数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
STEM教育(ステムきょういく)とは、"Science, Technology, Engineering and Mathematics" すなわち科学・技術・工学・数学の略語で,AIやArtも加えてSTEAM教育といわれる理数教科の統合教育であります.STEM教育は,米国で2003年ごろから始まりました.近年,日本でもSTEM教育の必要性が叫ばれるようになりました.これらの科目の中で統合的に数学を教える試みが重要ですが,まだ成功しているとはいえません.われわれが訴えている数学月間の視点は,STEM教育へも貢献できるものと思います.
数学はあらゆる文化・学術の基盤で,科学,工学,産業,芸術,医学,経済など,社会のあらゆる分野を数学が支えています.しかしながら,一般市民,特に,生徒・学生とその両親は,数学学習を敬遠する風潮にあり,これが数学力の低下をもたらしています.米国の「数学月間」MAM(Maths Awareness Month)は,議会上院が決議し、続くレーガン大統領の宣言(1986年4月17日)により国家的な行事として開始されて今日に至ります.米国MAMは,数学系の学協会が参加するJPBM(Joint Policy Boad for Maths)が,毎年,社会を反映した数学テーマを選定し,毎年4月に種々の数学イベントを展開し,国民からの事後評価も受けます.皆が知りたい時局の数学を,種々のレベルで学習できるウエブ・サイトが充実し,そこにエッセイや論文が集積され,そのテーマの数学を基礎から最先端まで,学生が独習できる優れたガイドになります.MAM期間には,一般から専門家まで,小学生から大学生まで,いろいろなレベルのイベントが全国で展開されます.レーガン宣言で国家的行事のMAMを決断した背景には,国民の数学力が低下し,米国の産業力も低下するとの焦りがあったといわれます.日本も同様な状況にあり,国家的行事の数学月間が望まれます.
社会のさまざまな分野と結び付けて数学を知るという数学月間はSTEM教育と精神は同じです.その活動も数学愛好者内にとどまっているのでは意味がなく,社会に横断的に呼びかけ活動し,「社会と数学の架け橋」になることが必要です.多くの方々が数学月間の会に参加されることを願っております.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.11.13] No.241
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
いろいろな多面体の見える万華鏡(立体万華鏡と仮に呼ぶことにします)を作っています.
アルミ板やプラスチックの鏡は像がきれいに映りますが
ミラー紙を用いても,ここで取り上げているような立体万華鏡は良好に作れますので.
チャレンジしてみてください.
球面正多面体は,アラブの数学者,アブル・ワーファ(1000頃)に始まります.
球面正多面体{p,q}は,球面正p角形が,頂点でq個集まっているもので,
球面正p角形の1つの内角は2π/qです(図D).そして,球面p-多角形の辺はすべて大円であることに注意しましょう.
ここで例に取り上げるのは,正12面体に相当する球面正12面体=球面{5,3}多面体です.
メビウスは多面体万華鏡を発明します(1850)が,これは,球面p-多角形を.
2p個の球面直角3角形に分割することを使います(図A).
分割された3角形の角度は,π/p,π/q,π/2,このような直角3角形を(p,q,2)のように記述します
万華鏡は,3角形(赤く塗った)の各辺となる大円を鏡にすると得られます.
Aは,メビウス万華鏡になり,正5角形の面を10個の直角3角形に分割しています.
Bは,正5角形の面を5個の2等辺3角形に分割しています.Bには,Aに存在した鏡映対称面が1つ消えています.
Cの赤く練った正3角形の周囲の辺の大円を鏡に置き換えて万華鏡を作れば,正20面体の映像が見えます.
それぞれの映像写真は続きに
■正12面体像の見える万華鏡
・左図は,この展開図(直角3角形ーピラミッド万華鏡)による正12面体の映像で,正5角形の面が10分割されています.
・右図は,正5角形の面の1/5が万華鏡の内部(非対称領域)にあるような万華鏡による映像です.
次の写真は,やはり正5角形の面の1/5が万華鏡の内部(非対称領域)にあるような万華鏡ですが,
展開図に示す光の窓になる部分が円形であるため,球面正12面体の映像が見えます.
・
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.10.16] No.237
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
フィボナッチ数列というのは,1,1,2,3,5,8,13,....のように続く数列です.
この数列のn項a(n)は,a(n)=a(n-1)+a(n-2)と再帰的に定義できます.
フィボナッチ数列は,様々な分野の思いがけないところで出現します.
この再帰的な機構が支配している現象が様々な分野にあるからです.
集合S(n)={1,2,3,....,n}を考えます.この集合の上の置換を考えます.
置換の結果は,n個の文字の順列になりますから,n!個の置換があります.
さて,文字が始めの位置から移動しない,あるいは,たかだか隣への移動だけが許される
と制限してみます.つまり,どの文字も1つおいた隣以上の移動はしない置換だけを対象にします.
このような置換を,「距離1の置換」と呼ぶことにします.
具体例(次の図)を示すので,「距離1の置換」とは何かは理解できるでしょう.
Qestion
S(n)上の「距離1の置換」の数をa(n)個とします.n≧1に対してa(n)を求めなさい.
Answer
S(1)に対しては,a(1)=1
S(2)に対しては,a(2)=2
S(3)に対しては,a(3)=3
であることを,確認してください.
次は,a(n)=a(n-1)+a(n-2)が成立することを証明します.
・S(n)の最後のnを動かさない「距離1の置換」の数は,S(n-1)上の「距離1の置換」の数a(n-1)と同じ.
・S(n)で最後のnを動かすとすれば,nの行先はn-1で,空いたnの位置に来れるのはn-1しかありません.
従って,この場合の「距離1の置換」の数はS(n-2)上の「距離1の置換」の数a(n-2)と同じです.
さて,S(n)の最後のnが動くか/動かないかは互いに背反の事象ですから,
両者の和 a(n-1)+a(n-2)がa(n)に等しくなります.(証明終わり)
この式の形は,フィボナッチ数列の定義と同じ形ですから,
a(n)は,第1項が1,第2項が2から始まるフィボナッチ数列になります.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.10.30] No.239
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
フィボナッチ数列F(n)は,
1,1,2,3,5,8.13,21,34,.....のような数列です.
F(n)=F(n-1)+F(n-2) と再帰的に定義されます.
このような数列は,いろいろな所に現れます.
得られた数列が,フィボナッチ数列であることを証明するには数学的帰納法を用います.
今回は,その典型的な例を取り上げましょう.
■抵抗ラダー回路
ラダーとは梯子のことで,梯子型に抵抗を並べた回路を,抵抗ラダー回路といいます.
例えば,次の図は3段のラダー回路です.
A-Bの端子(入力側)から見たインピーダンスをZ_i,
C-Dの端子(出力側)から見たインピーダンスをZ_oとします.
この3段のラダー回路は,A-B側(入力側)にR1の抵抗があるが,C-D側(出力側)にはないので,
左右対称ではありません.入力側から見たインピーダンスと出力側から見たインピーダンスの比から,
減衰率Z_i/Z_o≡Aが定義されるが,A>1なのでアッテネータ(減衰器)として使えます.
抵抗値をすべて同じR1=R2=1とすると,
ラダーの段数mを増やしていくと,減衰率A(m)=F(2m+1)/F(2m-1)は,2/1,5/2,13/5,34/13,...と
フィボナッチ数列が出てきます.
(参考)計算は以下をご覧ください.証明は数学的帰納法を使う練習になります.
■ラダー回路の応用例
ラダー回路は,アナログ信号が入力されたときに,そのアナログ信号の大きさを,瞬時に8水準に分類する(8ビットのデジタル化)回路(これを8ビットのAD変換といいます)に使われたりもします.
次の図をご覧ください.
コンパレータが7個並列に並んでいますね(カスケード結合).
入力信号の大きさを8水準に分類するのは,
7個のコンパレータの働きで,
その境界値となる7段階の基準電位をそれぞれに供給します.
この7つの基準電位を発生するのが,
一番左の直列に並んだ抵抗ラダー回路です.
nビットのAD変換には(2^n)-1個のコンパレータと基準電位がいります.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.11.07] No.192
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
与えられた任意の角の3等分は実在しますが,定規とコンパスだけでは,
これを作図できないということは多分ご存知でしょう.
以下は,ギリシャの幾何学者達が熱心に研究した不可能作図問題です:
(1)与えられた正立方体の2倍の体積の正立方体を作れ
(2)与えられた円と同じ面積の正方形を作れ
(3)任意に与えられた角を3等分せよ
もちろんこのような図形は実在しますが,作図手段を,「定規とコンパスだけを有限回使って」と制限して作図ができるか?という問題です.
■長さa, bの2つの線分が与えられたとき,直線定規とコンパスだけを用いて,
加法a+b,減法a-b,乗法a・b,除法a/b,開平√a
の作図が可能なことは,以下の図をご覧ください.
⇒定規とコンパスで作図できる長さ
これ以外の作図(例えば,立方根の作図)は定規とコンパスでは出来ません
(証明は難しいのでスキップ).
(1)ではx3=2(a3)だから,2の立方根の作図が必要
(2)では,x2=π(r2)だから,πという無理数の開平の作図が必要
(3)では,x3-3x-a=0という角3等分の方程式の根であるxの作図が必要です.
[ただし,aは,与えられる角度Ω(cosΩ=a/2)により決まる]
例えば,Ω=90°(a=0)のときは,x=√3の作図になり,これは可能です.
しかし,一般角の場合,この3次式の解には3乗根が入ってきますので,作図は出来ません.
注)この角3等分の方程式の導出は以下の図をご覧ください.
⇒任意の角度の3等分方程式
例として,Ω=60°(a=1)のときは,x3-3x-1=0となり,
p+q√r (p,q,rは有理数)の形の解を持たないので,
角の3等分の作図は(定規とコンパスでは)できません.
ある折り紙の本に正5角形の作り方がありました.
複雑な手順なので整理して原理だけ説明しましょう.
正5角形の中心角72度を作るミソは,以下のようです.
これで,Θは72°になることを証明できますか?
答,72°になりません.
約71.56...°です.
この折り紙手順で作れる角度は,72°に非常に近いので
実際の折り紙工作では非常に良い方法といえるでしょう.
でも,幾何の命題としては正しくないのです.
話は別になりますが,
正5角形を,コンパスと直線定規で作図できます;
例えば http://www.natubunko.net/zukei/png/penta03.png
ここから図を引用しましょう.
さてそれでは,この作図を
折り紙の手順で追いかけてみましょう.
折り紙の手法で,「円を描く」というのは,可能でしょうか?
コンパスの使い方には2通りあます;
1)所定の長さを所定の方向にとる.
2)2つの円の交点を求める
(与えられた2点から,それぞれ与えられた距離だけ離れた点を求める).
このうち,1)は折り紙手順で可能ですが,2)は折り紙手順では不可能です.
折り紙の手順で,正5角形の作図を追いかけてみると,(4)の段階で,2つの円の交点を求めることが必要になります.折り紙ではここができません.
でも,全く違う折り紙手順があり,正5角形が作れたりしないでしょうか?
皆様,挑戦されて,発見したら教えてください.
例えば,定幅紙(帯)を用いて,図のような折り紙を折ることができます.
どうしてこのように折り紙で正5角形が作れるのかを解析する必要があります.試みてください.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.07.02] No.226
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
暑い日が続きます.皆様お変わりありませんか.
夏休みは数学月間(7/22-8/22)の季節です.毎年,月間初日の7/22に
数学月間懇話会を実施して来ましたが,今年は1月遅れの8/22に実施します.
どうぞお気軽にご参加ください.
■7月の予定
このメルマガの届く7月2日朝は,娘のボトルシップの個展を見にイギリス,サンダーランドに出発の日です.
https://www.facebook.com/photo.php?fbid=10216317238867252&set=a.1776604738559.2105958.1342581912&type=3&theater
サンダーランドでは帆船レースもあります.
その後,イギリス国内を旅行します.そのため,インターネットのアクセスポイントが確保できない場合もあり,7月のメルマガ残り4回は発行できないかも知れません.その時はお許しください.
ーーーーーーーーーーーーー
■今年のとっとりサイエンスワールドは:鳥取(7/29),米子(8/5),倉吉(9/2)です.7/29,8/5の材料は発送しましたが,私が参加できるのは9/2の回です.
ーーーーーーー
■数学月間懇話会(第14回)のお知らせ
●場所:東大駒場キャンバス,数理科学研究科・002号教室
●日時:2018年8月22日,14:00-17:00
●参加費無料.直接会場にお出で下さい.
●主催:数学月間の会,日本数学協会
●問い合わせ:sgktani@gmail.com
●プログラム:
1.企業での数学活用の実際,渡邉好夫(リコーICT研究所AI応用研究センター,技術顧問)
2.エントロピーと対数,対称性,宮原恒昱(首都大学東京名誉教授・客員教授)
3.パズル玩具と数学の接点-「解ければ終わり」ではもったいない,秋山久義(数学遊戯研究家)
●17:30より構内カフェテリアにて懇親会(飲食は各自払い)
皆さんのご参加をお待ちします.
今年は,例年(7月22日)とちがい8月22日です.ご注意ください!
■口上(企画意図)
(1)googleやamazonなどが典型ですが,色々なデータが収集され予測に使われているのは,皆さんも実感されていることでしょう.このビッグデータの時代に,企業もデータサイエンスに無関心ではいられません.
その一方,機器の設計では,動作原理のシミュレーションなどで物理に立脚した数学モデルが企業でも活躍します.数学が技術を支えているのが具体的に実感できるでしょう.
(2)天才ボルツマン(オーストリアの物理学者)の墓碑には,S=k・log(W)と刻まれているそうです.Sはエントロピー,Wは状態のとり得る”場合の数”,log(W)は”場合の数”の対数をとること,
kはボルツマン定数です.対数をとると,log(A・B)=log(A)+log(B) のように,積が和になり,”場合の数”の積は,エントロピーの和に対応させられます.
だからここに対数がでてくるのですね.ボルツマンは1906年自殺しました.
分子の実在も証明されない時代に,気体分子運動論,統計力学を築いた天才は受け入れられませんでした.あと1年頑張っていればよかったのですがね.
(3)パズルやマジックの多くは,数学に深いかかわりがあります.
試行錯誤して,答えが見つかればそれで終わりとするのが普通です.
でもそれでは勿体無い.正解が発見でき,本質に肉薄した所にいるのだから,
その奥にある数学原理が発見できるでしょう.2010年没のマーチン・ガードナーの著作が懐かしいですね,おいでになれば,珍しいパズルグッズにも触れることができます
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.08.07] No.227
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
暑いです.皆様お元気でしょうか.
このひと月に日本では色々なことが起こりました.
皆様の方では豪雨被害や台風被害は大丈夫だったでしょうか.
7月は私はひと月間お休みをいただきましたが,
お休み前のメルマガで予定をお話したように,
イギリス,サンダーランドの国立ガラスセンターで開催された,
ボトルシップ(ガラスの中のガラスの船)の綾子の個展と講演を聞きました.
アン王女もボトルシップの個展に訪問されましたので,
私はパパラッチのように写真を撮りました.
帆船レースは54隻が参加し,サンダーランドからデンマークまでの
レース1では,MIR(ミール=平和丸,ロシア)が1番だったようです.
およそ3日で横断します.
これらの詳細は,私のブログのイギリス旅行記3-6に書きました.
https://rdsig.yahoo.co.jp/blog/article/titlelink/RV=1/RU=aHR0cHM6Ly9ibG9ncy55YWhvby5jby5qcC90YW5pZHIvMTg2MTA0MjUuaHRtbA--
その後,イギリス各地を見学して回りましたので,
詳細はブログのイギリス旅行記の続編をご覧ください.
■お知らせ
とっとりサイエンスワールドは,9月2日のin倉吉を残すのみとなりました(私は参加します).
数学月間懇話会(第14回)は,8月22日,14時から東大駒場で実施します.
興味深い講演が3つあります.お気軽にご参加ください.
■
写真はイギリスで見聞した面白い形,セパタクロウのボールの形です.
このおもちゃは,サンダーランド博物館で売っていました.
6色のリングが組み合わさってできています.
リングを切ってばらして再組み立て直してみました.
思ったより樹脂が固くて編み難く扱いにくいです.
テープを編んでセパタクロウのボールを作った方が楽でした.
さて,このボールは,正5角形と正3角形からできており,
頂点のまわりに,3角形,5角形,3角形,5角形の順に集まっていますから
シュレフリ記号で[3,5,3,5]半正多面体です.この多面体には対称心があります.
点群は正12面体群の対称性です.
この模型自体が5回対称軸による色が保存される軌道からなり.正12面体には6本の5回軸がありますから,6色の軌道が組み合わさってできています.
5回回転軸は5色の循環と1色の保存と結び付き,3回回転軸は3色づつ2組の循環と結び付きます.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.08.14] No.228
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今回は,クラッグサイド城での見聞を紹介します.
クラッグサイドCragsideというのは,Nothunberland 国立公園内, Newcastleから北北西50kmの付近にあります.
アームストロングWilliamArmstrongの居城.アームストロング(1810-1900)はニューカッスル出身の発明家でアームストロング社を設立しました.
水力を動力とする回転機,クレーンの発明.アームストロング砲や戦艦造船事業です.
日露戦争時の戦艦,三笠など皆アームストロング社製です.金剛などの主砲もアームストロング社製.
日本は,弩級戦艦(ドレッドノート型)の造艦をイギリスから学ぶが,その後,超弩級の大和などを作るようになる.
日本の建艦技術の先生である.購入した戦艦の改装は何度か行われたが,装甲板にドリルの歯がたたず鋼材の硬さに舌を巻いたという話をどこかで読んだ記憶がある.
Cragside城の内部は,リフトを始め調理装置まで,さまざまな器具の動力に水力による回転が伝達されている.
自己の開発したメカ技術の実用化テスト場のようでもある.
クレーンで成功したのだが,建物にも動滑車を使ったメカが使われている.
アルキメデス螺旋(写真)は,水路の落差で螺旋軸を回転し水力発電機を回す.
あるいは螺旋軸を電力で逆転すれは揚水もできる.
実験室の展示には静電気発電や不思議な実験装置の展示があり面白い.
■クラッグサイドCragsideで見たモザイク模様
これら(5つ)はすべて同じ対称性(P4mm)に分類されます.一般に壁紙模様の対称性(平面群)は17種類ありますが,クラッグサイドでは.P4mmの模様ばかりが使われていました.
ーーーーーーーーーーーー
■訃報
数学月間設立に尽力された片瀬豊氏が,8月8日に亡くなりました.
通夜:8月18日,6時から
告別式:8月19日,11時から
いづれも,横浜港南台,くらしの友にて
(くらしの友の住所は)
神奈川県横浜市港南区港南台4丁目24-10
なお,8月22日の「数学月間懇話会(第14回)」は故人の遺志を引き継ぎ予定通り実施します.
場所:東大駒場キャンバス,数理科学研究科・002号教室
日時:2018年8月22日,14:00-17:00
参加費無料
1.企業での数学活用の実際,渡邉好夫(リコーICT研究所AI応用研究センター,技術顧問)
2.エントロピーと対数,対称性,宮原恒昱(首都大学東京名誉教授・客員教授)
3.パズル玩具と数学の接点-「解ければ終わり」ではもったいない,秋山久義(数学遊戯研究家)
いずれも問い合わせ先:sgktani@gmail.com
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.08.21] No.229
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
参考
9月2日は,とっとりサイエンスワールドin倉吉(未来中心にて)に行きます.
今年の万華鏡は,去年のものより少し高級になり3枚鏡です.
きれいですよ.お近くの方どうぞご参加ください.
今日の話題は,多面体の見える万華鏡です.
reciprocalという言葉があります.経済などでは,互恵的とか対等とかいう意味で使われます.
結晶学では,結晶格子crystal latticeに対して,逆格子のことをreciprocal latticeといいます.
両者の関係は,多面体でいうと,面を頂点に,頂点を面に変換した多面体
(これを双対dualな多面体という)の関係と同じです.
例えば,シリコンの結晶格子は面心格子で,ディリクレ胞を描くと菱形12面体です.
シリコンの逆格子は体心格子で,ディリクレ胞を描くと{6,6,4}半正多面体,いわゆるケルビン立体です.
結晶格子中のデリクレ胞と逆格子中のデリクレ胞は,このように互いに双対です.
格子に対して逆格子reciprocal latticeとはうまく名付けたものです.
もちろん,対称性はどちらも同じ,正6面体の対称性です.
作製した万華鏡は,左から覗くと菱形12面体が,右から覗くとケルビン立体が観察され,両者の対称性は同じであることを理解するのに役立ちます.