ブログ倉庫

ビッグデータによる参院選予測

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.07.05] No.122
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■現代は,衛星からスマートフォンまで大小のソースから,さまざまなデータが絶えまなく集められています.
検索サイトのgoogleやyahooにはビッグデータが蓄積しています.
ビッグデータの様々な利用法やそのための解析法も急速に発展しつつあります.
世論調査は従来から,RDD(無作為抽出)の電話によるアンケート形式で実施されているのだが,
先日,yahooのビッグデータを用いた参院選挙当選予測が発表された.
http://docs.yahoo.co.jp/info/bigdata/election/2016/01/
それによると改憲勢力が2/3に達しそうな情勢という.

■webサイトを渡り歩き,あるサイトで買い物をしたとする.そこに導いた各webサイトの貢献率は如何様なものだろうか?
googleの各webサイトのレイティングはどのように計算しているのだろうか?
サイト間の遷移確率を成分とする遷移行列*)を作り,この行列を各サイトの状態に作用させた結果,
各サイトの状態は新しい状態になる.何度も遷移が繰り返されると,状態が収束するとして,
各webサイトの状態(貢献度,ランキング)を求めることができる.
*)各webサイトを頂点とし,頂点間の遷移を矢印で表すと,有向グラフができる.
サイト間の遷移確率をこれに書き込むと遷移行列になる.

■さて,選挙の当選予想に戻るが,Amazonの「これを買った顧客はこれも買う」のような推薦システムや,
企業が集めたデータから,顧客の行動を予測をしている.これにはクラスタリングと最隣接クラス分けのツールが用いられる.
投票行動の予測もこれに類似したものであろう.
ビッグデータをどのように解析したのかわからないので,何とも言えないが,
過去に実績のある推測法らしいので当たるかもしれない.
http://searchblog.yahoo.co.jp/2012/12/yahoobigdata_senkyo.html
例えば,ある本の購入数,あるワードの検索数など,関係のなさそうな事柄と各政党の得票との相関を重ね合わせ予測がなされる
(投影法という).定義した注目度という量を各候補の当落の評価関数に用いている.
なぜ各事柄と得票に相関があるのか,各相関を重ね合わせる時のウエイト付の意味など説明できないことだらけだが,
予測結果が実際と合うように決める.因果関係の筋が通っていないものは,私には信用できないが,
絡み合った因果関係の“複雑系の世界”とはそういうものなのでしょう.
地球のどこかで起きた蝶の羽ばたきが,後日離れた地でハリケーンの進路を変える原因になる
かもしれないという“バタフライ・エフェクト”の世界ですから.

そして,思いもよらぬ事柄の些細な変化で結果の逆転も起こり得ます.
予測は不安定ですので信じるのはほどほどにしないと誘導され易い運命論者になってしまいます.

0

世論調査の予測結果をどう見るか

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.06.28] No.121
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
選挙戦たけなわです.皆様の周りは如何でしょうか.
TVニュースはもともと政治報道は少ないのですが,選挙期間中はさらに少なく,国民を眠らせておけとばかりです.
街宣の様子や市民の反応など中継して欲しいものです.政治討論でも,
選挙後に安倍連合政権が緊急事態条項の成立を狙っていることは触れないように話題をそらしています.
私たちは,支持率や選挙結果の予測や政局は,結果ですので知ったって意味がありません.
その根拠となる政策の賛否を議論したいのです.
しかし,支持率を見せて世論を誘導するというマスコミもあるようです.
内閣支持率が高いことを知って,戦っても無駄だとやめるのですか?
支持率が低いことを見て,見捨てて大勢につくのですか?
あるいはこれらの逆で,弱い方につくのですか?
支持率結果は,市民の投票行動に複雑なフィードバックを起こします.
雪崩をうって体制につく(正のフィードバック)のと,バランスをとろうとする(負のフィードバック)の混合でしょう.
24日朝刊トップは参院選情勢調査の結果で,いずれも自民党が勝利し、公明やお維新を加えると、
改憲に必要な3分の2に届く勢いであるとのニュースです.
それほど与党が優勢でしょうか?私の感じでは,まさにデッドヒートを演じていると思います.
野党統一候補が頑張っている所をもっと報道するのが公平だと思います.
さて,各社同じような世論調査を出したわけですが,出所は日経リサーチ社のもの.
読売は,日経と同じデータを使って,同じような記事を載せました.
これは,意図的で悪質です.以下の記事をご覧ください.
http://hunter-investigate.jp/news/2016/06/-24-300.html

さて,世論調査の結果と本番の選挙結果が逆転した例が,しばしば見られるようです.
直前の世論調査の結果のフィードバック効果により,揺さぶられることもありましょう.
しかし,それはさておき,世論調査はサンプリングで集めたした小さな集合(サンプル集合)で行いますから,
ランダムサンプリングを心がけても,一方の陣営の意見が多く集まって偏ったサンプル集合ができる危険性は避けられません.
このサンプル集合が,安倍内閣の支持率が高いという,世論誘導に都合のよいものを意図的に選ぶということも起こりえます.
そのような意図的なサンプル集合でないとしても,賛否が半々(50%付近)で,拮抗している場合には,
統計学的に誤差が大きくなります.別のサンプル集合をとれば別の支持率がでます.
サンプル集合の撮り方による支持率のばらつきが標本(サンプル)誤差です.
賛否が拮抗している(50%付近のデッドヒート状態)ときは,信頼度95%(100回中95回はこの幅に収まる)で考えると,
7.1%(サンプル数200),4.1%(標サンプル600)の誤差があります.

さて,皆さんはEUに残留か離脱かの英国の選挙結果をどう思いますか.
私は英国が自分だけ離脱したことは,大変残念なことだと思います.
この国民投票前の世論調査では,どちらが過半数をとるか,さまざまな予測がありました.
ほぼ半々の予測だったわけです.
このようなデッドヒート状態の時には,予測の誤差は最も大きく,
今回のように3~4%くらいの逆転が起こっても不思議ではありません.
サンプル集合のサイズ(サンプル数)を大きくすると,この誤差は小さくなりますが
よほど大きくしなくてはならず,本番の投票のようになってしまいます.
英国の国民投票の結果は,離脱51.9%,残留48.1%(投票率72.2%)でした.

0

世論調査は正しいか

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.06.21] No.120
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
世論調査に関する記事は,日刊ベリタ(6/18)に掲載していただきました
http://www.nikkanberita.com/read.cgi?id=201606181029266
今週号は,これをもとに書き足したものです.
以前にも,英国世論調査(5/24号),ビデオリサーチ(5/31号)は,すでに取り上げています.
こういったものがどれほど正しいのか,疑問に思いませんか?
自分は聞かれたことがないのにどうして意見が反映されるのか?
わずかなサンプル集合で行った統計的推論が母集団の性質になるのか?素朴な疑問ですが,
これらは根拠のない不安ではありません.
明後日は参院選の公示で,それから選挙戦に突入します.
世論調査は週末に行われ,調査の方法はだいたいRDDという
「コンピューターでランダムに発生させた番号に調査員が電話をかける」方式です.
母集団は全国の全有権者で,調査に選ばれた回答数「サンプル集合」は,2,000から700程度です.
サンプル集合はこの程度のサイズだから,私は選ばれたことは一度もありません.
各地域からできるだけ均一なランダムサンプリングになるように,色々工夫をしているようですが,
誰もランダムサンプリングがなされたことを保証できません.
実際に偏ったサンプリングが行われて(意図的ではなかったが)予測が外れた例が昨年の英国総選挙でも起きました.
意図的に偏ったサンプル集合や小さなサンプル集合を採用することも可能で,世論操作は可能です.
出された数値は独り歩きします.
メディアのコメンテータは,世論調査で出た政党支持のわずかな変化を過剰に解釈する傾向があり,
証拠が推論をサポートしていない(統計的に有意でない)のに,公衆に党の運命が変わってきたと印象づけたりする.
何ポイント支持率上昇とかいうが,そのような変化を起こす因果関係を説明できる事実はあるのか私は問いたい.
アンケートの作り方(問の文章,およびそれらの配列順,回答用選択肢)は,回答結果に影響を与えます.
複数ある設問は,互いに独立に見えるが,実際はある種のパラメータで関連し合っている.
設問の配列順で,そして,回答を誘導していくことも可能です.
問題を良く理解している人しか答えにくいようにすることも可能です.
「○○のために,▲▲するのはどう思いますか」というような問いかけは巧みです.
条件付きで答えが決まるなら,条件がない問いには答えようがありませんから.
このような論理と因果関係は明瞭にして欲しいものです.
とにかく色々な原因で,サンプル集合には偏りが生じます.そのようなサンプル集合で解析した結果は,
サンプリング理論の予想外の誤差が起こります.
ーーーーーーーーーーーーー
最後に,先週末(6/17~19)時点の各社の世論調査から内閣支持率だけ掲載します:
日本テレビ:世帯数1487,回答数725,回答率48.76%,
内閣支持43.3%,内閣不支持39.5%
NHK:世帯数3035, 回答率66%,
内閣支持47%, 内閣不支持34%
朝日新聞:世帯数2371,有効回答1163,回答率49%,
内閣支持45%,内閣不支持36%
読売新聞:
内閣支持49%,内閣不支持38%

0

空間充填パズル

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.06.14] No.119
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
空間充填パズル

空間は正8面体だけでは隙間なく充填することは出来ません.
(1)正8面体と立方8面体を組み合わせて空間を充填することができます.
ペロブスカイト構造に見られる正8面体と立方8面体による空間の充填構造
(2)正8面体と正4面体を組み合わせて空間を充填することができます.
ダイヤモンド構造に見られる正4面体と正8面体による空間の充填構造

(1)の場合は,正8面体と立方8面体の個数比は1:1です.
どのようにして数えますか?
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/14/17051514/img_2?1445217129
(解答)
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/10/17507610/img_0_m?1465832802
赤い立方体の中に立方8面体が1つ納まっています.立方体の8つの頂点に
隙間がありますが,この隙間は正8面体の1/8の形です.したがって8つ集めると正8面体1つになります.
よって,個数比は,正8面体:立方8面体=1:1 です.

(2)の場合は,正8面体と正4面体の個数比は,1:2です.
どのようにして数えますか?
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568616/62/17051462/img_1_m?1453416995

(解答)
正8面体が辺を共有するように配列しています.赤枠の正方柱の中に正8面体が2つ入ります.
なぜなら,1つは丸々入り,赤枠内の8つの頂点周りにある間隙には正8面体の1/8の形が入るからです.
さらに,正8面体間には間隙があり,その形は正4面体(橙色)です.
ただし,赤枠の中に入るのは正4面体の1/2の形で,上側に(1/2)x4個,
下側も同様ですので合計4個が赤枠内に入ります.結局,個数比は; 正8面体:正4面体=1:2 です.

http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568616/28/16779028/img_7_m?1453418256
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/10/17507610/img_2_m?1465832802

■小梁(OSA工房)によるCube充填パズル
周期的な空間でできるこの詰め込み構造を,立方体の単位胞の中につくります.
そのためには正8面体を分割した部品にする必要があります.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568616/28/16779028/img_5_m?1453418256

0

3回対称の繰り返し模様

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.06.07] No.118
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
早いものでもう6月です.私は,どれも進まないまま大変焦っています.
皆様は,順調な日々をお過ごしでしょうか?
これから,万華鏡と繰り返し模様の話を始めようと思います.

平面群P3m1とP31mの対称性はとてもよく似ています.
以下の2つはともにエッシャーの作品です.比較鑑賞しましょう.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/566714/93/17489893/img_0_m?1465078055

どちらも3回回転対称のある繰り返し模様ですが
鏡映面の入り方が違います.
P31mの方には,鏡映面が集まっていない3回対称軸がありますが
P3m1の方の3回対称軸の場所には,すべて鏡映面が集まっています.
両者の絵から受ける微妙な感覚の差は,
このような所にあるのではないでしょうか?

■正三角形の鏡室の万華鏡を作ると,P3m1の壁紙模様が観察できます.
しかしながら,P31mの壁紙模様は自然には得られません.
その理由は,P31mでは鏡室の内部の図柄が3回対称である必要があるからです.
鏡室の図柄は,ガラス屑が自然に分布して作る図柄なので,
それが3回対称であるなどという偶然はあり得ません.

(注)平面群の記号P31m,P3m1の記法について:
P:単純格子,3:紙面に垂直な3回回転軸,
単位胞の辺(並進方向)に垂直な鏡mの有無,その他の方向の鏡mの有無
鏡のないときは1と記す.

0

視聴率調査は正しいか

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.05.31] No.117
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
いよいよここにきて選挙の動きが激しくなってきました.
はたしてダブル選挙があるのかないのか?
今回は,前回の「世論調査は正しいか」に続いて,「視聴率調査は正しいか」です.
これは,日刊ベリタに掲載(05/30)したものです:
http://www.nikkanberita.com/read.cgi?id=201605300831101

アメリカの視聴率調査会社ニールセンが,機械による視聴率調査をスタートさせたのは1961年.
日本でも1962年9月にビデオリサーチが設立され,12月より機械による視聴率調査が始まりました.
(ビデオリサーチは電通系列)
関東,関西,名古屋の3つの地区では,それぞれ600世帯にピープルメーターPMと呼ばれる装置がテレビに取り付けられ,
分ごとのデータが蓄積・送信されています.このシステムはPMシステムと呼ばれます.
この他に,オンラインメーターシステムというものがあり,全国に24地区(各地区の200世帯)で実施されています.
http://www.videor.co.jp/rating/wh/03.htm
例えば,関東地区には15,000,000世帯ありますが,そのうちから選ばれた600世帯だけが調査の対象になります.

全対象(母集団)の調査をするのが正確なのですが,実際には,“選ばれた”(サンプル集合)について調査をします.
全対象の調査(全数検査)は,国勢調査などの限られた調査だけです.統計量の解析は,サンプル集合について実施し,
それを母集団のものと推測します.
それが意味を持つ根拠には,サンプル集合は母集団の性質を代表しているということが前提にあります.
つまり,サンプル集合の作り方が,ランダムサンプリングによるということが前提にあります.
しかし,それがランダムサンプリングであるかどうか誰も保証できない.無作為に細心の準備をして実施しても,
サンプリングにバイアスがあり,サンプル集合に偏りがあることはしばしばあります.
2015年の英国総選挙で起こった外れた世論調査の原因研究報告については,前回のメルマガで述べました.

ビデオリサーチのサンプル数は,如何にも少ない感じがするでしょう.
サンプル数600は母集団の1/25,000(抽出率)です.ところがこれで大丈夫だというのです.
標本誤差(600世帯のサンプル集合で解析した統計量の母集団の統計量からのずれ)は,
視聴率10%(90%)では±2.4,20%(80%)では,±3.3,30%(70%)では±3.7,40%(60%)では,±4.0%,
50%では±4.1%です.
大きな母集団に対して,意外に少ないサンプル数でよい解析ができることになり,これが現在実施されている根拠です.
しかしながら,サンプル集合が母集団を代表している(ランダムサンプリングである)という保証はありません.
これらの議論はランダムサンプリングでなければ崩れてしまいます.
そして,サンプル数が少なければランダムサンプリングから外れる危険性は増加すると言わざるを得ません.
私たちの感じる心配は,いわれのないことではないのです.
視聴率調査結果を皆さんはどこまで信じますか?
出された数字が独り歩きし,人々を誘導するのは,前回の世論調査と同じです.

0

世論調査は正しいか

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.05.24] No.116
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今年は選挙の年ですが,世論調査を鵜呑みにしてはいけません.
世論調査のためのサンプル集合は信用できますか?
母集団からサンプル集合を作るのに,
意見を聞く集団が偏っていることは良くあります.
視聴率調査のビデオリサーチのように,サンプル数の少ないものもあります.
母集団を代表しない偏ったサンプル集合では正しい情報が得られません.
ランダムサンプリングであるのが前提ですが
ランダムサンプリングであるかどうか事前に判定できません.
昨年6月の英国総選挙の世論調査では実際にそのようなことが起こり
保守党と労働党の票獲得は,予測された「統計的デッドヒート」が実現せず,
保守党が労働党に対し7ポイントの優位で下院の多数を勝ち取った.
選挙直後に,外れた世論調査の原因研究が
英国世論調査会議BPCと市場調査協会MRSによって立ち上げられ,
2016年3月に報告書(120ページの長文)が出た.
この報告書は大部のため,本稿への引用は,Tarranのエッセイによる(注).

報告書によると,サンプルが母集団を代表するものでなかったことが,
世論調査ミスの主原因であるというのだ.
世論調査組織が使ったサンプル補集の方法が,
労働党有権者を過剰に,保守党有権者を過少に系統的に集め,
適用された統計的調整手順も,これらのエラーの低減に効果がなかったという.
報告書が勧告する改善提案は,将来起こりうる世論調査ミスのリスクを低減するが,
リスクそのものを取り除くものではないことに注意しよう.

世論調査では,今後も非ランダムサンプリングを使用せざるを得ない.
ランダムサンプリング(確率的サンプリング)は,実行するのに,費用と時間がかかる.
しかし,非ランダムサンプリング(非確率的サンプリング)に比べて明らかに優れている.
非確率的サンプリングではサンプルに偏り(バイアス)が生じ易いのだ.
回答者がランダムに選択されるなら,母集団のすべてのメンバーに,調査参加者となる一定のチャンスがある.
これ自体は,得られたサンプルが,母集団の完全な代表であると保証するものではないが,
選択のランダム性は,代表されるグループの外部/内部を調整するためのサンプリング理論の適用を可能にする.
また,サンプルへ自己選択される可能性を下げ,回答者の採用過程で,バイアスがかかるリスクを軽減できる.
研究報告書を読んで失望する読者もいるだろうが,失望が畢竟実用主義への道を与え,
世論調査の難しさと不確実性を理解することになる.母集団でなくサンプルで解析するのだから限界がある.
世論調査は将来起こるかもしれない行動について,
有権者のようなよくわからない母集団を調べるので苦しい闘いに直面している.
世論調査の実施方法の高い透明性と,その推定の不確実性レベルを明確に伝える責任がある.
それぞれの政党の支持率の信頼区間と前回公開世論調査に対するそれぞれのシェア変化
の統計学的有意差検定を合わせて報告することを報告書は勧告している.

メディアのコメンテータは,世論調査で出た政党支持のわずかな変化を過剰に解釈する傾向があり,
証拠が推論をサポートしていない(統計的に有意でない)のに,公衆に党の運命が変わってきたと印象づける.
このようなことは避けるべきだ.

(注)https://www.statslife.org.uk/politics/2752

0

歩道タイルの市松模様の反転

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.05.17] No.115
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
皆さんお変わりありませんか.良い季節になりました.
今日は町の歩道で見かけたタイルの景色についての軽い話です.

■問
Fig.1Aをご覧ください.綺麗な市松模様が見えます.
確かに斜めから見ると(Fig.1B)コントラストがあります.
しかし真上から見ると(Fig.1C)コントラストがつきません.何故か?

Fig.1
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/77/17449077/img_3_m?1463289592

■正解発表
タイルの条線がコントラストに差を生じると思ったでしょう.その通りです.
条線に直角な横方向から浅い視射角で見下ろす場合Aと,
条線方向から浅い視射角で見下す場合Bを比較すると,前者Aの方が暗く見えます.
だから,条線が市松模様になっているタイル張りを,浅い視射角で見下すとコントラストの市松模様が見えます.
見る方向を90°変えると,いままで条線方向を見せていたタイルは,条線が横方向になりますので,
タイル張りの市松模様コントラストは逆転します.

では,条線の横方向から浅い視射角で見下すAは,条線方向から見るBより,
タイルが暗く見えるのは何故でしょうか?

Fig.2
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/06/17451706/img_2_m?1463289812

Fig.2をご覧ください.視射角θが浅い(A)の場合は,条線の底(図中の緑)が見えません.
しかし,(A)の場合でも視射角θが大きくなれ条線の底(図中の緑)が見えます.
実地にタイルを観察してみると,条線は1mm程度凹んだ底で,
その上,条線の底はタイルの凸部より白くなっている(散乱光の光量が多い)のです.
従って,視射角が浅くなると条線(図中の緑)から散乱光が視点まで来なくなりタイルは暗く見えます.
一方,条線の方向から見た(B)の場合は,視射角にかかわらず,いつも条線の底(図中の緑)が見えますので,
タイルは大体明るく見えます.
この解答へのヒントとして,浅い視射角で撮影した写真(Fig.1B)と,
タイルの真上から撮影した写真(Fig.1C)を掲載しました.

■以上で,この話は完結で,私のfacebookに掲載したところ.読者の方から反響やコメントがありました.
写真(Fig.1A)で,横方向の条線タイルの中がさらに明・暗のコントラストに2分されている所があるのは何故かという疑問です.

写真(Fig.1A)の写真撮影では,できるだけ見やすく,均一な効果が出る場所を選ぶのに苦労しました.
説明通りに均一な市松模様のできる場所はありますが,1枚のタイルの中が明・暗に2分される場所もあるのです.
言及しないつもりでしたが,その説明が必要になり考えました.
タイル真上から見た写真(Fig.1C)を詳しく見なおしても,タイルの条線の幅も深さも均一です.
このような1種類のタイルで市松模様を作るという条件で,この現象の説明を考えるなら,
タイルが平面ではなく,タイルの表面が円柱表面のように(条線方向を円柱の軸方向)わずかに反っている場合
しか考えつきません.しかし,facebookの読者は,タイルの反りでの説明は満足しないようです.
そこで,タイル張りの別の場所(Fig.3A)で,真上から撮影した写真(Fig.3B)がありましたので,それも調べて見ました.
写真(Fig.3B)を見ると,タイル内の半分領域の条線がつぶれているタイルもあることがわかります.
これでこの疑問は解決しました.
つまり,完璧な条線のタイルだけで市松模様を作るという仮定から導けるパターンではなかったのです.
Fig.3
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/06/17451706/img_3_m?1463289812

0

対称性とピエール・キューリーの原理

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.05.10] No.114
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
連休も終わってしまいましたが,皆さまお元気でお過ごしでしょうか.
大変な日々をお過ごしの方もおられるでしょう・お見舞い申し上げます.

今回は,対称性とキューリーの原理について紹介します.
ピエール・キューリーは,私の最も好きな科学者で,
キューリーの原理も学生の頃から今までずっと心を奪われている事柄です.
半導体や誘電体など色々な材料で,色々なデバイスが作られています.
例えば,半導体結晶を舞台にして,光子や電子が演じるパフォーマンス
を利用するのが,半導体デバイスです.舞台となる結晶世界は周期的なデジタル世界です.
(周期的な空間は「結晶空間」とも呼ばれます)
周期的な空間の数学(対称性)はとても重要で魅力的,いつも私の心をとらえていました.
この分野では,フェドロフ,シュブニコフ,ベーロフ,ザモルザエフなどの学者を輩出した
ロシアが大変魅力的で,1970年代にはロシアの本を一生懸命勉強したものです.

結晶の幾何学(数理結晶学発展史),結晶空間(周期的空間)の対称性
の話は,ぜひ取り上げたいと思っていますが,
今回は,キューリーの原理の易しい紹介にもどります.

色々な「系(もの)」や「そこで起こる現象(こと)」の理解に,「対称性」の考え方が使われます.
ピエール・キューリーは,“結晶という舞台”で起こる”物理現象の対称性”を研究しました(1894).
水晶結晶の圧電効果はその例です.
「舞台の対称性は,その舞台で起こる現象の対称性に反映されるべきだ」という因果律は,
キューリーの原理と呼ばれます.
色々な分野で,原因(舞台)と結果(現象)のそれぞれの対称性間でこの因果律がなりたちます.
例えば,結晶にX線ビームをあてたとき,結晶を通過したX線の作る回折パターンの対称性には,
その原因となった結晶の対称性が反映されています.
あるいは,運動量保存則が成り立つのは,空間が無限に広く一様であり,
平行移動しても変わらないからです.
エネルギー保存則が成り立つのは,時間に関して変わらない時です.

環境舞台とそこで生きる生物の形.結晶構造とそこで起こる物理現象.
万華鏡の鏡室と生じる繰り返し模様.
こられもみんな対称性の因果律が支配しています.
「もの」や「こと」の対称性とは,変換をほどこしても,
「もの」や「こと」が全体として変わらない性質です.
例えば,回転や鏡映で系全体が不変なら,その系には回転対称,鏡映対称があるといいます.

音楽や詩歌の形式や韻律.
絵画,壁紙模様,タイル張り模様,建物,などのデザイン.
.....,芸術を始め色々な分野で,対称性の考え方が役立ちます.

0

数学月間ご案内

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.05.03] No.113
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
連休の中日となりました.良い休日でありますように.しかし,
地震で落ち着かない日々を過ごされている方もおありでしょう.
お見舞い申し上げます.

今年の数学月間懇話会(第12回)のお知らせです.
日時:7月22日,14:00~17;00
場所:東大駒場キャンバス,数理科学研究科・002号教室
1.数学者って,どんな顔をしてる?
  亀井哲治郎・河野裕昭(亀書房・写真家)
2.世論調査は正しいか
  松原望(東京大学名誉教授,聖学院大学)
3.ガン登録とガン統計
  田渕健(東京都立駒込病院)
参加費無料.
17:30より構内カフェテリアにて懇親会(各自払い)
問い合わせ先:sgktani@gmail.com(日本数学協会,数学月間の会)
みなさんのご参加をお待ちします.

始めの話題は,JIR(ジャーナリスト・イン・レジデンス)という活動の紹介です.
編集者の亀井さんは,写真家の河野さんと組んで,
数学者へのインタビューと写真撮影を続けて,すでに150人を超える人たちを取材しました.
今年のテーマは統計学です.次に,2つの話題を取り上げます.
世の中は不確かなものやことばかりで確率で記述されます.
確率の正しい理解が必要です.
従来,得られなかったようなデータも多量に収集できる時代になりました.
でも,データ収集が恣意的であったり,不合理な解析をしたりすると
どんな結論でも導くことができるので,だまされないように要注意です.

(その他お知らせ)
5月22日に,日本数学協会のシンポジウムがあります.
こちらの方は,協会員は無料ですが一般の方は若干の参加費がかかります.
場所:大東文化大学
13:30-14:30 岡本龍明(NTT),暗号
14:50-15:50 加藤文元(東工大),ライプニッツ

■雑談:エンブレム
このデザインの生まれるまでを,勝手に推理してみました.
おそらく次の順番で,右端のデザイン(パラリンピック)に到着したのでしょう.
地球(ステレオ投影)のイメージ(左端)から,2番目の市松模様を作り,
赤い円領域をくり抜くと,パラリンピックのエンブレムになります.
ここまでは自然ですが,これからくり抜く穴を中心に持っていくのは,
平行移動のパズルで難しい.でもいくつかのユニットを平行移動だけで入れ替えると
オリンピックのエンブレムができます.
そこで,次の疑問が浮かびました(未解決です).
オリンピックのエンブレムが3回回転対称に落ち着くのは何故でしょう.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/572283/97/17424497/img_0_m?1461891630

0