに連動できる.

http://plus.maths.org/issue42/features/foster/gherkin_model.jpg
30St Mary Axeの建築モデル.
映像 © Foster + Partners.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

パラメトリックモデリングは,1960年代からあった.しかし,建築家がその力をフルに利用できるようになったのはつい最近である.
モデルは,諸君が建物に加えた変化により影響を受ける他の特徴を再計算せずに,建物のある特定の特徴をいじることを可能にする.
これはたいへん強力なデザインツールである.ガーキンを例にとろう.もし,建物をもっとスリムにしようと思うなら,他の何らかの特徴が犠牲になるだろう.外側ライニングカーブやダイヤモンド型の角度など再計算が必要となる.これはまったくたいへんな仕事量で,もしなされたとしても,手書きであれ再プログラミングであれ,新しいスケッチを描きなおさねばならない.
パラメトリックモデルはこれらのすべてを諸君のためにやってくれる.
変えないようにしようと決めた特性は固定されたままで,幾何学的特徴を色々変えることができる.モデルはスプレッドシートのような働きで,建物の特徴を変えることは, スプレッドシートの項目を変えるようなものだ.変化に応じ,ソフトウエアは先に決めた関係を保ちつつ,モデルを再度生成する.
丁度スプレッドシートがそのすべての項目を再計算するように,SMG によって提供されたデジタルのツールが装備され,デザインチームは短期間のうちにデザインオプションの莫大な範囲を探検することができる.チームは建物の幾何学的な特徴を変えて,変化がどのように・・・例えば気流,あるいは音響特性・・・に影響を与えるかを見ることができる.
建てるのが難しいようなどのような複雑な形でも,探究することができ,単純な形へと分解することもできる.必要な材料はどれほどで,
コストはいくらかもすばやく見積ることができる.
複雑な形がほとんど建設不可能であったためと,最良な環境へ適合させる科学を充分使いこなせなかったため,数十年前には実現不可能であった建物を建設できるようになった.

 

 

 

 

 

 

 

 

 

◆ガーキン [ガーキンとは”キュウリ”のこと]
http://plus.maths.org/issue42/features/foster/gherkin_wind_web.jpg
ガーキンの周囲の気流のモデル.映像 © Foster + Partners.

 

ガーキンは SMG が関与したプロジェクトの1つで,形がどのようにして制約を満たすように選ばれたかがわかる主要な例である.このビルは30St mary Axe の公式名称で,高さ180m(ナイアガラの滝の3倍の高さ).他の高層建築に比べて,3つの際立った特徴がある:
形は方形でなくむしろ丸い.膨らむ中央と先細るトップ.螺旋のデザインに基づいている.これらすべてが,純粋に審美的特徴となることに容易に気づく.だがそれだけでなく,これらは特定の制約を満足させている.
ガーキンサイズの建物の主要な課題は,周囲を吹き抜ける気流だ.
ベースから旋風がまきおこり,近隣地域を不快な地にする. この問題を扱うために,SMG は,建築家に乱気流の数学に基づき建物の空気力学特性を
シミュレートするコンピュータモデルを使うように助言した.
モデルは円筒状が方形のものより空気の流れへの応答が良く,旋風を減らすことを示した.中央が太く16階で最大直径に達するものが,スリムなものより風の低減の助けになるということもわかった.
強風でくちゃくちゃにならないとしても,高層ビルの隣に立つのは恐ろしい.高層ビルは諸君を小さく見せ,低い建物の輝きを奪い,日光を奪い取る.これらの効果を最小に抑えるのは,ガーキンの特有な形である.
膨らんだ中央と先細のトップは,下からトップが見えないようにする.
かくして,諸君を小さいとは感じさせないし,太陽と他の景観も底から覗き込める可能性がある.

 http://plus.maths.org/issue42/features/foster/gherkin_floorplan.jpg
ガーキンの床面プラン. 映像 © Foster + Partners.

最初に決めたことは,ガーキンが可能な限り持続可能な建物であるべきということだ.そしてこれは,自然な換気(エアコンの節約のため)と自然の日光照射(光熱費の節約)を最大にする形の選択を意味する.6つの三角形のくさび形を,建物の内部に貫入するように各フロアの円形プランから切り取る.これらは光の井戸の役をする.
それらが作る光線は,自然の喚気を促進する.しかしながら,くさび形はお互いの直上には位置していない.空気力学のモデリングは,1つの床のプランが下の床のに対して数度回転していると,換気が最大になることを示した.それで,くさび形が作るシャフトは建物を昇る螺旋を作り,建物の外形により起こる空気の流れと,最適に相互作用する.くさび形のファサドの窓が自動的に開いて,新鮮な空気を建物に引き込む.慎重に選んだ幾何学の結果として,この建物は,同程度の他の建物に比べて,エネルギーが50%削減されたという.

http://plus.maths.org/issue42/features/foster/gherkin_inside.jpg
ガーキンの内部.三角形のくさび形は,床面プランから切り取られる.
それらは,光の井戸の役をするし,喚気も促進する.映像 © Foster + Partners.

 

◆この記事は,Marianne Freiberger(プラスマガジン編集者)による,MMP, plusマガジンVol.42の記事を,筆者が翻訳し若干編集しました.
原著エッセイを,3つに分割して(その2)に当たるものです.

Foster+Partnersが使う数学

ガーキンの全貌.平面パネルが曲面を近似していることに注意.映像 © Foster + Partners

 

ガーキンやロンドンシティホールや,他の多くのFoster+パートナーズの作品がたいへんモダーンに見えるのは,外側が曲面であるためです. しかし,曲面を作るのはとても困難で,建設費が高くなります.そこに幾何学者のチャレンジがあります:単純な形から作る一番良い方法は何か?
「これが我々の主たるチャレンジの一つだ」とDe Kestelier(SMGメンバーの一人)は語ります.
「我々のプロジェクトの実に99%は,いかなる曲面も使っていない.
例えばガーキン,1種類の曲面パネルはトップにあるレンズのみだ.
建物が曲面という印象は,多数の多角形の平面パネルで曲面を近似的に作ることで生じる.パネルが多いほど錯視も真実味をおびる」
複雑な表面を記述するこのような平面パネル解を見いだすのが,SMGの仕事です.De Kestelier が説明するように,幾何学[その形]は,しばしば経済により決定される:「我々は矩形に近いパネルを使う傾向がある.なぜならそれはいっそう経済的であるからだ.資材をカットするとき安くなる」
三角形では,多くの材料ロスがあるが,矩形に近いとロスが少ない.
また,矩形に近いと構造が少ないので,視覚的にもさらによい.これは,
表面が完全に矩形から成り立っているロンドンシティホールで実証されました.
実際,ロンドンシテイホールは,理想的な幾何学形と建設容易さのバランスがよく取れている例です: 扱い難い丸い形はスライスに切ることにし,スライスの一つ一つは,僅かに傾いたコーンで容易に数学的に記述できて平面パネルでの近似も容易です.

 


■合理的な設計
数学的な方程式で記述されるコーンのスライス,トーラス,球などの表面は,しばしば,SMGデザインの基礎となります. これらを,バーチャル・モデルの創造に使うときに,数学的に生成される表面はコンピュータ上で容易に表現できるのでたいへん利点があります.
たくさんの個別座標を蓄え記述する構造ではなく,方程式を蓄えるだけでよい.表面の正確な形は方程式のパラメータを変じて制御できます(例として下図を見よ).[記述に必要なメモリが圧倒的に少なくなる]
平面解はやはり比較的容易に設計できる:ソフトウェアはオリジナルの表面のノードポイント集合に直線を引くようにする.

 

 

 

 

 

 

 

 

 

 

 

http://plus.maths.org/issue42/features/foster/surfaces_web.jpg
これらの表面は,関数z=e^-a(x^2-y^2) のグラフである.ここで,
3次元座標系は,x,y,z(上向き)軸であり, a は表面の形を決める.
第一の表面はa=1 ,第二の表面はa=5 ,第三の表面はa=7 .

数学的に定義された要素の集合からなる複雑な構造を考えるのは,
バーチャル世界では有用ではない:建物モデルから実際の建設手順のガイド作りを支援する合理化のこのプロセスは,もう一つの SMG の仕事の重要な部分だ.

同様に,数学的な完全性は,実用性のために道を譲る必要がある:「2~3週間前のことだが,楕円の一部である壁のプランのことで私のところに来た建築家がいる」とDe Kestelierは語った・・・
もちろん楕円は数学的には描くのは易しいのだが,それをさらに合理化することを望むのはなぜか?
私は楕円の弧を3つの円弧に合理化することを決めた.理由は,壁の建設でコンクリート壁用の型が要るためだ.これは全体の形を建設するのに多くの型パネルを使ってなされる.もし諸君が正確に楕円にしたいなら,すべての型パネルは異なっていなければならない:楕円の周囲を進むと,楕円の曲率はたえず変化しつづけるのだから. もし楕円をやめて3つの弧にするなら,諸君が必要とするのは,3セットのパネルだけで,各セットのパネルは同じである.
これならずっと簡単になる.「 数学者に理想的なものは,建築家に理想的であるとは限らない」

 

 

 

 

 

http://plus.maths.org/issue42/features/foster/museum.jpg
英国博物館の屋根.設計Foster+パートナー

 

■博才の人
SMG が,建物の外見と気流・音響のような物理現象の双方をモデル化するには,コンピュータプログラミングを使う.幾何学[形]の理解は,デザインと建設プロセスに直結する.
「建築家でなく数理科学の専門家なのか? SMGメンバーの8人中7人が,プロの建築家だが,専門的知識は,複雑な幾何学,環境シミュレーションからパラメトリックなデザイン,コンピュータ・プログラミングにまで及んでいる.グループの8番目のメンバーはエンジニアで,主プログラマーである.
こみいった数学に基づき,物理的特徴をモデリングするとなれば,
チームはしばしば専門コンサルタントを使う.チーム内で予備的な解析を行ない,もしさらに知りたければ別の解析を行う.「我々は,専門コンサルタントとデザイナー間の接点となる」とPetersは説明する.

純粋数学,幾何学は如何? どれぐらい複雑なのか?
「オフィスに1Aレベルの本がある」と,De Kestelierは語る.結局のところ,それはすべて建設可能な構造を作ることに関わり,古典幾何学を越えるものはここでは用いない.
SMG の大部分の活動には数学が付随しているのだが,彼らのデザインとは,
仕事に対して制限を与えるものであるとPetersとDe Kestlierは主張する.
「悟るべき重要なことは,我々はアーキテクチャで働くプログラマーではなく,プログラミングをするアーキテクトだということだ」とDe Kestlierは語った.
Petersも同意する:「我々の主な仕事はモデリングではない.
プロジェクトのパラメータは何かを理解し,噛み砕き定義できる規則にする.我々は,何処に適応性があり何処に制限があるかを理解できるようにする」 制限の最適化と建設可能な物体の創造.もちろん,建築家はいつもそうしてきたし,PetersとDe Kesteierも建築の仕事は本質的には変わっていないと思っている.
現代のデジタルツールにより,今日の建築家は,過去の世代には夢であったデザインオプションの領域も探索できるようになっただけだ.
形と模様,科学とコンピュータの言語として,これらのツールを自由に使えるようにしたのは数学だ.数学は確かにその料金を取り戻している.(訳:KT)
-----------------

◆編集後記
ガーキンとロンドンシティホールを設計したFoster+Partnersについての記事は,Marianne Freiberger(プラスマガジン編集者)による,MMP, plusマガジンVol.42の記事を,筆者(KT)が翻訳し若干編集しました.
原著エッセイを,3つに分割して(その3)に当たるものです.
Perfect buildings: the maths of modern architecture
By Marianne Freiberger


http://plus.maths.org/issue42/features/foster/xavier_brady.jpg

 

Xavier(左)とBrady(右)はFoster+Partnersのモデリング専門家メンバーである.プラス編集者は,ロンドンの数学と芸術ブリッジ会議(2006年)で,二人に出会った.ブリッジ会議の詳細はウエブサイトにある.
Marianne Freiberger(プラス編集者)

◆ところで,ガーキンに良く似た超高層ビルが新宿にあります.2008年に完成した東京モード学園が入っているコクーンタワーです.コクーンとは繭のことですがどちらかというとセミに似ているビルです.設計は丹下都市建築設計です.新宿で大変目立つビルです.

通潤橋アーチの数学

さて,石積の橋の形,アーチ曲線に関して考えましょう.
アーチの両側の根元はしっかり固定しなければなりませんが,
アーチの上の石の重さが重ければ重いほどアーチの石は互い押し合い引き締め合うので,橋は大きな荷重に耐えられるのです.石積みは引張力に抗する力はないが,石積の石に働く力はすべて圧縮力だけなので接着の必要はなく安定構造になります.
石は圧縮に強い材料ですからアーチ型の橋には最適です.ただし,アーチ根元の支点部には,大きな水平力が発生するので,それとつり合う大きな水平反力が必要です.山で挟まれた峡谷などはこの点では最適な立地条件でしょう.通潤橋の根元をしっかり押さえつけている重そうな石積の写真を見てください.

 

 

 

 

 

 

 

 

 

■空き缶を積んで作ったアーチで実験

私が真剣に積んだのですが,できるのはどうしても缶5個のアーチまででした.5個の缶で缶同志の接点は4点.すべての接点で同時につり合っていなければなりませんから,作るのがとても難しい.もし,6個以上でアーチが出来た方は新記録です.ご一報ください.
缶の周りにラップを巻いていますが,摩擦力を増すためでアーチのつり合い条件を変えるものではありません.

 

 

ここから先は,釣合の5つの一次方程式を連立して解く線形代数の話になります.興味ある方はお読みください.
http://sgk2005.saloon.jp

 

 

 

 

 

 

 

 

 

 

 

 

 

空き缶を積んで作ったアーチです.左右対称ですから,左半分だけ解析しましょう.缶の中心を①,②,③と名づけます.すると,缶同士の接点は,線分①-②の中点と,線分②-③の中点にあります.線分①-②,線分②-③には,それぞれ圧縮応力 $$ f_{1}, f_{2} $$があります.すべての缶は点で接触しており,モーメントは考える必要がありません(トラス構造).線分①-②,および線分②-③の水平となす角度をそれぞれ$$ α,β $$としてつり合いの式を立てます.各缶には下向きに力gがかかっています.つり合いの式は,①点,②点,③点でx, y成分ごとに書きます.

 

$$ f_{1}, f_{2}, r_{x}, r_{y}, g $$が,ゼロででない解であるための必要十分条件は,行列式がゼロとなることでした.この行列式を計算すると,
$$ tanβ=3tanα $$ の関係が得られます.

 


この釣り合いの結果は,①から測った曲線に沿った距離sと,その点の接線の傾き$$ tanθ $$が比例する $$ tanβ/3=tanα/1=tanθ/s $$の関係(懸垂曲線で導ける)と一致します(下図参照).

 

 

通潤橋のアーチ

■懸垂曲線とアーチ
懸垂曲線は,密度一定のひもが両端で固定されて垂れ下がった時の形です.
石積の橋が描くアーチもこれと同じです(懸垂曲線の上下を逆にしたもの).円柱状のジュースの缶を5つ積んで,アーチを作りつり合いを保っ実験をしてみました.テーブル上のアーチの根元にある左右のブロックは,一番下の円柱を両側から押しています.
円柱の間は点接触ですのでバランスをとって積むのは非常に難しいが落ち着いてやればできます.この形は石積の橋と同じ懸垂曲線です.


私が通潤橋(熊本県上益城郡山都町)を訪れたのは,2007年10月のことでした.22日は,午前中に潤徳小学校3,4年生36人に万華鏡づくりの授業,午後は先生方と人形浄瑠璃を観劇しました.

■通潤橋の写真(放水時に撮影k.Tani)

 

阿蘇山の南側のこの付近の地形は,島のように台地があり,台地から台地への移動が大変で平家の落人が隠れ住むのに好都合だったようです.台地(白糸台地)に農業用水を引くのが大変です.
水は台地のがけ下に汲みに行かなければなりません.
時の惣庄屋「布田保之助(ふたやすのすけ)」は,白糸台地に水を引くための水路橋”通潤橋”を,肥後の石工たちの技術を用いて1854年に建設しました.通潤橋は,石造りアーチ水路橋で,長さ75.6m,高さ20.2m,幅6.5m.
橋の上部にサイフォンの原理を応用した3本の石の通水管が敷設されています.

 

◆通水管
長さ約127m.石をくりぬいた1尺(30cm)四方の函渠(圧力のかかる管水路).管と管の繋ぎ目には,振動吸収と漏水防止のための漆喰(しっくい)が塗られている.さらに,通水管には5~6ケ所に地震対策のための板(緩衝材)を挟んでいる.
http://www.geocities.jp/fukadasoft/isibasi/tsujyun/tuusui.html
通潤橋は両側台地より低いので,サイフォンの原理で出口で水を押し上げています.通潤橋の高さから流入側台地は7.5m高く,流出側台地は5.8m高い.
http://www.geocities.jp/fukadasoft/isibasi/tsujyun/kaisetu.html
通潤橋は,今でも周辺の田畑を潤しています.
放水は,通水管に詰まった堆積物を取り除くために行うものです.

「通潤橋史料館」 に行くと,どのようにアーチ石橋を施工したかわかります.川の中に写真のような木枠を大工が組んで石工が石を置きました.
アーチ橋の高さを台地の高さまで上げられなかった理由は,
この木枠をこれ以上の高さにする木材がなかったためという事です.
石橋の木枠を外す最終段階は,橋の中央に白装束を纏った布田翁が鎮座し,
石工頭も切腹用の短刀を懐にして臨んだといいます.

写真に見えるアーチ曲線を型どっている石の並びについて話しましょう.
アーチの頂点にある石を”かなめ石”と言います.アーチ状に一列に並んだ石達は自分の重さで互いに締め付けあい安定になっておりセメントなど不要です.それでも下の木枠を外すときは,とても心配で責任者は命がけだったでしょう.布田翁も石工頭も命がけで臨んだのがよくわかります.
近年の熊本地震でも残ったのは,その堅牢さ(石の配管の修理をしたと聞きます)の証明です.

■人形浄瑠璃
http://seiwabunraku.hinokuni-net.jp/wp-content/uploads/img/about/s_06.jpg
人形浄瑠璃は,清和文楽館で観賞しました.山都町の人形浄瑠璃の始まりは,江戸時代の嘉永年間(1850年ごろ)で,山都町(旧・清和村)を訪れた淡路の人形芝居の一座から,浄瑠璃好きな村人が人形を買い求め,技術を習ったのが始まりといいます.
清和文楽は農家の人々が農業の合間を縫って練習や公演を行い伝承されてきました.良い話です.江戸時代の庶民の文化の高さに感激しました.三人で一体の人形を操ります.首(かしら)と右手を操る「主遣い(おもづかい)」,左手を操る「左遣い」,足を操る「足遣い」です.人形も触らしてもらいました.

長くなったので,本題のアーチの数学については,次号に回します.

インボリュート曲線

インボリュート曲線の歯 

 

 

 

    高等学校工業 機械設計/機械要素と装置/歯車

      このサイトにあるgif動画です

    左の図をクリックすると見られます

 

 

 

■インボリュート曲線


右図をご覧ください.黒い円(半径1)が糸巻きで,この糸巻きに巻いてある糸をほどいているときに糸(赤い線)の先端が描く曲線(青い色)をインボリュートといいます.
ほどく糸の巻き始めは,黒い糸巻き表面の点(1,0)でこれがインボリュート曲線の出発点です.
糸が引っ張られる方向(赤い線)は,いつもインボリュート曲線(青い線)に垂直であることに注目してください.

インボリュート曲線は歯車の歯の形に利用されます.
上図のように,黄色い歯車どうしがかみ合っている状態を考えて見て下さい.
歯車の形がインボリュートならば,2つの歯車の接点を通る糸の方向はそれぞれの歯車の面に垂直です.
これらの歯は回転中いつも互いに垂直に押し合って力を伝えるので理想的な歯車になります.

 

 

下図で,2つの糸巻きに巻かれた糸(青色)を見てください.糸巻きが回転して一方の糸巻きに糸が巻かれ,他方の糸巻きの糸がほどかれて行きます.このとき両者の歯車の間に張られた糸の方向は動きません.

メビウス万華鏡2つ

 

 

 

 

 

 

 

 

 

私が「メビウス万華鏡」と呼ぶ万華鏡は,球面多面体の見える万華鏡です.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

上図の万華鏡と下図の万華鏡では,3枚の鏡の組み合わせ角度はもちろん異なります.

上図の万華鏡は,球面正3角形を面とする「球面正20面体」が見えます.
球面正3角形が5つで作る球面正5角形を一つの面と解釈すれば,「球面正12面体」が見えるという人もいるかもしれません.

下図の万華鏡は,球面直角3角形が10個で作る球面正5角形の面で囲まれた「球面正12面体が見えます」.
(注)直角3角形を鏡室に使った下図の万華鏡をコクセター万華鏡と呼びたくなりますが,これは球面正多面体なので,私はメビウス万華鏡と呼びます.
双曲幾何の円盤内にできる万華鏡のみコクセター万華鏡と呼ぼうと思います.

作り方は,「美しい幾何学」p.134~135にあります.

美しい幾何学

周期的空間はデジタル化された空間★

 

 

 

表紙は結晶空間のイメージです.同じ造作の部屋が無限に並んでいるホテルです.電子を1個だけ入れたら,電子はどの部屋に居るべきでしょうか?どの部屋にも同じように出現せねばなりません.電子の存在確率は結晶空間の周期をもった関数であることが知られています.

 

 

一種類の多面体を積み重ねて空間を充填します.許されるのは平行移動のみとします.

これを考えるのは「格子」を考えるのと同じことです.3次元の場合は,独立な移動方向は3つあります:それらのベクトルをa, b, c としましょう.
na+mb+lc,(n,m,lは整数)を格子点といいます.無限に続く格子点全体を格子と呼びます.ベクトルa, b, cの組みを対称性で分類したものがブラベー格子と呼ばれ,2次元では5種類,3次元では14種類,4次元では74種類ります.

無限に繰り返す「周期的空間」(「結晶空間」とも呼ぶ)の幾何学的表現が「格子」です.周期的空間は,点の集合と考えるとデジタル化された空間といえます.(注)整数全体は可算無限個の世界です.

■格子からディリクレ胞をつくる

ディリクレ胞は格子点1個の占有領域です.単位胞とは少し意味合いが異なります.物理ではウイグナー&ザイツ胞と呼ぶことが多いです.ボロノイ分割と似ているところもありますが,ボロノイ分割と異なり格子の分割に限定しています.

立方体(角砂糖)を積み上げたような格子の場合に,ディリクレ胞の作り方を説明します.手順を見ると,ディリクレ胞とは格子点1つが占有する多面体の形なのがわかります.格子点にディリクレ胞を配置すれば,空間が隙間なく充填されるのは明らかです.
そして,ディリクレ胞の対称性(点群)に格子の対称性が現れています.

◆立方面心格子→菱形12面体
面心格子のディリクレ(ウイグナー&ザイツ)胞を作図すると「菱形12面体」が得られます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


◆立方体心格子→半正多面体[4,6,6](ケルビン立体「切頂正8面体」の一つ)
体心格子のディリクレ(ウイグナー&ザイツ)胞を作図すると,この立体が得られます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

図は省略しますが立方体(角砂糖)を積み上げた形と,ここに示した菱形12面体やケルビン立体は周期的空間を隙間なく埋め尽くすことができ,これら3つの対称性は同じです.

■格子というのは,無限に続く周期的構造の<幾何学的表現>でした.格子点に置くのは繰り返される単位モチーフです.格子点に本当に点を置くのは最も単純な構造,面心格子の格子点に原子を配置した構造は,銅やアルミニウムなどの金属結晶で,体心格子の格子点に原子を配置した構造は,鉄,タングステン,セシウムなどの金属結晶で知られています.

◆純粋に数学的に空間充填構造を導くのはとても大変なことですが,結晶学者は昔から知っていました.
自然科学の分野に数学への源泉がいろいろありました.結晶点群や空間群なども化学や鉱物学で発展し数学に貢献した例です.


美しい幾何学 今,試し読みができます

球に近い多面体は作れるか?

 

 

■5つの正多面体(プラトン立体)のうちで,最も面の数が多い(球に近い)ものは正20面体です.正3角形の面が20個でできています.最も対称性が高いものという言い方も間違いではありませんが,互いに双対な正12面体と正20面体は同じ点群です.互いに双対な正6面体と正8面体は同じ点群です.
(注)正多面体とは,正多角形(正p角形)の面でできていて,どの頂点の周りも同数の面(q個の面)が会している立体です.この立体を,シュレーフリの記号で{p,q}と記述します.pとqを入れ替えた正多面体どうしを互いに双対と言います.


正多面体(プラトン立体)は,正4面体{3,3},正8面体{3,4},正6面体{4,3},正12面体{5,3},正20面体{3,5}の5つしかないことは証明できますから,面数20より多い正多面体が存在するはずはありません.
しかし,例えばゴルフ球のディンプルはいくらでもたくさん作れるように思えなす.正多面体の面を分割し続けると,いくらでも球に近い正多面体が作れるように思うかもしれません.しかし,そのようなことが可能なはずがありません.ここで作るいくらでも球に近い多面体は,面が正多角形からわずかに歪むので,正多面体ではないのです.

正20面体の1つの正3角形の面を4つの三角形に細分化します.このとき,中心の三角形は正3角形ですが,その周りの3つの3角形は正3角形から歪むのを確認ください.以下,細分化の操作を繰り返すたびに,面の数は4倍ずつ増加します.そして,細分化された面で正3角形のものは,初めの正20面体の面の中心にあるものだけです.だから,正20面体を細分化して,球に近い多面体を作っても,その対称性は正20面体と同一(細分化しても対称性は上昇しません).素性は隠せないのです.細分化された多面体の面は正3角形ではないので,細分化でできる多面体は正多面体ではありません.(この細分化で用いたjavaプログラムは郡山彬氏が作成しました)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

美しい幾何学p.23より

遊星歯車

■ドリルが動かなくなったので分解しました.こんな減速機構になっています.グリスの詰め替えをしましょう. 
先端のカバー内に遊星歯車による減速機構があります.

表面に見えている3個の歯車(歯数20,遊星歯車と呼ぶ)の中心に,モーターからの回転軸(歯数6,太陽歯車と呼ぶ)が入ります.この3個の歯車は,周囲の円(歯数48,リング歯車と呼ぶ)とも接しています.
中心軸(モーターのシャフト)が右回転すると,3個の歯車は左回転し,この3個の歯車を乗せている台は,周囲の歯に沿って右回転します.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■原理図を以下のサイトからお借りします.この原理図の歯数は,私のドリルの場合とは違いますのでご注意ください.https://www.monotaro.com/s/pages/readingseries/kikaikiso_0112/​


■私のドリルの減速機構に戻りましょう.
中心の回転軸が右回りに1回転すると,台は6/48=1/8だけ右回転します.
このドリルでは,このような機構が2段になっていました.
つまり,3つの遊星歯車を載せている回転台の中心軸(出力軸)に,また6枚歯の歯車が付いていて,これが2段目の入力となっています.
こうして,下段の同様な遊星歯車に回転を伝えるので,結局,(1/8)^2=1/64だけ減速することになります.
遊星歯車は入力の回転軸と出力の回転軸は同一線上にあるので,このように段数を重ねることができます.


■遊星歯車を,toyotaプリウスでは,うまく使っています.
ガソリンエンジンにつながっているのは遊星歯車の台,発電機につながっているのは太陽歯車,モーター(車輪)につながっているのは,外周のリング歯車です.3つの歯車のうちの1つをロックすると残りの2つ間で回転の伝達が起こるので,切り替えて,いろいろな使い分けができます.

遊星歯車機構とTHSのしくみ - まっつん総研連絡用ブログ《免責事項》 自分なりに調べたことを書いていますが、間違っている点があれば資料と...matsun-ri.cocolog-nifty.com
以下の図は上記サイトからお借りしました.

 

 


■歯面に垂直なカの伝達のできる互いにかみ合う歯面の曲線については,別の機会に取り上げます.

空間を充填する多面体の組み合わせ

1.立方体(角砂糖)を積み重ねて,空間を隙間なく周期的に埋めることができます.下図の出発点にある黄色い立方体(シュレーフリの記号で{4,3})を並べた図がそれです.このときの空間充填では「立方単純格子」ができます.
2.立方体の頂点を切り落とした(切頂といいます)立体を考えましょう.頂点の切り口は正3角形で,立方体の正方形の面が正8角形になる位置で切頂します.すると,下図の2番目のように,切頂正6面体(シュレーフリの記号で[3,8,8])と正8面体{3,4}が組み合わさって空間を充填することがわかります.

3.下図の3番目は,立方体の切頂の切り口がさらに大きくなった場合です.立方体の正方形の面は45°回転した小さな正方形になります.このときは,正8面体{3,4}と半正多面体[3,4,3,4](あるいは6・8面体と呼ぶ)とで空間を充填することがわかります.

4.切頂でできる正3角形をさらに大きく,切り口が正6角形になる位置で切頂します.このとき,組み合わされる2つの立体は同じ形になります.つまり,切頂正8面体(あるいは半正多面体[4,6,6],ケルビン立体とも呼ぶ)だけで,空間を充填できます.このときの空間充填では「立方体心格子」ができます. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■図の3番目,半正多面体[3,4,3,4]と正8面体{3,4}の組み合わせの図で,正8面体だけを抜き出すと,以下のように頂点でつながっています. 

 

 

 

 

 

 

 

 

 

 

このような構造は,ペロブスカイト CaTiO3 という物質の結晶構造に見られます.正8面体の頂点に酸素原子Oがあり,正8面体をつないで骨組みを作っています. 正8面体(青色)の中心にはチタンTi原子,骨組み中の空いた穴(黄色)の中心にはカルシウムCa原子があります.
 ペロブスカイト構造は,強誘電体や酸化物高温超伝導材料などの結晶構造に見られます.また地殻を作るケイ酸塩鉱物MgSiO3(カンラン石など)はマントル下部の超高圧下でこの構造になることが知られています.


美しい幾何学,p.63,64をご覧ください.

 

 

 

 

 

 

 

平面敷き詰めタイル

 

 

 

 

 

 

 

 

■エッシャーの繰り返し模様のようなモチーフをつくる

平行4辺形や平行6辺形タイルは,平面を敷き詰めることができます.

(1)平行4辺形とは下図の(A)のような形です.
これらは,向かい合った平行な辺どうしは同じ長さです.
向かい合った辺どうしを突き合わせて平面を敷き詰めることができます.
向かい合った辺に同じような変形を加えて図案のモチーフを作ります.
エッシャーの作品の2羽の鳥はこのようにして作られています.

 

 

 

 

(2)平行6辺形で平行な辺どうしが同じ長さの図形は下図の(B),(C)のような形です.
これらは,向かい合った平行な辺(同じ色に着色)どうしを突き合わせて平面を敷き詰めることができます.
向かい合った辺に同じような変形を加えて図案のモチーフを作るとエッシャーの様な繰り返す絵が作れます.私は,ハロウイン魔女を作って見ました.

 

 

 

 

 

 

 

(3)平行8辺形以上になると平面を敷き詰められないのは何故でしょう?平面は2次元ですから独立な並進ベクトルは2つa,b です.a,b を2辺とする平行4辺形が平面を充填する並進の単位(単位胞)となります.3つの平行辺のある6辺形もタイル張りが可能ですが,2次元平面内の3つ目の並進ベクトルをcとすると,a,b,c の間に c=b−a の関係があり自由はききません.4つ目は作れません.

 

 

 

 

 

 

 

 

■一つのタイルを配置するときに回転を許すと,凸6角形タイルで平面の充填ができるものは,以下に図示する3つのタイプがあります.

 

(注)任意の4辺形は,180°回転したものと組み合わせると平行6辺形になります.任意の3角形も,180°回転したものと組み合わせると
平行4辺形や平行6辺形になるので,平面を敷き詰めることができます.

■凸5角形によるタイル張り4種を発見した主婦マジョリー・ライスの話は,別の機会にします.凸5角形の場合は全部で15種類をコンピュターで数え上げ2017年に至り決着しました.

 


「美しい幾何学」p.68~71

凸5角形によるタイル張り4種を発見した主婦マジョリー・ライス

 

平面張り詰めができる凸5角形タイルの形は,フランスの数学者マイケル・ラオがコンピュータを使い,全部で15種類を数え上げ(2017)決着したようです.このような数え上げの問題が難しいのは,演繹的な数学が使えないからです.
 米国サンディエゴの主婦マジョリー・ライスが,タイル張りの問題を知ったのは,1975年のScientific American 誌のマーチン・ガードナーのコラムでした.平面のタイル張り,別の言い方をすれば,一つのタイルで平面を分割する(テッセレーション)問題です.
 平面のタイル張りは,任意の3角形,任意の4角形タイルで可能,凸7角形以上では不可能です.凸6角形の場合は,全部で3タイプのタイル形で可能なことをラインハルトが証明しました(1918).残されたのは凸5角形の場合で,1975年のガードナーのコラムには,ラインハルトの5タイプと1967年にカーシュナーが発見した3タイプの計8タイプが掲載されていました.ところが新しいタイプがまだあったのです.
 マージョリ(フロリダ州生まれ)が,高等学校で数学を学んだのは1年だけでした.
1945年,結婚しワシントンD.C. に移り,幼い息子と一緒に,その地で商業デザイナーとして働き,後にサンディエゴに移住します.数学が楽しみで,黄金比とピラミッドに魅了されていたといいます.子どもたちが学校に通っている間に自分も読めるようにと,息子達にScientific American の定期購読を許しました.
 この問題では,5角形タイルのタイプ分けがとても難しい.連続変形によりどちらのタイプにも属するタイルがあるし,同じタイプでも出来上がったパターンが全く違うように見えたりもします.彼女は発見に驚き喜んで,自分の仕事をガードナーに送りました.ガードナーはそれをペンシルバニア州のモラヴィアン・カレッジのタイリング問題の専門家であるドリス・シャトシュナイダーに送ってくれました.シャトシュナイダーは,彼女の発見が正しいことを確認したのです.彼女は,張り詰め可能な4つの新しい凸五角形タイプと,それらによるほぼ60種類のテッセレーションを発見しました(1977).1975年以降にマジョリーの4種を含む計7種が発見されていま
す.最後に発見(2015) された15番目は,やはり周期的なものですが,単位胞が12個の5角形で構成される大きなもので,発見にスーパーコンピュータが使われました.
マジョリーは2017年7月2日94歳で亡くなりました.認知症のため,5角形タイリングの問題がついに完結したのを知ることはありませんでした.ワシントンにある数学協会のロビーの床タイルに,彼女の発見した5角形テッセレーションの1つ(エッシャー風の絵)が見られるといいます.

マジョリー・ライスについては,Natalie Wolchover の記事
(Quantamagazine, 2017)
https://www.quantamagazine.org/marjorie-rices-secret-pentagons-20170711/
をご覧ください.
注) 凸5角形タイルの非周期タイル張りに関しては,3回以上の任意の回転対称のものが作れることが知られています.

御殿まり

今年(2020年)のとっとりサイエンスワールドは,新型コロナウイルスのために残念ながら中止になりました.
2017年のとっとりサイエンスワールドin倉吉は,8月27日に開催されました.1,250人の来訪者があり,例年のように盛況でした.万華鏡ワークショップは30人クラスを4回実施し120人が作りました.2016年は,鳥取サイエンスワールドの終わった直後,翌々日に倉吉地震がありびっくりしました.多くの方が避難生活をし,サイエンスワールドの会場だった梨っこ館もガラス天井が落ちたそうです.隣のプールは2017年7月20日になってやっと利用開始にこぎつけました.白壁土蔵群,赤瓦館でも地震の被害がありました.

2017年に,その赤瓦二号館を訪れたとき見つけた御殿まりの写真です.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

これらはみんな一人のご婦人が作ったものだそうです.お会いしたいものでしたが,残念ながら不在でした.
どれも美しく良いできですね.
正4面体群:正6面体群(正8面体群):正12面体群(正20面体群)のどれがあるでしょうか?

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1:さて私は,正6面体群(正8面体群)と正12面体群(正20面体群)のうちのどちらを選んだでしょう?

私が選んだのは,前者の方でした.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

参考に,これと同じ対称性の図形を掲載しましょう.

 

 

 

 

 

 

 

 

 

 

 

これらはともに,半正多面体[4,6.6]ですが,立方体のx,y,zの方向に,4回軸があり,体対角線の方向に3回軸があります.2回軸のある方向も確認してください.(注)シュレーフリの記号[4,6,6]は,頂点の周りに正4角形,正6角形,正6角形が集まっていることを示しています.
結局,これらは皆,球面正6面体{4,3}や正8面体{3,4}と同じ対称性(点群)になります.(注){4,3}もシュレーフリの記号と呼ばれますが,正4角形が頂点に3つ集まっていることを示しています.

Q2: 球面正12面体{5,3}や菱形30面体の御殿まりを見つけましょう.このなかにありますか?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

これらの対称性(点群)は,正12面体やその双対の正20面体と同じです.

一番下の立体の形は,菱形30面体です.菱形30面体は,12・20面体(半正多面体[3,5,3,5])と双対な多面体なので,対称性としては,上の3つの立体はすべて同じです.
別項目・サッカーボール(フラーレン)に関連記事があります.

 

Q3: この他に,半正多面体[6,3,6,3]があります.探してみましょう.

ーーーーーーーーーー

美しい幾何学,p21,p46,p48 が関連します.ご参照ください

 

空間を隙間なく埋める多面体★

◆立方面心格子→菱形12面体
面心格子のディリクレ(ウイグナー&ザイツ)胞を作図すると「菱形12面体」が得られます.

 

 

 

 

 

 

 

 

◆立方体心格子→半正多面体[4,6,6](ケルビン立体とも呼ばれる「切頂正8面体」の一つ)
体心格子のディリクレ(ウイグナー&ザイツ)胞を作図すると,この立体が得られます.

 

 

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

■格子というのは,無限に続く周期的構造の<幾何学的表現>です.格子点に置くのは繰り返される単位モチーフです.格子点に本当に点を置くのは一番単純な構造です.面心格子の格子点に本当に原子を配置した構造は,銅やアルミニウムなどの金属結晶で知られています.体心格子の格子点に本当に原子を配置した構造は,鉄,タングステン,セシウムなどの金属結晶で知られています.

■格子からディリクレ胞を作る手順を見ると,ディリクレ胞とは格子点1つが占有する多面体の形なのがわかります.
従って,格子点にディリクレ胞を配置すれば,空間が隙間なく充填されるのは明らかです.
そして,ディリクレ胞の対称性(点群)に格子の対称性が現れています.

図は省略しましたが立方体(角砂糖)を積み上げた形,菱形12面体や,ケルビン立体,は周期的空間を隙間なく埋め尽くすことができます.これら3つの対称性は同じです.

◆純粋に数学的に空間充填構造を導くのはとても大変なことですが,結晶学者は昔から知っていました.
自然科学の分野に数学への源泉がいろいろありました.結晶点群や空間群なども化学や鉱物学で発展し数学に貢献した例です.

多面体の見える万華鏡

多面体の見える万華鏡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reciprocalという言葉があります.経済などでは,互恵的とか対等とかいう意味で使われます.
結晶学では,結晶格子crystal latticeに対して,逆格子のことをreciprocal latticeといいます.
両者の関係は,多面体でいうと,面を頂点に,頂点を面に変換した多面体
(これを双対dualな多面体という)の関係と同じです.

 

例えば,シリコンの結晶格子は面心格子で,ディリクレ胞を描くと菱形12面体(左図)です.シリコンの逆格子は体心格子で,ディリクレ胞を描くと[6,6,4]半正多面体[いわゆるケルビン立体](右図)です.

結晶格子中のデリクレ胞と逆格子中のデリクレ胞は,このように互いに双対です.格子latticeに対して逆格子reciprocal latticeとはうまく名付けたものです.
もちろん,対称性はどちらも同じ,正6面体(角砂糖)と同じ対称性です.菱形12面体と[6,6,4]半正多面体(ケルビン立体)の形が見える万華鏡を作りました.この万華鏡は,左から覗くと菱形12面体が,右から覗くとケルビン立体が観察され,両者の対称性は同じであることを理解するのに役立ちます.

ーーーー

(注)用語(ディリクレ胞,格子,逆格子,面心格子,体心格子,半正多面体)は,説明なしに用いたので,別の機会に補足説明をいたします.


参考 「美しい幾何学」  今,試し読みができるようです.
p.44~ 45 万華鏡で作る多面体
p.60~ 62 ディリクレ胞,格子

「美しい幾何学」

オーボールと菱形30面体

これはオーボールという赤ちゃんのおもちゃです.球の表面は互いに接する大きい円20個と小さい円12個でできています.円を正多角形にすれば,いわゆるサッカーボールの形です.つまり,小さい円は正5角形,大きい円は正6角形に対応します.

(問)大きい円と小さい円の半径の比は?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

球面多面体の正多角形の辺は球の大円でできていますが,多面体の正多角形の辺は直線でできています.この多面体の1つの頂点の周りには,正5角形,正6角形,正6角形が集まっています.このような多面体は[5,6,6](シュレーフリの表記法)と記述します.正3角形の面だけが頂点で5つ集まっているのは正20面体で{3,5}と記述します.正20面体の頂点を切って(切り口は図の白い面),残りの面が正6角形になるようにすると,多面体[5,6,6]が得られます.

 

これは,上図のC60[フラーレン(60個の炭素原子からなる)分子.青球は炭素原子C]と同じ形です.

■さて,問の答えですが,オーボールの大きい円と小さい円は,フラーレンの正6角形と正5角形に対応することがわかります.
下図を見てください.


辺の長さの等しい正5角形と正6角形の外接円(内接円)半径比が答えです.計算すると 1:1/2sin36°≒1.176:1

 

 

 

 

 

 

 ■次の図に示す「組み合わさった立体」は,正20面体(水色)と正12面体(黄色)が組み合わさっています.それぞれの多面体のサイズは,辺の中央でちょうど重なるようにしました.入り組んで組み合わされている多面体は,正20面体{3,5}と正12面体{5,3}です.これらの正多面体は互いに双対です.
(注){3,5}←→{5,3}のように,面の形と頂点に集まる数を入れ替えると,”互いに双対”な多面体が得られます.
サッカーボールもオーボールも,正20面体由来の正6角形(正3角形)の面と正12面体由来の正5角形の面からできています.サッカーボールの面に対応する頂点をもつ双対な多面体を作ると菱形30面体が得られます.
(注)正5角形の面に対応する頂点間と正6角形の面に対応する頂点間が,それぞれ菱形面の対角線になります.
下図の「組み合わさった多面体」で,黄色い頂点と水色の頂点を結ぶと菱形30面体が得られます.
菱形面の1つを赤い線で図に記入しました.この菱形面の対角線比は黄金比です.

 

Do★Math

■数学まつり
多くの人々が数学に関心をもつようになるイベントを数学月間では応援しています.講演会,講習会,数学カフェ,ワークショップ,様々な活動形態がありますが,子供たちが楽しめて数学感覚が身に着く”数学まつり(フェスティバル)”というのがあり,英国のMMPでも米国のMAMでも大変人気があります.

国立数学博物館MoMath(National Museum of Maths)は,米国唯一の数学博物館で,ニューヨークのマディソン・スクエアに,2012年12月15日オープンしました.ここには30以上の対話型の展示があります.
東京でもMoMathのような常設の数学展示のあるものは,科学技術館,リスーピア,東京理科大「数学体験館」(2013年オープン)などがあります.一度見学されると良いでしょう.

Do Math 同志社中学校数学博物館www.facebook.com


■同志社中学校数学博物館 Do★Math


同志社中学校数学博物館 Do★Mathは,2016年6月にオープンしました.Do★Mathは,生徒以外にも,一般市民にも公開されています.
一つの学校の教育の場で実現した,米国のMoMath(数学フェスティバル)や,米国の地域の数学サークル活動を思わせる意欲的な活動です.今年の数学月間懇話会(ZOOMによるリモート開催の計画.詳細が決まり次第http://sgk2005.saloon.jpに掲載します)のテーマの一つとして,Do★Mathを園田毅先生(同志社中)にご案内いただく予定です.

 

とっとりサイエンスワールド

今年の「とっとりサイエンスワールド」は,新型コロナウイルスのため急遽中止になりました.残念です.

 

とっとりサイエンスワールド---美しい数学・楽しい算数---は,鳥取大学,地域学部,矢部敏昭教授(現副学長)が中心になって2007年にスタートし,今年で第14回でした.発足時は,東部(鳥取市)だけの開催でしたが,すぐに西部(米子市)と東部の2か所で開催するようになり,4年目からは,西部,東部,中部(倉吉市)の3会場で開催に広がりました.鳥取県,鳥取県数学教育会が主催,鳥取県教育委員会,各地区教育委員会が後援し,小・中学校の先生方が活動の中心になっています.多数の高校生,短大生のバランティア参加もあり頼もしい.いまやすっかり地域から愛されるイベントになり,子供,両親から老人までが楽しみに集まる数学フェスティバルとなっています.

 この13年の間に,豪雪被害の年も,台風被害の年も,倉吉地震の年もありましたが,乗り越えて毎年開催することができました.2020年は中止せざるを得ない状況は残念なことです.

 とっとりサイエンスワールドは,毎年夏休みの日曜日に開催(無料のイベント)されます.昨年の例では,鳥取(7/28),米子(8/4),倉吉(8/25)に開催され,各会場に1,000人程度の参加者があります.私も万華鏡のワークショップで参加しています.万華鏡作りの参加者は3会場で400人ほどの子供や大人です.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

四角な車輪,三角な車輪

国立数学博物館MoMath(National Museum of Maths)は,米国唯一の数学博物館で,
ニューヨークのマディソン・スクエアに,2012年12月15日オープンしました.
ここには30以上の対話型の展示があります.

ホールの展示で目立つのは,正方形の車輪の3輪車が滑らかに走る光景(動画の2分半経過ごろ)です.
たいへん興味深いので,床面の曲線がどのような形であるかを計算してみました.
ここに掲載する結果(Fig.1)は,2013年7月22日の数学月間懇話会(第9回)で
谷が発表したものです.

■Fig.1 四角い車輪

 

 

 

 

 

  床の形状

 

 

 

 

 

 

 

 

 

ついでに,応用問題として計算した3角形の車輪の結果を(Fig.2)に掲載します.

■Fig.2 三角の車輪

 

 

 

床の形状

 

 

 

 

 

 

 

 

 

 

 

注)2013年10月2日に開設された東京理科大学「数学体験館」にも,同じような4角い車輪の車の展示があります.

 

 

27枚のカード・トリック

◆Matt Parker:エジンバラ・フェスティバルでは切符完売のコメディ・ショーを持ち,ロンドン数学会の人気講師という権威ある肩書きも持つのは,マット・パーカーただ一人だろう.
彼は,数学とコメディという彼の2つの情熱の混合に没頭している.
オーストラリアの数学教師であったが,今はロンドンに住み,コメディと数学コミュニケータをしている.
彼は,数学への情熱を,著書,ラジオ,TVショー,新聞,学校訪問,ライヴ・コメディ・ショー,そして時折の街頭パフォーマンスで広めている.
彼には,ロンドンのクイーン・メリー大学の数学フェローという公的契約もある.

⇒  http://www.standupmaths.com/
--------
◆マット・パーカーが鮮やかに演じる「27枚のカード・トリック」の背景には3進法がある.しかし,見ているとそんな背景は思いもつかず,楽しくも不思議である.
ビデオの後半で,マットがトリックの仕組みに3進法が使われていることを解説するので納得できる.この27枚のカードトリックはマーチン・ガードナーが1956年に発表したものだ.マットはこの発展として47枚カードのトリックを演じるが,7進法を使うものであってマットの発明である.
 Martin Gardner; Mathematics, Magic and Mystery(ドーバー,1956)


27枚カードのトリックは次のように演技される:
 観客に任意のカード1枚(例えば,スペードA)を選ばせ,27以下の数字(例えば18)を選ばせる.演技者は,選んだカードが何んであるか知らない.選ばれたカードを含む27枚のカードは十分に混ぜられ,裏向きの束に積み上げられている.演技の最後には,27枚のカード束の上から18番目の位置に,選ばれたカードを移動しておく必要がある.つまり,スペードAの上に17枚のカードがあるようにしたい.
 この演技のプロセスに,3進法が利用されている.
3進法で17を表すと17=2x3^0+2x3^1+1x3^2で,221と表記される (ここでは,1の位から先に表記していて,慣れている表記と逆順なのに注意せよ).
演技者は,27枚のカードを,3つの山に,1枚づつ配り分けていく.選ばれたカードがどの山に入っているか聞いてから,出来上がった3つの山を,さりげなく重ね合わせる.
再度,同じ操作を繰り返し,結局全部で,操作が3セット繰り返されて,得られた3つの山を1つの束に重ね合わせると,不思議なことに求めるカードは,上から18番目に置かれている.
このトリックのミソは,3つの山を重ねる順番にある.重ねる機会は3回あるのだが,各回,どの山を上(Top=0),中(Middle=1),下(Bottom=2) の何処に置いたら良いか?
さりげなく手際が良いので見分け難いが,マットの仕組み説明で良くわかる.18番目に置くには,17の3進法表記221を使い,求めたいカードの入っている山の位置を,1回目は底(Bottom),2回目は底(Bottom),3回目は中(Middle)になるように積み上げるのだ.もし,10番目の位置に置きたければ,9=0x3^0+0x3^1+2x3^2 で,3進法表記では 001なので,1回目,2回目,3回目の積み上げでは,Top,Top,Middleの位置に置くようにすれば,求めるカードは10番目の位置になる.

2重らせんの話

DNAの2重らせん構造が解明されて,ノーベル賞を受賞したのは1962年のことです.
受賞者の一人ワトソン博士は,後に本(二重らせん,講談社文庫(1986))を出版し話題になりました.
もう旧聞に属しますが,今回はこの二重らせんがテーマです.

 

 

 

 

 

 

 

 

 

 

カバーのDNAの図はlivedoorblog美惑星フィロソフィアからお借りしました.
このブログの主は存じ上げませんが,SARS,MERSが同定されてまもないころ(2015年6月)に,コロナ・ウイルスは,一本鎖のRNAリボ核酸でアビガンか効きであることに言及されています.

DNAの2重らせんの話がしたくなりました.

 

 

 

 

 

 

 

 

 


■Rosalind Franklin,ロザリンドは,ロンドン大学のキングス・カレッジに職を得て,X線結晶学者としてDNA結晶の構造解析を行っていた.DNAには水分含量の差によって2タイプ(A型とB型)があることを明らかにし,それらを別々に結晶化し,X線回折写真撮影に成功した(1952年).X線構造解析では単結晶をつくることがとても大事で,難しい仕事です.物質によっては方法をいろいろ変えてもどうしても結晶が育たない(微細な沈殿になってしまう)ので,私もずいぶん苦労し断念したことがあります.
撮影したX線回折写真を見れば,X線結晶学者なら,らせん構造があることはすぐわかります.
らせんのピッチや周期はすぐ計算できます.
しかし,彼女のまとめた非公開研究データのレポートは,予算権限を持つクリックの指導教官のマックス・ペルーツが入手し,クリックの手に渡ってしまいます.一方,ウイルキンス(彼女が赴任する前からDNAの研究をしていた)は,
ケンブリッジ大学キャベンディッシュ研究所のワトソンとクリックに彼女の撮影した写真を内緒で見せてしまいます.
ワトソンは,複製の能力のあるDNAのモデルを考えていたので,彼女の写真を見て2重らせん構造モデルを確信します.

■ワトソン,クリックの論文は,Nature(1953.4.25)に掲載されます.同じ号に,ロザリンド・フランクリンらの論文,
ウイルキンスらの論文を,同号に同時掲載の体裁(合わせて3篇)をとっています.
ワトソン,クリック,ウイルキンスがノーベル賞を受賞したとき(1962),
フランクリンはその4年前に37歳で亡くなっています.

■X線構造解析の定石は,回折像の逆Fourier計算し,DNAの詳しい構造を見つけることです.ロザリンドの時代にはコンピュータはなく,Fourier合成の計算は,数表Beevers-Lipson短冊を用いて行う手計算(多分機械式のタイガー計算機でしょう)でありました.また,試料たんぱく質の結晶化も不十分で,回折像のスポットもぼんやりしている写真しか撮影できませんでした.
良い結晶を作製して,X線自動回折系で6,000個もの反射スポットを得て,コンピュータで計算し精密な構造を得るのは1981年になってからです.

地震の発生確率

 

 

 

 

 

 

 

 

 

 

 

 

■「30年以内に震度6弱以上の地震が起こる確率は,横浜市が78%で最も高く,九州では大分市が54%」などと言われていました.あくまでも確率ですから,いつ地震が起きるかはわかりません.熊本の方が先に大地震が起きてしまいましたね.このような確率はどのようにして出たものでしょうか?(このSGK通信を書いた2016.7時点の数字)

震度(揺れ方)6弱といっても,震源が浅い場合もありますから,
震度が大きいものが必ずしも巨大地震(マグニチュードMが大きい)とは限りません.

■地上の被害は震度(揺れの程度)に比例します.
地下の岩盤には色々な原因で歪が蓄積していき,岩盤の耐えられる歪の限界を超えると,岩盤がポッキリ折れて地震が発生するというイメージです.岩盤が強靭なほど溜め込める歪エネルギーの限界は大きく,限界まで溜め込んだ岩盤が地震で放出するエネルギーは大きい(地震のエネルギーの対数がマグニチュードM).
地震は破壊現象なので,限度まで歪を蓄えた岩盤がいつどこで破壊するかを予知することは不可能だが,破壊が始まってからの前駆現象を少しでも早く観測することは可能です.

■日本の地震の発生メカニズムを調べると,大雑把に言って2つのタイプがあります.
1.海溝型(海洋プレート沈み込み境界)
Mは大きい巨大地震で,頻度分布は数十年~100年.
2.内陸型(陸側プレート内)
震源は地下5~20kmと浅い.Mは小さいが震源が浅いので,直上の被害は大きい.頻度分布は数百年ー数十万年.
日本で起きた最近の大地震は,内陸型です.
1923年の関東地震,2011年の東日本大震災,心配されている東海地震や南海トラフ地震は海溝型です.

■地層に残る地震の記録や,古文書の記録を調べると,日本の各地で,数多くの地震が繰り返し起こっていることがわかります.この地震発生の繰り返し周期はどうなのか,地震発生の予測のために,経過年に対する地震頻度の分布を調べてみます.過去の地震記録はどのような分布と合うでしょうか.地震は破壊現象なので発生確率はランダム(ポアソン分布)が予想されます.沈み込むプレートに引き込まれた陸地が時折り弾性反発するモデルは,Brown酔歩時間の分布(BPT)が予想されます.

全国を250kmのメッシュに切り,その地に影響を与える活断層起因の地震やプレート境界起因の地震で,地表の震度が6弱以上となる地震について発生確率を算出します.
メッシュに切った各地の30年以内の震度6弱以上の地震発生確率を着色した地図が以下のサイトにあります: 
http://www.j-shis.bosai.go.jp/map/

■ここで用いられる地震の発生確率の定義では,分布密度関数を積分した全面積を確率1とします.
現時点は分布密度関数内のどこかですが,現時点から分布密度関数の0となる将来時点までの積分値に対する,現時点から30年先の時点までの積分値の比の値が30年以内にその地震が発生する確率となります.
現時点がどこか(過去の最新活動時期が不明)わからない場合には,地震の発生が「ポアソン過程」に従うとします.

地震は繰り返し発生しますが,正確な周期があるわけではありません.
今日地震が起こらなければ,明日地震が起こる確率は、今日より高くなる
今日より明日,明日より明後日と大地震がやってくる確率はどんどん高まって行きます.

(注)地震のマグニチュードMとその発生確率は,べき乗測が成り立つことが知られています.
被害の大きい巨大地震(Mの大きいもの)も,発生数は少ないですが必ず起こり,その時の被害は甚大です.
ここで話題にして来たのは,時間(年)の経過に対するある大きさ(震度8弱)をもたらす地震の発生確率に関するもので,べき乗測とは別の話です.

■さて,地図を見てください.日本の活断層の話に移りましょう.
赤い線は活断層です.関東地方では,高崎-熊谷-深谷の西側を流れる荒川に沿いに走り,荒川は江戸区で東京湾に注ぐ.断層地帯の荒川上流は長瀞など風光明美な処です.富士山側の活断層は,諏訪-甲府-富士山の西側を富士川沿いに走り,駿河湾に至ります.活断層は繰り返し地震を起こしており注意が必要です.

魔法の組み紐

2014年の米国の数学月間MAMのテーマは,Mathematics, Magic, and Mystery でした.

このMAMのテーマは,Martin Gardner (1914-2010)の生誕100年を記念したものです.
ガードナーのことは,『サイエンティフィック・アメリカン』誌に,コラム「数学ゲーム」を25年に渡って連載したのでご存じの方も多いでことしょう.MAM(2014)のサイトに掲載されている組み紐のパズルに挑戦してください.

http://www.mathaware.org/mam/2014/calendar/braids.html

■魔法の三つ編み組み紐 (James Tanton)

James Tantonのウエブサイトは http://www.jamestanton.com/?p=1072

■次のパズルはどうでしょうか.

 

これは可能ですので,チャレンジされてください・

こんにゃくでこんな形にした料理がありましたか?

 

回答は以下にあります.

 

■それでは,次の四つ編みは実現可能でしょうか?

 

 

 

 

 

 

 

 

 

■可能なことを証明するのは簡単です.作って見せればよい!しかし,不可能であることを証明するのは難しい.何度も試行して失敗すれば,不可能と思えるかもしれません.しかし,もう一度試してみたらうまくいくかも知れない.

 

 

4つ編の組み紐の完成例が左図です.4本の紐の上端と下端がそれぞれ閉じている状態で始めて,このような完成例にすることが可能でしょうか.この四つ編み組み紐の完成例には,交差点が全部で12あります.上から出発して,左から来る紐の上に右から来る紐が乗る交差点を̟⊕,左から来る紐の下に右から来る紐が潜る交差点を̠⊖として,図示したのが左図です.12の交差の後,四本の紐は,上端での順番と下端での順番とが同じになります.全体で,⊕が8個,⊖が4個ですので,全体のIndexは+4と定義します.

いろいろな四つ編みを試してみてもIndexを0にできないようです.
まだ詰めが必要ですが,これが四つ編みで組み紐を完成できない理由のようです.

 

同じことをやってみると,三つ編み組み紐の場合は,交差点数6で,3本の紐の上端での順番と下端での順番が同じになり,Indexは0になることがわかります.

(参考)http://www.jamestanton.com/wp-content/uploads/2012/03/Cool-Math-Newsletter_June-2013.pdf

 

 

戦争と数学

安倍内閣が今週にも通過させようとしている検察庁法改正案は,権力分立の精神に反し憲法違反です.以下のメルマガを発行した2015.9.22のことを思い出しました.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.09.22] No.082
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
戦争法案が多くの世論を無視して強引に可決してしまいました.
本来,違憲である法案が国会に出されること自体あり得ないことですし,
国会の議論でもまともな答弁がなされていないことは誰の目にも明らかです.
政府の宣伝機関になったNHK始め大手メディアの罪はたいへんに重い.
さて,翁長沖縄県知事の国連人権理事会で演説に期待しよう.大手メディアの世論操作に負けてはならない.
イギリスで投獄を覚悟してインドの独立を主張したガンジーの姿が重なって見えます.
ーーーーーーーーーーーーーーーーー

■戦時中の“科学朝日(1944年3月号)”「特集・戦争と数学」

 

 

 

 

 

 

 

 

 

 

 

 

 

https://twitter.com/oburo72 自由古書園「海つばめ」さんの写真借用

 戦争一色の特輯:南方の科学 飛行機 精密機械と兵器 戦車と偽装
防空の科学 潜水艦 戦争と数学 航空母艦 基地建設と進攻兵器...

 -------

この特集号には,多くの著名な数学者が寄稿しており大変興味深い.
その中で,巻頭の弥永昌吉先生の論説が群を抜いており,言論も不自由であったろう戦時下に,実に立派な意見を展開しておられます.
さらに,数学月間の考え方と同じ所も見受けられ我が意を得たりの感があります.まず,弥永論説(対話形式)の概略を紹介します.

1年くらい前から始まった戦時下の米国の数学動員(米数学協会の記事の記憶)が紹介されます.遅ればせながら日本でもこのような動きが始まっています.
ーーーーー
米国の数学動員
委員長(モース)の下に6つの委員会がある
1.工業技術,2.航空力学,3.弾道学(ノイマン),4.確率統計,5.計算法,6.暗号解読
1は数学と工業の連携強化,2,3は微分方程式,高射砲の照準や電波兵器の数学,4は大量生産管理,5は計算機.
ーーーー以下抜粋-----
■数学は魔術ではなく,合理的なものの中でも最も合理的なものですから,使い方も合理的でなくてはなりません.
この際,数学者の側で,数学を使えば何も彼も容易にできるというようなことを言いふらしたり,まだ十分の研究を積まないのに現場の人たちのやり方が悪いと言ったりするようなことは一番いけないと思います.
ーーーーーーー
■大和魂が第一でも,それだけでは戦争に勝てないことがだんだんわかってきて,科学研究の動員が必要になった.
第一次大戦では「化学」,第二次大戦では「物理」→「数学」が必要だ.
米の他,ソ連,独,伊でも同様な数学動員の状況がある.
ソ連は,コルモゴロフ(確率の基礎)飛行機の乱流,ヴィノグラドフ(整数論)などがスターリン科学賞を受賞した.
ドイツからは,開所したばかりの米プリンストン研究所などに科学者が流出しており,米国に最も豊富な人材が集まっている.
ーーーーーーー
■学問としてお留守にならず,その品位を下げぬような動員の仕方をすることが,戦争に勝つ道であると信じる.
日本では,それぞれの分野が功を急いだせいかも知れませんが,
学問が専門化しすぎて,それぞれ孤立化する危険がある.
この機会に横の結びつきが強化されるのは良いことだ.お互いに学問の理解を深め,基礎理論の整備進展,新理論の展開という方向へ導かれれば日本の学問全体にとってもこんな有り難いことはない.
ーーーーー
■問題解決のためにも,数学では個々の小さな問題をそれぞれに突っつくよりも,根本的なところまで遡って考えた方が,大きな成功を収めることがよくあるのです.
この戦争のために,目先のことばかりを考えてよいのでしょうか.
長期建設戦」ともなれば,文化が直接ものを言うことがますます多くなりましょう.世界中のだれが見ても頭を下げるような高い立派な文化を我々が戦いつつ築きあげて行くことがぜひとも必要です.
この頃,この点について偏執な,浅慮短見の説をなす人があるのを慨いて,
渡辺慧さんはそれを「文化的敗北主義」と言っている.

数学に関心を

このマガジンの数学月間とは題名に違和感を感じている方もおられるでしょう.「数学月間」とは7/22-8/22のひと月を指します.この期間は22/7=3.14・・・(π)と22/8=2.7・・・(e)に因みます.
日本の数学月間は,(故)片瀬豊さんの提案により2005年に日本数学協会が7/22-8/22を数学月間と定めたことに始まります.2005年の発足以来,ボランティア・ベースながら,毎年,「数学月間」の初日7/22に,「数学月間懇話会」を開催し,啓蒙的な講演を一般市民に対し実施してきました.2020年の7月22日にも第16回の開催予定です.今年は,集会の実施は困難が予想されるので,初のZOOMによるリモート開催の計画です.
「NPO法人数学月間の会」のホームページhttp://sgk2005.saloon.jpに情報を随時掲載します.
(注)2005年から始まった「数学月間の会(代表:片瀬豊)」は,昨年から,「NPO法人(理事長:岡本和夫)」になりました.このような数学月間活動は米国MAMに学んで始めたものですが,米国MAMのように国家的行事として行うべき性質のものです.現在は個人寄付金とボランティア・ベースで実施していますが,活動を社会に波及させたいものです.「NPO法人数学月間の会」は,数学同好会ではありません.数学の内部にとどまらず社会の諸分野に横断的に呼びかけ活動し,「社会と数学の架け橋」を目指します.情報を共有しましょう.仲間に入りませんか.
問い合わせ先や詳細はhttp://sgk2005.saloon.jp にあります.
ーーーーーーーーーーーーーーーーーーーーーーーーーー

■米国MAM(Maths Aeareness Month)はレーガン宣言から始まった

全文を掲載します.どなたの草稿か知りませんが,格調高く今日でも心を打ちます.米国MAMのスタート時は月間行事ではなく,週間行事MAWでした.

原文は以下にあります.
https://www.gpo.gov/fdsys/pkg/STATUTE-100/pdf/STATUTE-100-Pg4430.pdf
----------------------------------------------------------------------
アメリカ合衆国大統領による宣言5461
「国家的数学週間」1986年4月17日
宣言(National Mathematics Awareness Week)

およそ5000年前,エジプトやメソポタミアで始まった数学的英知は,科学・通商・芸術発展の重要な要素である.ピタゴラスの定理からゲオルグ・カントールの集合論に至る迄,目覚ましい進歩を遂げ,さらに,コンピュータ時代の到来で,我々の発展するハイテク社会にとって,数学的知識と理論は
益々本質的になった.社会と経済の進歩にとって,数学が益々重要であるにも拘わらず,数学に関する学課が米国教育システムのすべての段階で低下する傾向にある.しかし依然として,数学の応用が医薬,コンビュータ・サイエンス,宇宙探究,ハイテク商業,ビジネス,防衛や行政などの様々な分野で不可欠である.数学の研究と応用を奨励するために,すべてのアメリカ人が日常生活において,この科学の基礎分野の重要性を想起する事が肝要である.上院の共同決議261で,国会が1986年4月14日から4月20日の週を,
国家的な数学週間に制定し,この行事に注目する宣言を出す事を
大統領に要請した.今日,アメリカ大統領,私ロナルド・レーガンは,
1986年4月14日から4月20日の週を国家的数学週間とする事を,ここに宣言する.私はすべてのアメリカ人に対し,合衆国における数学と数学的教育の重要性を実証する適切な行事や活動に参加する事を勧告する.
その証拠として,アメリカ合衆国の独立から210年の西暦1986年の4月17日,ここに署名する.ロナルド・レーガン(Ronald Reagan)
----------------------------------------------------------------------


長くなりますので,活動の様子は省略し,年度別テーマのリストを掲載します.(注)2017年からMSAMに変わりました.追加されたSはStatistics統計学です.

■MAMの年度別テーマの推移
http://www.mathstatmonth.org/mathstatmonth/msamhome

1986数学----基礎的訓練
1987美と数学の挑戦
1988米国数学の100年
1989発見のパターン
1990通信数学
1991数学----それが基本
1992数学と環境
1993数学と製造業
1994数学と医学
1995数学と対称性
1996数学と意思決定
1997数学とインターネット
1998数学と画像処理
--MAWからMAMへ------
1999数学と生物学
2000数学は全次元に
2001数学と海洋
2002数学と遺伝子
2003数学と芸術
2004ネットワークの数学
2005数学と宇宙
2006数学とインターネット保全
2007数学と脳
2008数学と投票
2009数学と気候2013持続可能性の数学
2010数学とスポーツ
2011解明進む複雑系
2012統計学とデータの洪水
2013持続性の数学
2014マス,マジック,ミステリー(Martin Gardner記念)
2015数学はキャリアを駆動する
2016予測の未来
2017年より,MSAMがテーマになる
注)略語表
MAM:Mathematics Awareness Week
MAM: Mathematics Awareness Month(4月)
AMS:American Mathematical Society米国数学会
MAA: Mathematical Association of America米国数学協会
SIAM: Society for Industrial and Applied Mathematics工業応用数学会
ASA: American Statistical Association米国統計学協会
JPMB: Joint Policy Board for Mathematics米国連結政策協議会
*)2006年から、ASAが加盟することになった.

■編集後記
数学月間は数学者のものではなく,一般人が対象です.数学は,ものごとの本質を追求し,装飾を剥ぎとり,その本質をあぶりだします.
出来上がった抽象化された概念体系(定理)を,数学者は美しいと感じます.数学とは,そのような理論体系であるべきことは確かです.
しかし,このようにして出来上がった抽象的な数学を見せられても,
一般人は興味が湧かない.そこで,数学月間は<数学と社会の架け橋>として,数学が実際の課題に使われていることを示して行こうと考えています.
かつて,物理学の現場で数学が生まれている時代がありました(ニュートンの微積分もその例です).数学は自分の生まれた源泉を離れて抽象化に専念していることに,著書の前文で警鐘をならしたのはクーラントとヒルベルトでした.源泉に立ち返って数学を見るときっと共感を感じることでしょう.

大学の数学では,完成され抽象化された数学を,数学科の先生が教えます.
これは,数学科の学生に対する教程としてはオーソドックスなものですが,
数学科でない学生には不親切であります.工学,薬学,経済学など,
それぞれの専門に適した数学の基礎教程が必要でありましょう.

髪の毛1本に記録される癌発現の機構

千川論文[千川純一,ひょうご科学財団]は,実用化も期待でき興味深いが難解なので,ここで解説を試みます.厳密な記述は原著論文を参照ください:
・Chikawa et al.,"Hair growth at a solid-liqid interface as a protein crystal without cell division", Progress in Crystal Growth and Characterization of Materials, Volume 65, Issue 3, August 2019, 100452
・Chikawa et al.,"Cancer development in the hair spectra by X-ray
fluorescence using synchrotron radiation",International Journal of Cancer,  in press

 

■千川論文の意義
毛根にある毛球から毛髪は成長してきます.毛球の中は液体で,毛髪の成長は,あたかも,固液界面で成長する無期結晶のようです.固液界面には毛母細胞[毛球と毛幹(毛髪のこと)の境界]があり,その液体側の毛球に,S, K, Ca, Srなどの元素が偏析し,血液から毛母細胞に流入する元素量と,成長した毛幹の元素量が等しい状態が維持されています.
毛髪の成長は,純化学的過程(化学ポテンシャルの勾配が成長を駆動する)で行われることが示されました.[細胞分裂で成長するときのように遺伝子の関与もなく,チューリング反応拡散系と同じように純化学的な過程です]

 

 

 

 

 

 

 

 

 

 

この平衡関係から毛髪の元素濃度は血液の元素濃度から計算できるので,毛髪の分析をすると毛母細胞のイオンチャンネルの開閉の記録(癌の発生と成長に密接に関係している)が分かるというのがこの研究のミソです.

 

 

 

 

 

 

 

 

 

臨床データとリンクし収集した多数の毛髪の分析が実施されました.
毛髪1本の毛根から先端へとX線蛍光分析をし,種々の元素の分布するパターンのデータを収集しました.これらを解析し,大気汚染(黄砂)による心筋梗塞,脳梗塞の死亡率の増加の原因も毛髪分析で示されましたが,特に重要な結果は,癌発生の機構とCaの分布パターンが関係のあることを見出したことです.

■毛髪のCaの分布と癌発生のメカニズム
Caが不足すると,副甲状腺ホルモン(PTH) が分泌され,PTHが各細胞の「受容体」に結合すると,細胞のチャンネルが開いてCaを取り込むので,毛髪カルシウムは正常値を超えます.他方,血清Caが正常値以下に低下すると,小胞体に備蓄のCaを使うために別のチャンネルが開きます.これら2種類のチャンネルの開閉の記録が毛髪Ca 濃度に残されています.
情報伝達の主役であるカルシウム(Ca)の毛髪濃度は,毛母細胞のCaチャンネルが閉じた状態の正常値と,その5倍も高いPTH制御Caチャンネルは開いたときの値があります.また,正常値以下で小胞体の備蓄Ca量制御のチャンネルが開いた状態も起こりますが,これらは識別できます.
癌患者の毛髪を先端から毛根へと分析すると,癌の種類によらず,癌は必
ずPTH 制御チャンネル開のCa高値で発生し,癌成長とともに1~2年かけて正常値に降下し,さらに,小胞体の備蓄Ca量制御のチャンネルが開くCa正常値未満の状態(癌の「成熟」と呼ぶ)が続くことがわかりました.即ち,癌の発生から成熟までが,毛髪に特有のパターンとして記録されるわけです.


■(注)放射光実験の方法
毛髪の元素分析は,2003年から千川純一らが実施しており,臨床とリンクし採取した多数の毛髪分析のデータを集積しました.放射光を用いる蛍光X線分析は,毛髪一本で長さ1mm以下でも精密に測定できます.放射光施設利用にボトルネックはあるものの,毛髪だけ提供すれば済むので,人体に安全な診断方法であります.
血液は採取した瞬間の結果しか知ることができないが,毛髪には過去の記録が残されていて[1カ月に約1cm成長]変化のパターンを知ることができるところが,この方法の優れたところである.
さて,毛髪1 本(直径は100μm 程度)中のX 線照射点から出てくる蛍光X 線を観測すれば,その点に含まれる元素を検出することができますが,毛髪の元素濃度を得るには,蛍光X線強度を照射された部位の体積(質量)で規格化する必要があります.これにはそのとき観測されるバックグランド強度を用います.バックグランドは毛髪母体のタンパクによる散乱X 線(小角散乱領域ではない.コンプトン散乱が主体)で,一定の方位にセットした検出で,散乱X線も蛍光X線も測定できます.これらの比をとれば毛髪の太さや形状によらない値になり,濃度指標が得られます.

次元を上げて見る

 

 

 

 

 

 

 

 

私たちは,ものごとを考え解決困難なときに,次元を1つ上げて(失われている視点を一つ加えて)見ると,思わぬ解決策にはっと気づくことがあります.たとえば,今,新型コロナウイルス禍にあり,医学・疫学的視点と,経済活動視点の2つの視点に集中して,この危機を乗り越えようと必死の活動がなされています.しかし,政治的視点がなおざりにされています.不安定な遺伝子のウイルスはやがて消滅し我々は生き残るでしょうが,見えない次元に無関心でいると,そのときの社会体制は,監視や権力集中の社会に変貌しているかもしれません.歴史学者のハラリ氏は,そのように警告しています.パンデミックが変える世界ユヴァル・ノア・ハラリとの60分:
https://www.dailymotion.com/video/x7tjaoq

視点を上げる(次元を上げる)効果は,デザルグの定理を考えるとよくわかります.
ーーーーーーー
デザルグの定理とは
「⊿ABCと⊿A'B'C'があり,AA',BB',CC'を通る直線が1点Oで交わるなら.
直線ABとA'B'の交点P,直線BCとB'C'の交点Q,直線CAとC'A'の交点Rは,同一直線上にある」

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ーーーーーーー
高校とき幾何の教科書にこの問題が載っていました.
このデザルグの定理の証明は,実はとても難しいのです.3角形を直線が過る図形で生じる長さの比率に関するメネラウスの定理などを使う必要があります.
ところが,下図のように,この図形を平面(2次元)と見ずに,立体(3次元)にあると見ると,ごく当たり前のことを言っていることに気づきます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2つの平面Ω(薄緑)とΩ’(薄青)が交差しており,△ABCは平面Ω上に,△A'B'C'は平面Ω'上にあるとイメージするのです.
光源Oから出る光が,△ABCの影を△A'B'C'に作っています(辺ABの影が辺A'B').従って,O,A,B,A',B' は,同一平面上にあり,この平面をΣ(薄燈)と名付けます.A,Bを通る直線も,A',B'を通る直線もこの平面Σ上にあり,P点で交差します.
一方,A,B,Pは平面Ω上に,A',B',Pは平面Ω’上にあります.
結局,P点は平面Ωと平面Ω’の交線上にあることになります.
同様にして,QもRも,平面Ωと平面Ω’の交線上にあり,デザルグの定理が証明できました.
高校の教科書では,このような証明は厳密でないとみなされるせいか,チェバやメネラウスの定理を使ってあくまでも平面図形として扱われます.

■デザルグの定理は,2次元で証明するのは難しいが,3次元では証明が要らないほど自明なのは何故でしょうか.
3次元でこの図のような模型があったとして,これを2次元に射影する(高さ方向をぺちゃんこ)と,直線が交差する状況は変わらないのですが,長さや角度の情報が失われてしまいます.△ABCと△A'B'C'は,それぞれ別の2次元平面にあったものですが,ぺちゃんこにされて1つの平面(紙面)に入ってしまいました.
私たちは,高い次元(2次元の世界から3次元の世界)を想像するのは困難です.デザルグの定理でこれを思い知らされます.

■デザルグは,17世紀初頭のフランスの数学者,建築家.透視図法を発展させた射影幾何学の祖です.ダビンチなどの画家たちは,遠近法や透視図法を古くから用いていましたが,その数学を固め射影幾何学の本を出したのはデザルグが最初です.
その後,射影幾何学が本格的に研究されるのは,200年後の19世紀中葉,ポンスレー(フランスの数学者.ナポレオンのロシア遠征に従軍し,ロシアで捕虜のときに射影幾何学を研究した)を待たねばなりませんでした.
射影幾何学自体,作図など重要な応用がありますが,やはり,19世紀中葉に現れた非ユークリッド幾何学のモデルを作るための重要なツールとなりました.

イスラム・パターンの作り方

ドアや家具や壁に見られるイスラムの美しい模様を作製する技術は千年以上の歴史があります.イスラムのデザインの特徴は,対称性の高い星型がちりばめられていることです.
繰り返し模様全体を支配する対称性は,17種類の平面群のどれかであるはずだし,並進(周期性)と両立しうる回転対称は,2,3,4,6回軸に限られるはずです.しかし,イスラムの模様の中に散らばる星形は対称性が高いのです.高い対称性はもちろん模様全域に作用はできません.その星形の内部にだを作用域とする局所的なものです.

 

 

 

 

 

 

 

 

 

 

 

上図の模様を例にとると,8回対称の青い星型が,正方形格子の周期で配列していることがわかります.青い星型にある8回対称性は,青い星型内部と緑の周囲領域,草色の星形5角形の領域までは有効ですが,オレンジ色の8角形までは有効ではありません.
青い星の中心にある8回対称軸はオレンジ色8角形の付近では,4回対称軸に低下してしまいます.これは,周期的な平面では8回対称軸は存在できない(正8角形のタイルでは平面を張れない)から当然のことです.
ある点のまわりの対称性という言葉は注意が必要で,その点周囲の「局所的」対称性を指す場合もありますが,平面「全域」で有効な対称性を指すのが普通です.この例では,青い星型の対称性は8回対称ですが,この星の中心にある回転対称軸は4回対称軸です.
このパターンの単位胞は,オレンジ色の8角形の中心を結んでできる正方格子の1つの内部です.

■Girihタイル(装飾線が描かれたタイル)

イスラムの繰り返し模様の壁はGirihタイルという手法で作れます.
正方形と正8角形を組み合わせた平面のタイル張りの例を,下図(a)に示します.このテッセレーションは,シュレーフリの記法で(4,8,8)と記述されます[1つの頂点のまわりに,正4角形,正8角形,正8角形が集まっている状態].

 

 

 

 

 

 

 

 

 

(b)図は,正4角形および正8角形の内部に装飾線を描いたGirihタイルです.
平面をGirihタイルでタイル張りしておいて,タイルの縁の輪郭を消すと(c)図のパターンが得られます.
デザインを作れる以下のウエブサイトがありますのでお試しください.
https://girihdesigner.com/


■ここで,始めに掲載したイスラムの模様も,上の例と全く同じであることを確認してください.
始めに掲載した模様の正4角形タイルや正8角形タイルの形は,草色の星型の中心を結んでいくと明らかでしょう.正4角形や正8角形の内部の装飾線はどのようなものであるかもお確かめください.

非可積分の方程式をコンピューターが解く

 

 

 

 

 

 

 

 

力学系を記述するラグランジュ方程式は作れるのだが,これが解けるとは限らない.
物理の演習では,解けるものしか扱わなかったのです.
実際の世の中は,解を関数で記述できない(解けない)方程式が大多数です.
系の運動を支配する法則(ニュートン力学の方程式)は明確なのに,解が関数で記述できないのだ.
でも解は存在するのです.コンピュータによる数値計算により,運動は逐一決定できる.
しかも,予想もつかない挙動ーカオスーが起こる.このようなことを最初に指摘したのはポアンカレでした.

ーーーーーーーーーーーーーーーーーーー
●1766 オイラー「変分法の原理」
    (オイラー, ラグランジュ)

●1800 ラグランジュ「解析力学」
  エネルギー散逸がない系は,オイラー=ラグランジュ方程式が作れる.
   (オイラー, ハミルトン, ヤコービ)

●1900 ポアンカレ
  可積分の方程式はごくわずかで,大部分の方程式は非可積分(関数で記述できない)
  ニュートンの法則に従う系の運動は,可積分と決めつけてはいけない.

可積分 → 予測可能(安定な軌道) 互いに独立な因果列
非可積分→ カオス的        干渉し合う因果列
ーーーーーーーーーーーーーーーーーーー

■2重振り子の例

 

 

 

 

 

 

 

 

 

 

 

 

上図のような2重振り子の運動です.今回は物理演習のようですが,
数式に囚われる必要はありません.重要なのは,振幅が小さい範囲なら
運動は線形の微分方程式に近似できるので,2種類の周波数の振動が重畳
された運動になる.つまり,関数で記述できる安定な周期的な運動になる
という事です.そして,これに対比される次に話題になる振幅の大きい
2重振り子運動では,運動は関数で記述できず,予想もつかない
とんでもない運動をするということです.

(注)ここでは,ラグランジュ関数やラグランジュ方程式を説明せずに用いています.
これらを学習したい方は,EMANの物理学https://eman-physics.net/analytic/lagrange.html
などが参考になります.

2重振り子のラグランジュ関数は正確に作れます.
次に,ラグランジュ方程式を解かねばならないのだが,これが解析的には解けない(関数で記述できる解がない).

◆振幅の小さいとき
Φ,ψ の振動範囲を微小に制限して(Φ,ψの2次までを残す近似)解く.
これは解けます(物理の演習問題).
計算の詳細は以下に載せました.http://sgk2005.saloon.jp/blogs/blog_entries/view/46/ddf8d815a70840c192d0532618218407?frame_id=54

結論
ラグランジュ方程式(連立方程式)を微小振動の範囲とし線形近似したので,解のΦ,ψは,それぞれ2つの固有振動(基準振動)の重ね合わせになり,それほど複雑な振動ではない.いずれにしろ周期的な(予測できる)振動になります.


◆一般論(振幅の大きいとき)
振幅が大きくなると,ラグランジュ関数の線形近似がなり立たないので,ラグランジュ方程式は解析的には解けません.でも解は実在するはずです.
将来,誰かが巧妙な方法で解くのではないかと期待しつつ,得られたその解は,解析的ではないにしろ振動範囲が小な場合と本質的に大差はないのではないかと想像するのは自然なことです.
系のラグランジュ関数 は完全に正しいし,ラグランジュ方程式も正しいのですから,解析的に解けないと言っても心配ないのではと思うでしょう.
これが誤りであることを証明したのがポアンカレでした.

現代は,コンピュータを用いた計算が高度になり,力ずくで動きのシミュレーションがなされるようになりました.正しい方程式は実在するのですから,関数による軌道の記述は出来なくても,動きは逐一決定されるはずです.
しかし,初期条件(初期値)により,予想もつかない挙動が見られます(カオス).ともかく,そのような運動の実験とシミュレーションの例を,youtube動画で見てください.とんでもない現象が見られます.


◆第1の動画は実験
スタートする初期値によって運動の様子は異なります:



◆第2の動画はシミュレーション
Double Pendulum Chaos Light Writing (computer simulation) 1

 

パイレックス・ガラスを惜しむ

■パイレックス・ガラスとは

シリカガラスSiO2の軟化点は1700°Cと高温です.ガラスには明確な融点はありません.初めから乱れた構造ですから液体状態の固体ともいわれます.固体での変形が起こるのは軟化点~1900°Cあたりまでで,それ以上の温度では液体になります.シリカの正4面体ネットワーク中の所々にCaイオンやNaイオンが入ったものが,ソーダーライムガラス(青板ガラスとも呼ばれる)で,ガラスの融点も軟化点も下がり成型が容易になります.しかし,Naの熱振動振幅は大きく,ガラスの熱膨張率は大きくなります.ホウケイ酸ガラスは,ホウ素Bを添加したガラスで,ナトリウムNaの量を減らせるので,熱膨張率を小さくできます.これがpyrexパイレックスガラス(Corningの商標)で軟化点は820℃位で,Nonexという非膨張ガラスの処方も開発されました.パイレックスガラスは,キッチンのベーキング皿にも,温度計にも,ビーカーなどの理化学機器にも,1949年に完成したパロマーのヘール望遠鏡の巨大鏡(回転放物面)にも使われています.この巨大鏡はパイレックスガラスの直径5mのガラスのキャストディスクで20トンもあります.この巨大なガラスのキャストディスクの製造では,アニーリング・オーブンに入れて10か月もかけて徐冷したそうです.これを現場に運び凹面(回転放物面)に研磨しました.


■パイレックス・ガラス製造中止
2008年3月14日に パイレックス・ロール板の生産中止をコーニング社は決めました.パイレックスと言えば耐熱ガラスの代名詞で,理化学機器にも使われていますが,望遠鏡用の 大きなガラスも作らなくなりました.どうなることか心配です.
今日,コーニング社の製品は,スマートフォン用のGorillaGlassというカバーガラスやエレクトロニクス用の薄い強化ガラスにシフトしたようです.

以下の写真はコーニングガラス博物館の様子で面白そうです.


https://media-cdn.tripadvisor.com/media/photo-m/1280/19/bd/64/98/corning-museum-of-glass.jpg

エッシャーの「極限としての円」

■エッシャーのトリック(引用先:コクセター論文)
M.C.エッシャーの「極限としての円」Circle limit IIIを鑑賞しましょう(図左).
この円盤内は双曲幾何の世界(ポアンカレの円盤モデル)です.
この円盤内を旅する人は,円の縁(世界の果て)に近づくほど時間がかかる.つまり,[世界の果てに到達するには無限の時間がかかる]ようになっています.
この世界で定義される直線(最短時間で移動できる経路)は,円盤世界の縁で直交する円弧です.
エッシャー作品(図(左))の円盤は,魚の流れを示す白い線で分割された双曲面の[4,3,4,3,4,3]分割のようにも見えますが,実は,図(中)に示すような,黒い線で分割した{8,3}正則分割です.
白い線は,双曲幾何の円盤世界の縁に80°で交差し,直線ではないのです.
図(中)の正8角形の黒い線がこの円盤世界の直線であることは,図(中)に書き込んだ赤い円弧(いずれも円盤縁で直交する円弧)を見れば理解できるでしょう.

 

 

 

 

 

 

 

 

 

 


双曲平面の正8角形タイルは,双曲平面の直線(円盤の縁で直交する円弧)で囲まれています.
タイルの大きさは円盤の縁に行くほど小さく見えますが,円盤内は無限に広い双曲幾何平面なのですべて同じ大きさです.
1つのタイルの中には4匹の魚がおり中心に4回軸があります.
正8角形の頂点には3回軸があり,魚の白い流れは3回軸の場所に集まっています.
エッシャーは{8,3}分割に用いる直線をわざと隠し,白い流れが分割であるようなトリックを見せます.もちろん,白い流れの円弧(直線ではない)に関して鏡映対称はありません.


参照:「美しい幾何学」p.142,143

コクセターの万華鏡とメビウスの万華鏡

■楕円幾何平面の正則タイル張り
球表面が球面正p多角形タイルで{p,q}のように張りつめられているとき,1つのタイルの中を2p個の直角3角形に分割できます.この直角3角形を鏡室とする万華鏡を“メビウスの万華鏡”と名付けます.このときの直角3角形(鏡室)の内角は,それぞれ π/p,π/q,π/2で,この直角3角形を(p,q,2)と略記します.

■双曲幾何平面の正則タイル張り
ポアンカレ円盤の双曲幾何平面が,双曲正p多角形で{p,q}のように張りつめられているとき,1つのタイルを2p個の直角3角形に分割できます.この直角3角形を鏡室とする万華鏡を“コクセターの万華鏡”と名付けます.
双曲面の{6,4}正則分割を例に,直角3角形(6,4,2)(赤い3角形)を図(左)に,対応する“コクセターの万華鏡”の映像を図(右)に示します.

 

 

 

 

 

 

 

 

 

 

 

■双曲面{6,4}分割の場合の“コクセターの万華鏡”を作る

双極面{6,4}分割の映像を,3角形の万華鏡で作るには,双曲面直角3角形(6,4,2)を用います.この3角形の2辺は平面鏡,残りの1辺は円盤のフチに直交する円弧鏡よりなります.この円弧鏡は,数学的には反転円として定義できるのですが,現実の円柱鏡の反射には収差があるので,数学の定義のように鮮明な万華鏡映像を作るのは困難です.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■エッシャー作品の生まれるまで

 

 

 

 

 

 

 

 

 

 

 

  (1)               (2)                  (3)

(1)コクセター:直角3角形(6,4,2)による双曲面の{6,3}分割の細分
(2)エッシャー:直線魚のモチーフ
(3)エッシャー:「極限としての円Ⅰ」CircleLimitⅠ

コクセターとエッシャーはオランダで開催された1954年の国際数学者会議で出会いました.1958年にコクセターはこの分割を掲載した論文*をエッシャーに送り,これがエッシャーの「極限としての円」の作品群(Ⅰ~Ⅲ)を生むことになります.

*By S.H.M.Coxeter
Crystal Symmetry and ItsGeneralizations (published in the Transactions of the RoyalSociety of Canada in 1957).

反転の利用ーパップスの定理

■円による反転鏡映の性質
①反転円の円周上の点は,反転しても元の点と同じ位置.
②反転では,円は円に変換される(直線も半径∞の円の仲間)
下図に反転円(赤い円)による,反転鏡映の例を示します.
●図1・反転円Oと交差する円Cは,交差の2点を共有する円cに変換される.
●図2・反転円Oと直交する円Cは,自分の上に変換される.
円周に直交するような反転円で分断された円の2つの部分は,反転円によるそれ
ぞれの鏡像になる.
●図3・反転円Oの中心を通る円Aは,直線aに変換される.
特に,円Bが反転円Oと交差する場合は,交差する2点をよぎる直線bに変換される.
③反転円が直線なら,普通の鏡映像になります.
直線鏡の組み合わせで作られる映像は,良く知られた万華鏡です.
反転円を用いたアポロニウスの窓も拡張された万華鏡の映像と言えるでしょう.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■反転の利用

反転の性質を使うと,パップスの定理の様な難しいものを簡単に証明できます.

このような図形はアルベロス(靴屋のナイフ)といいます.
この中に面白い幾何学があります.

 

 

 

 

 

 

 

 

 

 

 

円弧αと円弧βに挟まれたア
ルベロスの領域に,互いに接す
るように円のチェーンω0, ω1,
ω2, … があるとき, 円ωnの
中心と直径ABとの距離は円ωn
の直径のn倍である.
(パップスの定理)

 

 

 

 

 

 

[以下の証明ができます]
円ω2の中心は,線分ABから円ω2の直径の2倍だけ離れていること.
① 点Aから円ω2へ接線を引く.両接点を通りAを中心とする円γは,円ω2
と直交します.(なぜなら,円の接線は接点での半径と直交するから)
② γを反転円にして,色々なものを反転してみましょう.
円ω2 は自分自身に.円α,β は,それぞれ 直線α’,β’に,
円ω1,ω0 は,それぞれ円ω1’,ω0’に,なります.
③ 円ω2,ω1’, ω0’の直径はすべて同じだから,パップスの定理が証明
された. (なぜなら,平行な直線α‘とβ’に挟まれているから)

 

インドラの網と反転円


 

 

 

 

 

 

 

 

 

 


表紙写真のグラス(リュミナルク製)のデザインは,こちら側の模様の円が凹レンズとして働き,向こう側の模様の円を円内に縮小して映し出すので,あたかもアポロニウスの窓のようです.

■映像が果てしなく繰り返す「インドラの網」
網の上に置かれた真珠は互いに反射し合って,他の真珠を映しだすだけでなく,映っている他の真珠の映像の中に自身の姿をも映しています.世界全体が真珠一つ一つの上に映り,またその姿が別の真珠に映り,これが永遠に続くのです.「インドラの真珠」D.マンフォード, C.シリーズ, D.ライト, 小森洋平 (翻訳),日本評論社は,美しく興味深い数学の本です.

この美しい図形の2次元版は,「アポロニウスの窓」ApolloniusGasketとも呼ばれます.
互いに 接し合う3つの円に接する第4の円を描くのですが,これを次々と繰り返して,どんどん小さくなる円で埋め尽くされる円盤内の世界はフラクタルです.
4つの円の曲率(半径の逆数)をa,b,c,dとすると,
2(a^2+b^2+c^2+d^2)=(a+b+c+d)^2 という,デカルトの発見(1643)した定理が成り立っています.
(参考)⇒三角形の七不思議 (ブルーバックス), 細矢 治夫

■反転によるフラクタル構造

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2つの円β,γが互いに接し,かつそれらがアポロニウスの窓の外周円Ωとも接しているとき,これらの接点を通り外周円と直交する円(赤色)を考えましょう.すると,この円で分断された2つのアポロニウスの窓の世界(若草色と黄色)は,この円(赤色)を反転円として,互いに鏡像(反転鏡映)となっています. もし反転円がどんどん小さくなれば,
その小さな領域に大きな世界がどんどん繰り込まれていくので,不思議なフラクタル世界 の美しさが見られます.表紙の図はこのような様子を表しています.色々な反転円を考えれば,無限にある大小さまざまな大きさの円は,
みんな同じ大きさであるとも言えます.それゆえに,円盤内の世界は無限に広いと言い張るのも良いでしょう.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

上図は Cinderellaというフリーソフトを用いて描きました.

■円による反転

中心Oの半径rの円による反転は,反転円外の点r1を反転円内の点r2への写像
で,反転像どうしは,r1・r2=r^2を満たします.
もし,反転円の円周上に点があれば,反転像は元の点と同じ位置です(r1=r2=r).
反転操作では,円は円に写像されます.もし,反転円に直交するような円周の円をこの反転円で反転すれば,同一の円の上に写像されます.したがって,円周に直交するような反転円で分断された円の2つの部分は,反転円によるそれぞれの鏡像になります.

反転円が直線なら,反転鏡映は普通の鏡映像になります.
直線鏡の組み合わせで作られる映像は,良く知られた万華鏡ですので,反転円を用いたインドラの網の鏡映像も拡張された万華鏡の映像とみなせます.

■仏教では,「宇宙の一切のものが,一切のものの原因になっていて,
無限の過去からの無数の原因が,どの一人にも,それぞれ反映されている」と考えます.これはまさに単純な因果列ではなく複雑系の考え方ですね.
宮澤賢治に「インドラの網」という小品があります.インドラの網目に縫い付けられた珠玉は,互いに映じ合うと同時に,自分自身も輝いています.

この項目は,反転円の幾何学のほかに,フラクタル,複雑系,双曲幾何の円盤モデル,エッシャーの不思議な世界,万華鏡,などに関連があります.
これらは順次取り上げる予定ですが,拙著「美しい幾何学」技術評論社(2019.9刊)をご覧いただけると幸いです.

縞模様形成とチューリングの反応拡散系

 

 

 

 

 

 

 

 

エンゼルフィッシュの縞模様やヒトデの星型はどうしてできるのでしょうか?
コンピュータの発明や暗号解読で有名な天才数学者アラン・チューリングが,”The chemical basis of morphogenesis”という論文を1952年に発表しました.今日,受精卵が細胞分裂を繰り返し分化し生物組織が出来ていく胚発生過程は遺伝子情報にプログラムされていることは公知です.1952年にチューリングが発表した理論は,「反応拡散系」が条件を満たせば,パターンや構造を自己成長形成するというものです.反応拡散系と言うのは,2つの物質(モルフォゲンと呼ぶ)が,反応し合いながら組織を介して拡散するもので,初期状態は均一であったものが,ランダムな外乱により,物質の濃淡の波が生じその波が生物の形や模様をつくりだすというものです.この数式でつくり出される模様は「チューリング・パターン」と呼ばれますが,コンピュータ・シミュレーションで描き出すと,条件により,動物の模様にそっくりな縞模様が出現したり,ヒトデの形を作ったりします.手の指が形づくられていくのは,その設計図が遺伝子により決定されているからと考えられていますが,もしかしたら,「指の形成はチューリングの理論のように波がつくっているのではないか」という論文が最近発表されたそうです.遺伝子はからだの構造の基本を決める設計図で,例えば,肺の形成の初期に気管支の分岐などを作るが,細かい肺胞の形成まではその設計図には書かれておらず,チューリング理論のように,現場の細胞同士のやり取り(反応と拡散)で作り上げられて行くのだろうと,近藤滋氏は言っています.

1952年に提唱されたチューリング理論は,現実の生物分野でそのような実験的証拠がなかったので,その後長い間,机上の空論と思われていました.1995年,近藤滋は,海洋エンゼルフィッシュのポマカンサスには,縞模様が皮膚に固定されていないことを発見しました.体の成長とともに,単純に比例して拡大する哺乳類の皮膚のパターンとは異なり,ポマカンサスの縞模様は,体の成長にともなうパターンの連続的な再配置が起こる.そして,縞間のスペースが維持されるという実験事実を観測しました.

実際,チューリング理論に基づくシミュレーションは,成長とともに形成されるパターンを正しく予測できたので,この理論の正しさを支持するものです.

■ チューリングの反応拡散系方程式
存在する2つの物質(モルフォゲン)が,反応したり拡散したりするのは,遺伝子情報で制御されるわけでもなく単純な化学反応で,以下の連立方程式で記述できます.u(t,r),v(t,r)は振動し,いろいろな形が形成されます.

 

■チューリングの反応拡散方程式の解の安定性を調べる数学について
(解が不安定(暴走)では,縞模様ができません)
数式を多用することができませんので,ここでは,言葉で説明するにとどめます.⇒ Texによる数式追補http://sgk2005.saloon.jp

反応項 f,g はそれぞれ物質の濃度 u, v の関数で,平衡点の周りでテーラー展開(1次の項まで)して線形化します.このような連立線形微分方程式の性質は,ヤコビアンと呼ばれる行列Aで決まるが,この行列Aの固有値の実部がすべて負であれば,解は安定になります.
行列Aの固有値を求めるのは面倒なので,条件を緩くして,行列Aの対角要素の和(固有値の和に同じ)が負であるとし,さらに,拡散係数も0の場合から始めると,結局,f_u+g_v<0が得られます.
これは,f_uとg_vが異符号で負の絶対値が大(促進剤と阻害剤が拮抗して働き,若干,阻害剤が強い)の条件を意味し,このようなときに縞模様が形成されます.

÷と×の演算の順序

60÷5(7-5)=?
この答えは24ですか6ですか
60÷5x2=?と聞かれれば,24と迷わず答えられる人が,なぜ6と答えたくなるのでしょうか.これは5と()の間にxが書かれていないことが心理的に影響すると思います.
5(7-5)は文字式のような錯覚に陥り,ひとまとめにして数値を出したくなります.÷とxの演算が並んだ式は,前から順番に演算するのが決まりです.割り算を使わず掛け算だけで書き直すこともできます.例えば,
60÷5x2=60x(1/5)x2 のようにです.
60÷5(7-5)=を,分数で書いてみましょう.しかし,5だけが分母に来るのか,5(7-5)が分母に来るのか不明確です.(60/5)(7-5)のことなのか,60/(5(7-5))のことなのか,かっこを1組追加すれば明確になります.

逆ポーランド式に,二項に対する演算の繰り返しとして計算手順のグラフを書くと,解釈の異なるそれぞれの計算手順は表紙カバーの図のようになります.

 

 

 

 

 


■さて,文字式の場合は係数と文字の間のx記号は省略されるのが普通です.9a^2÷3a=の答えは,3a か,3a^3 のどちらが正しいのでしょうか?
雰囲気的には3aですが,式の機械的な記述は曖昧です.
このような曖昧さを避けるために,()を用いて明確にすべきです.
9a^2÷(3a)=3a あるいは,(9a^2÷3)a=3a^3 のようにはっきりさせましょう.

■ここまでの記事を,私がメルマガに掲載したことがあります.すると,以下のコメントを読者からいただきました.この問題はなかなか面白いですね.ここに掲載させていただきます.

理学系では『省略演算の優先』を意識している傾向がいくつか見られます。たとえば化学業界では省略演算は優先することが国際的なルールとして明記されていて、先の計算は6と答えなければならないように定められているそうです。
また、物理学のフィジカルレビュー誌の投稿規定にも同様な省略演算の優先が書かれているということですので、こちらも6と答えることが義務付けられていることになります。
算数の世界では、帯分数の計算部分に同様な様子が見られます。{以下テキストの都合上帯分数には()をつけ、整数部分と分数部分の間に『と』を挟みますが、実際には無いものと思ってください}
(2と1/3)×3 は,2+1/3×3 なら,+より×優先なので =2+1=3 と計算するはずですが、実際には省略演算である+を先に行い、7/3×3=7 と計算します。
ところで、マセマティカで計算すると、メルマガの計算は24が出力されるようです。ソフトのいくつかは24を出力すると聞いています。
以下は想像です。
理学系では古くから省略演算を優先する感覚があったため、そのようなルールが少なくとも上記の物理化学ではルールとして明記された。数学はともかく算数でもそのように教えている部分がある。
一方で後発の計算機業界ですが、こちらはそもそも昔は省略演算は文法違反でエラー扱いでした。それがハードが強力になり対応可能となった時に、理学系の慣習など頭になく、ただ省略演算を補うだけだったために、結果24と計算するソフトが多いのではないかと。実際、カシオの関数電卓では、古い機種では24を答えに出し、新しい機種で6を出力するケースを確認しています。おそらく化学業界あたりから苦情が来てユーザーニーズに合わせたのではないでしょうか?
数学では化学業界と違って国際組織が演算順序をルールとして明記するなんて多分やってないと思います。×が+に優先するなことすら学会による明文化はなく慣習によるものだと思われます。明文化されない以上慣習として定着するまではどちらが正しいとは言い切らないのが無難に思います。ただ、化学業界のルールでも但し書きとして、『ただし、誤解を招かないよう括弧を十分に補うことを推奨する』とあるそうですから、メルマガの式は
(60÷5)(7-5) なり、60÷(5(7-5)) なりにするのが大人の対応ということになりそうです。

正5角形の作図いろいろ

 

 

 

 

 

 

 

 

■正5角形の性質
正5角形の中に相似な2等辺3角形(頂角36°)が次々に組み込まれていく様子を見てください.赤い2等辺3角形→緑の2等辺3角形→青い2等辺3角形の順です.2等辺3角形の辺の比率は,いつもΦ:1で,Φは正5角形の対角線(星形の辺),1は正5角形の1辺です.このとき成立する方程式,Φ2-Φー1=0を解いて(Φ>1をとる),Φ=(1+√5)/2=1.6180・・が得られます.Φは黄金比の値です.

 

 

 

 

 

 

 

 

 

 

■正5角形の実用作図法
この作図はつぎの式が成り立ちます.AH=HB=1/2,MH=√3/2 であるので,PH=(√3ー1)/2,従ってPB=(√[(√3-1)2+1])/2=(√[5-2√3])/2
AB/PB=2√(65-26√3)/13=1.6138・・・
この作図法は,イスラームのタイル作図で便利ですが,厳密な正5角形ではありません.しかし,誤差は0.26%なので実用上問題ない恐るべき精度です.

 

 

 

 

 

 

 

 

 

 

 ■厳密な正5角形の作図
AB=1,AH=1/2,PH=1 ですので,AP=(√[1+22])/2=√5/2
従って,QP=(1+√5)/2=Φ
この作図で得られるのは厳密に正5角形であることが証明されました.

 

 

 

 

 

 

 

 

■折り紙で作る正5角形(1)の精度
この図は折り紙で正5角形を作る原理を示しました.y=3xの直線とx軸のなす角θを求めると,θ=arctan3=71.5651・・° となりますが,正5角形では72°になるべきです.この誤差は.0.6%ですのでかなり良い精度と言えましょう.他の角度は,72.1087(0.2%),72.6524(0.9%)程度です.(カッコ内は誤差)

 

 

 

 

 

 

 

 

 

 

 

■折り紙で作る正5角形(2)の精度
折り紙の一太刀切で大変作り易い星型です.この原理は以下の図を見てください.正5角形(星型)の一辺の中心角は360°/5=72°ですから,一太刀切りに対応する中心角は36°です.
以下の図を見ると,一太刀切りの中心角は,35.783°(36°からのハズレは-0.6%)to,36.870°(+2.4%)に収まっています.

抵抗ラダー回路とフィボナッチ数列

フィボナッチ数列F(n)は,1,1,2,3,5,8.13,21,34,.....のような数列です.
F(n)=F(n-1)+F(n-2) と再帰的に定義されます.
この数列は,いろいろな所に現れます.得られた数列が,フィボナッチ数列であることを証明するには数学的帰納法を用います.
今回は,その典型的な例として,抵抗ラダー回路を取り上げましょう.

■抵抗ラダー回路

ラダーとは梯子のことで,梯子型に抵抗を並べた回路を,抵抗ラダー回路といいます.例えば,表紙の図は3段のラダー回路です.

 

 

 

 

 

 

 

 

A-Bの端子(入力側)から見たインピーダンスをZ_i,
C-Dの端子(出力側)から見たインピーダンスをZ_oとします.
この3段のラダー回路は,A-B側(入力側)にR1の抵抗があるが,C-D側(出力側)にはないので,左右対称ではありません.入力側から見たインピーダンスと出力側から見たインピーダンスの比から,減衰率Z_i/Z_o≡Aが定義されますが,A>1なのでこの回路はアッテネータ(減衰器)として使えます.
抵抗値をすべて同じR1=R2=1とすると,
ラダーの段数mを増やしていくと,減衰率A(m)=F(2m+1)/F(2m-1)は,2/1,5/2,13/5,34/13,...とフィボナッチ数列が出てきます.
(参考)n=1から3までの計算は以下にありますのでご覧ください.
証明は数学的帰納法を使う練習になりますので,各自試みてください.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■ラダー回路の応用例
ラダー回路は,アナログ信号が入力されたときに,そのアナログ信号の大きさを,瞬時に8水準に分類する(8ビットのデジタル化)回路(これを8ビットのAD変換といいます)に使われたりもします.次の図をご覧ください.

 

 

 

 

 

コンパレータが7個並列に並んでいますね(カスケード結合).
入力信号の大きさを8水準に分類するのは,7個のコンパレータの働きで,
その境界値となる7段階の基準電位をそれぞれに供給します.
この7つの基準電位を発生するのが,一番左の直列に並んだ抵抗ラダー回路です.nビットのAD変換には(2^n)-1個のコンパレータと基準電位がいります.

定規とコンパスで作図できる長さ

私は,yahooブログ 「数学と社会の架け橋<数学月間>(2012.5~2019.3)」に,発行している同名のメルマガまぐまぐのバックナンバーを保存していました.メルマガはテキストなので,必要な図はどこかに保存したもののリンクを張らねばなりません.そこで,必要な図や写真はyohooブログに保存していました.しかし,昨年yahooブログが閉鎖しましたので,ブログ機能はlivedoorブログと数学月間の会のホームページに引っ越しました.
テキストは移動できたのですが,移動できなかった画像や写真があります.yahooブログに張ったリンク先が消えてしまったので後の祭りです.
今回Noteを始めて,それらの記事中から面白いものを優先し,図を作り直し再現しようとしています(新規の記事も並行して随時書きます).お付き合いのほどよろしくお願いします.記事の候補全体は,数学月間の会ホームページにありますので訪問ください.その中で再現すべき記事のリクエストがありましたらお寄せください.まだNoteの使い方になれないので皆さまのお気づきのことをお教えください.記事に数式が必要なこともありますが,Texが使えないようなので,まとまった数式は画像にして埋め込むことにしています.

今回再現するのは,以下のメルマガの記事です.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.10.23] No.238
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今日は,たいへん古典的だが,重要な証明問題を扱いましょう.
ギリシャの幾何学者達が研究した不可能作図とは
以下のものがあります.

(1)与えられた正立方体の2倍の体積の正立方体を作れ
(2)与えられた円と同じ面積の正方形を作れ
(3)任意に与えられた角を3等分せよ
これらは,定規とコンパスだけを有限回使って作図できるか?
ということです.

■なぜ作図できないか
(1)は,2の3乗根の作図が必要です.
(2)の円と同じ面積の正方形を作る方針を以下の図に示します.


どうしてこの作図ができないのかわかりますか?
与えられた円の半径をrとします.まず,円と同じ面積の長方形を作りましょう.もし,縦r,横aの長方形が作れたら,r・a=x^2 となるxの作図は可能です.問題は,円の面積と同じ縦 r,横 a=πrの長方形を作るところで,
円周の半分の長さπrの線分を作図する方法が,定規とコンパスではないからです.無理数πが作図できません.

 

 

 

 

 

 

■直線定規とコンパスだけを有限回繰り返し用いて作図できる長さは
2つの有理数の,加法,減法,乗法,除法,開平だけです.
作図方法は,以下をご覧ください.
条規とコンパスで作図
開平を繰り返せは,2のべき乗根(4乗根,8乗根,...)は作図できますが,例えば,立方根は作図できません(この証明は難かしいのでスキップ).

(3)任意の角度の3等分が作図できないわけ.
角度3等分の方程式は x^3-3x-a=0 で,
例えば,与えられた角度が60°ならa=1の方程式です.
60°の3等分の方程式は,x^3-3x-1=0 となりますが,この3次方程式は,p+q√r (ただし,p,q,rは有理数)の型の解を持たないので
この角度の作図は,定規とコンパスでは不可能です.
もちろん,60°の3等分の20°は存在しますが,
定規とコンパスだけを使う方法では作図できないということです.
詳しくは,以下をご覧ください.


■任意の角度の3等分
任意の角度∠XOYの3等分がなされたとします.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

円に内接する正5角形の作図

折り紙では近似的な正5角形(星型)が出てきましたが,これから扱うのは数学的に厳密な正5角形についてです.
半径1の円に内接する正5角形の1辺の長さを求めましょう.
この正5角形の1辺の長さをxとします.
△BACと△ADCは相似(相似比が黄金比Φ)で,形は2等辺三角形(等辺xとすると,底辺Φ・x)です.Φ・x=x+(x/Φ) ですから,Φは黄金比の方程式
 Φ^2ーΦー1=0を満たします.この方程式の解(Φ>1のもの)は,Φ=(1+√5)/2 です.

 

 

 

 

 

 

 

 

 

 

 

 

 

■次に,△BCEと△BOFとが相似であることを利用し,
1:(Φ・x)=OF:CE=(1-y):(x/2) が成立するので, y=1ー1/(2Φ) 
ただし,y=√[(x/Φ)^2-((Φ・x)/2-x/Φ)^2]=√[x^2ー(Φ・x/2)^2]=x√[1-(Φ/2)^2] 
x=y/√[1-(Φ/2)^2]=[1-1/(2Φ)]/√[1-(Φ/2)^2]=(√[10-2√5])/2=1.1756

■ 作図
半径1の円に内接する正5角形の一辺の長さx=(√[10-2√5])/2を作図する方法
(証明)ピタゴラスの定理を2回使います.

 

 

 

 

折り紙で厳密な正5角形が作れるか

ある折り紙の本に正5角形の作り方がありました.
複雑な手順なので整理して原理だけ説明しましょう.
正5角形の中心角72度を作るミソは,以下のようです.
これで,Θは72°になることを証明できますか?

 

答,72°になりません.
約71.56...°です.

この折り紙手順で作れる角度は,72°に非常に近いので
実際の折り紙工作では非常に良い方法といえるでしょう.
でも,幾何の命題としては正しくないのです.

話は別になりますが,
正5角形を,コンパスと直線定規で作図できます;
例えば http://www.natubunko.net/zukei/png/penta03.png
ここから図を引用しましょう.

 

 

 

 

 

 

 

さてそれでは,この作図を折り紙の手順で追いかけてみましょう.
折り紙の手法で,「円を描く」というのは,可能でしょうか?

コンパスの使い方には2通りあます;
1)所定の長さを所定の方向にとる.
2)2つの円の交点を求める
(与えられた2点から,それぞれ与えられた距離だけ離れた点を求める).


このうち,1)は折り紙手順で可能ですが,2)は折り紙手順で不可能ではありませんが工夫がいります.折り紙の手順で,正5角形の作図を追いかけてみると,(4)の段階で,2つの円の交点を求めることが必要になり,ここが困難です.でも不可能ではないようなので,皆様,挑戦されて,もし,うまい方法を発見したら教えてください.

まったく別の方法でも,折り紙で正5角形を作ることができます.例えば,表紙の写真は定幅紙(帯)を用いて正5角形を折ったものです.この場合はどのような手順の作図になるのかを考察してみてください.このような折り紙は手順が全部完成してからつじつまが合うように最初から調整しますから,漸近的に正5角形を得る作図のようなもので,無限の手順がかかるので幾何学の作図としては認められません.

 

 

ダイヤモンドのブリリアン・カットの数学

 

 

 

 

 

 

 

 

■ダイヤモンドの価値は,4C[Carat重量,Color色,Cralityキズ,Cutカット]で評価されます.ここでは,数学的に興味のあるカットのプロポーションについて述べました.ラウンド・ブリリアン・カットのダイヤモンドが最も輝くようにしたプロポーションを理想カットといいます.理想カットは1919年にベルギーのMarcel Tolkowsky(数学者でダイヤモンドのカッター)が計算しました.今なら,コンピュータもあるし,光線追跡のソフトウエアもある時代で,理想カットの形(プロポーション)を見つけることは容易でしょうが.1919年にどのように計算したのか,興味深いことです.多分,閉じ込められた光線が全反射を繰り返す光路に注目したのでしょう.

 

 

 

 

 

 

 

 

 

ダイヤモンドのブリリアン・カットの各部の名称を図に記載してあります.正面の平らな面をテーブル面,上半分をクラウン,下半分をパビリオンと呼びます.真ん中のガードル面に対してクラウン斜面のなす角度をβ,パビリオン斜面のなす角度をαとしました.

 

 

 

 

 

 

 

 

 

 

 

テーブル面の左隅Aに入った光線(赤色)が,ダイヤモンド内部を進み,後方の左パビリオン斜面で全反射され,次に,右パビリオン斜面で全反射され,テーブル面右隅Bに戻り,前方に出て行く光線もありますが,テーブル面右隅Bで一部は反射され内部に戻る光線(青色)になります.この光線は全反射を繰り返し内部に閉じ込められることになります(青色).
この図で追跡した光線は,テーブル面の左隅Aから出て,テーブル面の右隅Bに達する左右対称の光路です.ダイヤモンドの屈折率n≒2.417を用いて,この光路のテーブル面での入射角φ,屈折角γに対する屈折の式,sinφ=n・sinγ から,左右対称になる入射角φ(テーブル面の垂線と入射光線のなす角)を求めると,21°になります.というのは,左右のパビリオン間でテーブル面と平行になる光路ですから,左のパビリオン斜面での反射の法則(反射角αはパビリオン角αに等しい)から,γ=90°ー2α=8.5°となることが決まるからです.ここで,パビリオン角α=40.75°を用いました.

■屈折率の高い媒質中に光が閉じ込められるのは,全反射を起こし易いからで,ダイヤモンドの全反射の臨界角θ(入射角でいうと)は,sinθ=1/nだから,θ=24.4°(反射面から測った反射角で言うと,65.6°)です.
テーブル面の出口で反射されて内部に戻った一部の光線は,パビリオン面とクラウン面で全反射を繰り返し内部に閉じ込められます.パビリオン角α=40.75°,クラウン角β=34.50°というのは実によくできた設計です.
全反射によりブリリアン・カット内に閉じ込められた光線の経路は,一周すると,これに平行な経路に戻ることを証明するために,次の作図をしてみました.BC(赤色)の直線はダイヤモンド内部で全反射を繰り返す光線(青色)を外に引き伸ばしたものです.その代わりに,ダイヤモンドも反射面を共通にしてつないで並べました.結局,全反射を4回繰り返すと光線が平行になるということは,このように配置したダイヤモンドが4つで回転角が0に戻る(初めの向きと同じ)ことからわかります.

 

 

 

 

 

■カットの形を評価するには,そのカットの形を磨き直して理想カットにするとしたら,重量がどれだけ減るか(カット減点%)で表します.カット減点5%までは理想カットと見做されます.さて最後になりましたが,トルコフスキーの理想カットのプロポーションを表紙の図に示しました.トルコフスキーはガードル厚には言及せず,ナイフ・エッヂだったそうですが,現実にはナイフ・エッヂは作れず,ガードル厚は必要です.
■(注)ラウンド・ブリリアン・カットとは,58のファセット面を磨き上げた形(キューレットも1面と数えます)です.ダイヤモンドは立方晶系の結晶ですから,複屈折はありません.また,光の分散もそれほど強くなく上品です.虹色にぎらぎらするようならキュービック・ジルコニアなどの疑いがあります.
クラウン面の高さや,パビリオンの深さが最適でないと,テーブル面の中が暗くなります.