数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
不思議な魔方陣
http://www.mathaware.org/mam/2014/calendar/magicsquares.html
Ethan Brown
Mathemagician,
Massachusetts,AndoverのPhillipsAcademyAndoverの高校生.
観客に,縦,横,斜め,中心4マス,四隅4マス,外周の4マスなどの総和(この例では79),および何ケ所かのマスとその数字(この例では2,11,5)を提示させます.これらの制約の下で魔方陣を直ちに作ります(第1のビデオ).まるで,ねずっちの謎かけのように直ちに作ります.こんな魔方陣ができました.
http://www.mathaware.org/mam/2014/calendar/images/ethans_magic_square.gif
第2のビデオで,魔方陣を作る方法の秘密がわかります.
第3のビデオは,ラテン方陣を変形して,魔方陣を作る方法を説明します.
http://sgk2005.sakura.ne.jp/htdocs/?action=common_download_main&upload_id=14
天文学者、物理学者、そして数学者がスコットランドを走る列車に乗っている。天文学者は窓の外を眺め、一頭の黒い羊が牧場に立っているのを見て、「なんと奇妙な。スコットランドの羊はみんな黒いのか」と言った。すると物理学者はそれに答えて「だから君たち天文学者はいいかげんだと馬鹿にされるんだ。正しくは『スコットランドには黒い羊が少なくとも一頭いる』だろう」と言う。しかし最後に数学者は「だから君たち物理学者はいいかげんだと馬鹿にされるんだ。正しくは『スコットランドに少なくとも一頭、少なくとも片側が黒く見える羊がいる』だ」と言った。
磁気双曲子の相互作用でつながった1次元の格子振動と同じです.
磁気双曲子間のエネルギーは距離の3乗に逆比例しますので,
非線形の現象で,カオスや弛緩型の振動モードへのトビが生じます.
代数的に解くには,振幅が小さいとして,相互作用による力を振幅に比例
(1次までとる近似)とできる場合で,普通の格子振動の扱いになります.
2くまさん(2人)の場合には,それぞれのくまの変位に関して,
1次の連立方程式ができますから,係数の行列式を0とおいて,
可能な周波数が求められます.
周波数1の同相モードと周波数1.732の逆位相モードの同期が可能ですが,
実現するのは以下のビデオの逆位相モード.
https://www.facebook.com/photo.php?v=640422772712313
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2014.05.15] No.006
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
ささいな事故が雪崩となり大事故を生む複雑系
■複雑系の事故のトリガーは処々にある
「複雑系とは何か」は,別号で取り上げるとして,
大規模送電網や原発は複雑系です.
2011年7月の数学月間懇話会(第7回)では,これを取り上げました.⇒ プレゼン
2011年4月の米国MAMのテーマは「複雑系」でした.
米国で何度か起きた大規模停電の仕組みを解析しています.
はっきり指摘のできないような”ささいな原因”(樹木が送電線に触れ
スパーク?)により,送電網に局所に停電が起きた.⇒
⇒ 送電網の残りの部分に過剰な負荷がかかり,健全だった部分の電線が
切れる.⇒ あっという間に,次々と送電網全体に停電が拡がる.
これが,「小さな事故が雪崩となり,大きな事故を生む」という
複雑系での事故の特徴です.
2011.3.11の日本の原発事故でも、同じようなことが起こりました.
あっという間に
全電源喪失⇒再循環配管/圧力抑制プール損傷⇒冷却材喪失⇒炉心メルトダウン
の過酷事故になりました.
今回の事故の引き金は地震・津波だったかも知れませんが,
引き金になるのは,地震・津波だけではありません.
組織やエージェントを含め、何処にトリガーがあるか予測できないのが複雑系です.
原因⇒結果 の1:1対応の単純な因果列がたくさんあるのではなく,複雑系では,
複数の原因から1つの結果が生じたり,
1つの原因が多くの結果に影響を与えるような複雑な因果関係があります.
「今日のアフリカ上空での蝶の羽ばたきが,将来,米国でのハリケーン
の進路に影響を与えるかもしれない」と比喩されるのが,バタフライ・エフェクトです.
複雑系は,<バタフライ・エフェクト>が起こり得る世界で絶対安心はあり得ません.
かように,複雑系では事故の可能性を消すことはできません.
しかし,大規模停電や山火事なら最悪事故が自然に鎮火するのを待つことはできます.
でも,原子力ではそうはいきません.そのエネルギーの莫大さ,放射能の半減期の長さ,
どれをとっても人間のスケールに合いませんから.
------------------------------------
■複雑系の特徴
送電網ネットワーク中にある節点の次数(=その節点に集まる経路の数)
の頻度分布図を作ったとき,節点の次数の高いものも残っているような
(べき乗則分布)ネットワークですと,
次数の高い節点が攻撃されると故障の雪崩につながります.
■べき乗則
大規模停電,巨大地震,所得の分布,.... いろいろな頻度分布に<べき乗則分布>
が見られます.正規分布,ポアソン分布,ワイブル分布など,中心値のまわりに
釣鐘型の分布を作りますが,べき乗則分布では,規模の大きい事象が起こる確率も
いつまでも残っています.被害コストの期待値は,被害コストと確率の積であり,
巨大地震は巨大な被害コストをもたらすので,巨大地震の確率が小さいと言って
無視することは間違いです.原発事故も同様です.
(引用文献)ーーーーー
1.2011MAM、⇒ http://www.mathaware.org/mam/2011/essays/
Cascading Failures: Extreme Properties of Large Blackouts in the Electric Grid
2.数学文化(2011),16,p113-127,
今年の米国MAMの話題と日本の原発事故
3.SGK通信(2011-06)数学月間懇話会報告
⇒ http://www.sugaku-bunka.org/jo2x314rz-453/#_453
◆映像が果てしなく繰り返す「インドラの網」
網の上に置かれた真珠は互いに反射し合って,他の真珠を映すだけでなく,
他の真珠の映る自身の姿をも映します.世界全体が真珠一つ一つの上に写り,
またその姿が別の真珠に映り,これが永遠に続くのです.
”インドラの真珠”
D.マンフォード, C.シリーズ, D.ライト, 小森洋平 (翻訳),日本評論社より
◆「アポロニウスの窓」という美しい 図形は,
互いに 接し合う3つの円に接する第4の円を描くのだが,
これを次々と繰り返して作られる円の中の世界だ.
4つの円の曲率をa,b,c,dとすると,
2(a^2+b^2+c^2+d^2)=(a+b+c+d)^2 という
デカルトの発見した定理が成り立ってい る.
⇒三角形の七不思議 (ブルーバックス), 細矢 治夫
◆美しいアポロニウスの窓を見ていると,いろいろな想いが拡がる.
それは,2つの円が互いに接し
かつそれらがアポロニウスの窓の外周円とも接しているとき.
これらの接点を通り外周円と直交する円を思い浮かべるなら,
その円を反転円として,反転円で分断された2つのアポロニウスの窓
の世界は互いに鏡像となることだ. もし反転円がどんどん小さくなれば,
その小さな領域に大きな世界がどんどん繰り込まれていくだろう.
不思議なフラクタル世界 の美しさが見られる.
写真: 緑色の円の外にあるピンクと黄色の円を,緑色の円で反転すると,緑色の円内のピンクと黄色の円に写せます.写されたこれらの大きさはその上のグレーの円と同じ大きさです.色々な反転円を考えれば,無限にある大小さまざまな大きさの円はみんな同じ大きさで,円盤内の世界は無限に広いと言い張るのも良いでしょう.
Fig. Cinderellaというソフトを用いて描きました.
緑色の円(想像した反転円)の外にあるピンクと黄色の円を,
緑色の円で反転すると,緑色の円内のピンクと黄色の円に映せます.
映されたこれらの円の大きさは,その上のグレーの円と同じ大きさです.
色々な反転円を考えれば,無限にある大小さまざまな大きさの円は,
みんな同じ大きさでもあります.
だから,円盤内の世界は無限に広いと言い張ることも良いでしょう.
◆円による反転操作
円が直線なら,普通の鏡映像になります.直線鏡の組み合わせで作られる
映像は万華鏡です.反転円を用いたインドラの網も万華鏡の映像です.
■編集後記
仏教では,「宇宙における一切のものが,一切のものに対して原因になっている.無限の過去からの無数に多くの原因が,どの一人にもそれぞれ反映されている」と考えます.これはまさに単純な因果列ではなく複雑系の考え方ですね.
宮澤賢治に「インドラの網」という小品があります.
インドラの網目に縫い付けられた珠玉は,互いに映じ合って輝く同時に,自分自身も輝いています.