ブログ倉庫

MRI装置の話

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.11.14] No.193
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
皆様お変わりありませんか.MRI(核磁気共鳴イメージング)の話です.
私は,今年は2回MRIの測定をし,9月末に手術をしましたが,今は絶好調です.
MRIを撮ったことのある方もおられることでしょう.あのカタカタだのビーだの
ほとんど冗談かと思うようなふざけた音がしますが,1.5T(テスラ)という強い磁場の中で
装置が動くためにあたかもスピーカーと同じように振動する装置の出す音です.
それにしてもなんとかならないものか,
振動しないように作るにも,今でも何トンという重量ですから無理でしょう.
一方,画像の分解能を良くすれば,測定時間は増えるのが常識ですが,
分解能を上げて,かつ,測定時間も短縮できる「圧縮センシング」という数学的な方法があります.
その前に,今日はMRIの装置の仕組みについてお話します.
■プロトン(水素の原子核)はスピンを持ち,磁石の性質(核磁気)があります.
強い静磁場下に置かれたプロトン核磁気は,磁場に沿ってだいたい向きが揃い,
歳差運動している状態です.歳差運動の周波数(ラーモア周波数という)は,
磁場が強いほど高く,MRI装置の静磁場は1.5T程度と超強力なので,
ラーモア周波数は64MHz(ラジオ電波の周波数領域)程度です.
静磁場下のプロトンに,このラーモア周波数の電波が照射されると吸収共鳴が起こり,
核磁気の歳差運動の振幅(周波数は変わらない)が増大しほとんど横倒しの状態で回転
(古典論的なイメージ)しています.
一方,歳差運動をしているプロトン核磁気からは同じ周波数の電波が放射されるので,
これを検出することができます.
■生体組織は,水をはじめ水素原子と結合したいろいろな組織です.
つまり,プロトン(水素の原子核)核磁気は組織の至る所に分布していて,
その水素の属する組織の環境(診断情報)がそのプロトン核磁気の性質に反映されています.
すなわち,核磁気の歳差運動の縦緩和,横緩和という現象に,そのプロトンが含まれる水素周囲の違いが出ます.
緩和というのは,電波の照射を止めると,励起されていた核磁気の歳差運動が定常状態に戻ることで,
静磁場方向の核磁気成分の復元緩和を「縦緩和」,静磁場に垂直面内の成分の減衰緩和を「横緩和」といいます.
組織の各点で,これらの緩和定数を測定し,マップに表示できれば,
診断に役立つ組織の特徴を反映したイメージングになります.
■さて,組織画像の位置情報はどのようにして得られるのでしょうか.
これがなければ画像として見ることができません.
断層測定をするには,検出器に到来する電波が,
1つのスライス平面から来るものだけ集める必要があります.
このためには,静磁場の他に傾斜磁場を印加します.
傾斜磁場はさきほどの静磁場とは別で,ペアのコイルによって発生する
(数十mT/m程度の強さ)もので,静磁場方向をz軸とするとz方向に沿って変化する傾斜磁場,
x方向に沿って変化する傾斜磁場,y方向に沿って変化する傾斜磁場の3種類があります.
傾斜磁場があると,空間内で磁場の大きさが一定になるのは平面になります.
例えば,静磁場方向と同じz方向の傾斜磁場を印加すると,磁場一定の平面はz軸に垂直な平面です.
プロトン核磁気のラーモア周波数は,磁場の強度に比例するので,
共鳴吸収する電波の周波数をスキャンすれば,
z軸に垂直な各断層平面に並ぶ核磁気からの電波を順次採取することができます.
次に,各断層面内の(x,y)位置情報はどのように得るかというと,
断層内のプロトンの歳差運動を励起した後に,x傾斜磁場,引き続きy傾斜磁場の印加を行います.
x傾斜磁場印加でx軸に沿って歳差運動の周波数が変化し,その場所から放射される電波のx座標情報
(周波数エンコーディング)が得られます.
xおよびy傾斜磁場の印加でy軸に沿って歳差運動の位相が変化し,
y座標情報(位相エンコーディング)が得られます.
傾斜磁場を印加して,空間の位置情報を得,画像化を可能にしたのは,
Lautergur(1972)の発明で,2003年のノーベル賞を受賞しました.
■緩和時間の測定は,歳差運動の励起後,照射電波を切って行うので,
立ち上がり時間も考慮した電波照射の複雑なパルスシークエンスになり,
256x256画素の測定でもかなりの時間を要します.高分解能画像を得るには,
正攻法ではさらに細分化した画素数の測定が必要になり膨大な測定時間になるでしょう.
これを解決し,MRIの高分解能かつ高速化を実現したのは,
以下で言及する予定の「圧縮センシング」という数学方法です.

0

理科・実験 MRI装置の画像化の仕組み★

MRI(核磁気共鳴イメージング)

■プロトン(水素の原子核)はスピンを持ち,磁石の性質(核磁気)があります.
強い静磁場下に置かれたプロトン核磁気は,向きは揃い,歳差運動している状態です.歳差運動の周波数(ラーモア周波数という)は,磁場が強いほど高く,MRI装置の静磁場は1.5T程度と超強力なので,ラーモア周波数は64MHz(ラジオ電波の周波数領域)程度です.静磁場下のプロトンに,このラーモア周波数の電波が照射されると吸収共鳴が起こり,歳差運動の振幅が増大し横倒しの状態で回転(古典論的なイメージ)しています.一方,歳差運動をしているプロトン核磁気からは同じ周波数の電波が放射されるので,これを検出することにします.
生体組織は,水をはじめ水素原子を含むいろいろな組織です.つまり,プロトン核磁気は組織の至る所に分布していて,その水素の属する組織の環境(診断情報)がそのプロトン核磁気の性質に反映されています.すなわち,核磁気の歳差運動の縦緩和,横緩和という現象に違いが出ます.照射電波を切ると,励起されていた核磁気の歳差運動が定常状態に戻る(緩和)のですが,静磁場方向の核磁気成分の復元緩和を「縦緩和」,静磁場に垂直面内の成分の減衰緩和を「横緩和」といいます.
組織の各点で,これらの緩和定数を測定し,マップに表示できれば,診断に役立つ組織の特徴を反映したイメージングになります.
■さて,画像の位置情報はどのようにして得られるのでしょうか.
このためには,静磁場の他に傾斜磁場を印加します.傾斜磁場はペアのコイルによって発生させ,数十mT/m程度の大きさです.静磁場方向をzとするとz方向に沿って強度が変化するz-傾斜磁場,x方向に沿って強度が変化するx-傾斜磁場,y方向に沿って変化するy-傾斜磁場の3種類があります.傾斜磁場の印加された空間内では磁場の大きさが一定になるのは1つの平面です.例えば,静磁場と同じ方向のz-傾斜磁場を印加すると,磁場一定の平面はz軸に垂直な平面です.プロトン核磁気のラーモア周波数は,その場の磁場強度に比例するので,もし,共鳴吸収する電波の周波数をスキャンすれば,各断層平面ごとの電波を順次採取することができます.
次に,各断層面上の(x,y)位置情報を得る仕組みの説明をします.断層上のプロトンの歳差運動を励起後に,y-傾斜磁場の印加と停止,その後続いて,x-傾斜磁場の印加を行います.まず,y-軸に沿って歳差運動の周波数が変わりますが,y-傾斜磁場が切られると,y-軸に沿って位相変化として残ります.続いてx-傾斜磁場が印加されるので,x-軸に沿った周波数変化ができます.結局,断層面上の点(x,y)から放射される電波は,x-座標に沿って周波数が変わり(周波数エンコーディング),y-座標に沿って位相が変わる(位相エンコーディング)ものが採取できます.
傾斜磁場を印加して,空間の位置情報を得,画像化を可能にしたのは,Lauterbur(1973)のNatureに載せた論文です.Lauterburらは2003年のノーベル賞を受賞しました.
■緩和時間の測定には,傾斜磁場や照射電波のON/OFFが必要で,傾斜磁場の立ち上がり時間も考慮した複雑なパルスシークエンスです.256x256画素の測定でもかなりの時間を要します.高分解能画像を得るには,正攻法ではさらに細分化した画素数の測定が必要になり膨大な測定時間になるでしょう.パラレルイメージングなどの手法に加えて,MRIの高分解能かつ高速化を実現したのは,別項目で言及した「圧縮センシング」という方法です.

0

角の3等分の作図

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.11.07] No.192
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
与えられた角の3等分は実在しますが,定規とコンパスだけでは,
一般には作図できないということは多分ご存知でしょう.
以下は,ギリシャの幾何学者達が熱心に研究した不可能作図問題です:
(1)与えられた正立方体の2倍の体積の正立方体を作れ
(2)与えられた円と同じ面積の正方形を作れ
(3)任意に与えられた角を3等分せよ
もちろんこのような図形は実在しますが,作図手段を,「定規とコンパスだけを有限回使って」
と制限されての作図ができるか?という問題です.

■長さa,bの2つの線分bが与えられたとき,直線定規とコンパスだけを用いて,
加法a+b,減法a-b,乗法a・b,除法a/b,開平√a
の作図が可能なことは,以下の図をご覧ください.
https://blogs.yahoo.co.jp/tanidr/GALLERY/show_image.html?id=18283150&no=2
https://blogs.yahoo.co.jp/tanidr/GALLERY/show_image.html?id=18283150&no=0

これ以外の作図(例えば,立方根の作図)は定規とコンパスでは出来ません(証明は難しいのでスキップ).
(1)ではx^3=2x(a^3)だから,2の立方根の作図が必要
(2)では,x^2=π(r^2)だから,πという無理数の開平の作図が必要
(3)では,x^3-3x-a=0という角3等分の方程式の根であるxの作図が必要です.
[ただし,aは,与えられる角度Ω(cosΩ=a/2)により決まる]
例えば,Ω=90°(a=0)のときは,x=√3の作図になり,これは可能です.
しかし,一般の角の場合,この3次式は有理数の解を持たず,作図は出来ません.
この角3等分の方程式の導出は以下の図をご覧ください.
https://blogs.yahoo.co.jp/tanidr/GALLERY/show_image.html?id=18283668&no=3

Ω=60°(a=1)のときは,x^3-3x-1=0となり,有理数の解を持たないので,
角の3等分の作図は(定規とコンパスでは)できません.

0

定規とコンパスで作図できる長さ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.10.23] No.238
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今日は,たいへん古典的だが,重要な証明問題を扱いましょう.
ギリシャの幾何学者達が研究した不可能作図とは
以下のものがあります.

(1)与えられた正立方体の2倍の体積の正立方体を作れ
(2)与えられた円と同じ面積の正方形を作れ
(3)任意に与えられた角を3等分せよ
これらは,定規とコンパスだけを有限回使って作図できるか?
ということです.

■なぜ作図できないか
(1)は,2の3乗根の作図が必要です.
(2)の円と同じ面積の正方形を作る方針を以下の図に示します.

 

 

 

 

 

 

 

 

 

 

 

 

どうしてこの作図ができないのかわかりますか?
与えられた円の半径をrとします.まず,円と同じ面積の長方形を作りましょう.
もし,縦r,横aの長方形が作れたら,r・a=x^2 となるxの作図は可能です.
問題は,円の面積と同じ縦 r,横 a=πrの長方形を作るところで,
円周の半分の長さπrの線分を作図する方法が,定規とコンパスではないからです.
無理数πが作図できません.

■直線定規とコンパスだけを有限回繰り返し用いて作図できる長さは
2つの有理数の,加法,減法,乗法,除法,開平だけです.
作図方法は,以下をご覧ください.
条規とコンパスで作図
開平を繰り返せは,2のべき乗根(4乗根,8乗根,...)は作図できますが,
例えば,立方根は作図できません(この証明は難かしいのでスキップ).

(3)任意の角度の3等分が作図できないわけ.
角度3等分の方程式は x^3-3x-a=0 で,
例えば,与えられた角度が60°ならa=1の方程式です.
60°の3等分の方程式は,x^3-3x-1=0 となりますが,
この3次方程式は,p+q√r (ただし,p,q,rは有理数)の型の解を持たないので
この角度の作図は,定規とコンパスでは不可能です.
もちろん,60°の3等分の20°は存在しますが,
定規とコンパスだけを使う方法では作図できないということです.
詳しくは,以下をご覧ください.

■任意の角度の3等分

任意の角度∠XOYの3等分がなされたとします.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

定規とコンパスで作図できる長さ(作図)

■円に点Bを通る2直線が交差しているときに,方冪の定理が成り立ちます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■2つの長さの加法,減法は簡単です.以下の図をご覧ください:

 

 

 

 

 

 

 

■結局,直線定規とコンパスだけを有限回繰り返し用いて作図できる長さは
加法,減法,乗法,除法,開平です.
開平を繰り返せは,2のべき乗根(4乗根,8乗根,...)は作図できますが,
例えば,立方根は作図できません(この証明は難かしいのでスキップ).

 

0

美術・図工 定規とコンパスで作図できる長さ

■円に点Bを通る2直線が交差しているときに,方冪の定理が成り立ちます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■2つの長さの加法,減法は簡単です.以下の図をご覧ください:

 

 

 

 

 

 

 

 

■結局,直線定規とコンパスだけを有限回繰り返し用いて作図できる長さは
加法,減法,乗法,除法,開平です.
開平を繰り返せは,2のべき乗根(4乗根,8乗根,...)は作図できますが,
例えば,立方根は作図できません(この証明は難かしいのでスキップ).

 

 

 

 

 

 

 

 

 

 

円と同じ大きさの正方形の作図

0

ベルヌーイ家の遺した数学

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.10.31] No.191
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
台風が来たり急に寒くなったりですが皆さまお変わりありませんか
私は風邪をひきそうでちょっと疲れが出てきました.皆様お気を付けください.
今日は,「数学文化」28号(2017.8)に掲載した私が書いた書評から一部抜粋し転載します.
ベルヌーイ家の遺した数学,松原望(東京図書)についてです.
この本は,数学も物理も一緒だった興味深い時代のベルヌーイ家が舞台です.場所はスイス,バーゼル.
今日は,物理学と数学は分離し,数学は高度に抽象化してしまったが,ベルヌーイ家の時代はそうでなかった.
物理の研究に必要な数学が,自分の手で次々に開発されていく時代でした.

■数学と物理の歴史で,血沸き肉躍るエポックメーキングな時代が2つある(私にはそう思える).
一つは,この本のテーマの「ベルヌーイ家の時代」17c~18c.
もう一つは「量子力学の誕生前夜」20c初頭~中葉である.
その時代の当該分野の研究者たちは,実に楽しかったろう.うらやましい限りだ.
後者の「量子力学の誕生前夜」,すなわち,前期量子論の幕開けは,
光電効果(アインシュタイン)や,原子のスペトルなどの現象が,
当時の物理のパラダイムでは説明できないことから始まった.
X線の発見(レントゲン)は20cの夜明に相応しく,
有名なラウエの実験やブラッグ父子による結晶の原子的内部構造の解明へと発展し,
「原子・量子」のパラダイムが出来上がった.この「原子・量子」の時代の到来は,
本書に登場するダニエル・ベルヌーイが先駆となる統計力学,気体運動論の後に続くものである.
「原子・量子」の幕開(20c)けに必要となる数学は,17c~19cに,すっかり準備されていたことは興味深い.
その中心が「ベルヌーイ家の遺した数学」である.

結晶空間群の数え上げは19c後期だが,17cにはアウイなどによる結晶面の有理指数の法則が知られ,
これは,結晶内部が単位胞の積み重なったデジタル空間であることに他ならない証拠である.
固有値問題を解くための行列論は19c中葉だが,18世紀初頭には,ヨハン・ベルヌーイとダニエル・ベルヌーイ,
ダランベールおよびオイラーらが,弦の運動で固有値問題を研究している.
量子力学で使われる波動方程式の一般解は,18cにダランベールにより研究されたが,
18c末に境界条件下の波動方程式の解法にダニエル・ベルヌーイがFourier級数を用いたことが本書に紹介されている.
Fourier解析は19c初頭にはフーリエが発明している(厳密な証明は後の時代を待つ).
ニュートン力学を一般化し,どんな問題にも容易に適用できるようにした解析力学の誕生は,
ベルヌーイ家の大きな遺産と言えるだろう.
モーペルテュイは,始状態から終状態への運動経路には,作用と呼ばれる積分量が定義でき,
作用が最小となる経路が実現される.「これが物理学のみならず,万物の運命を決める原理である」
という着想ー”最小作用の原理”ーを得た.
正確には,「作用が停留値をとる経路が実現する」というのが正しいことが後に分かるのだが.
オイラーは,モーペルテュイの作用量の定義を積分に拡張し,さまざまな力学課題に適用できるようにし,
これを解く変分法を発明したのは若いラグランジュであった.
変分法で導かれる運動方程式が,オイラー&ラグランジュ方程式という所以である.
変分法は,最速降下曲線を求めるというベルヌーイ家からでた問題に端を発したもので,
解析力学を生みその形式が量子力学にもつながることになる.
変分法は,ベルヌーイ家の最大の数学遺産といっても過言ではないと思う.

脱線ついでに,数学の歴史でエポックメーキングな時代は,私の好みでは,
「非ユークリッド幾何」の発見の時代(ガウス,ボヤイ,ロバチェフスキ,リーマン,ポアンカレ),
もう一つは,マンデルブロが開拓した「フラクタルの時代」だと思う.
カントール,コッホ,ペアノ,シェルピンスキーなどのフラクタル曲線は至る所ギザギザで微分できない.
これは,ヨハン・ベルヌーイ時代に,盛んに研究された曲線とは全く異なる範疇のものである.

■お知らせ
数学月間勉強会(第3回)
結晶空間群で数学と物理を学ぼう
12月12日,14:30-17:00
東大出版会,会議室(駒場留学生会館の敷地内の奥.東大構内ではありません)
詳細は,数学月間ブログなどに掲載しています.
問い合わせ先:sgktani@gmail.com

0

万華鏡の不思議

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.10.24] No.190
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
10月21日,10:10-12:00,数教研の合同研究会(産業会館,新宿)で,
「万華鏡の不思議」という話をしました.万華鏡も作りました.
衆院選挙の前日,大型台風21号の上陸前日で,一日中冷たい雨が降っておりました.
意地悪なことに,まるでこの日に照準を合わせたようです.
私は,期日前投票を済ませて参加しました.忙しい時期にご参加いただいた皆様に感謝です.
改憲がちらつく選挙前日のことでもあり,雑談から入りました.
私の名前は,父が南方の戦地に行く前に準備し,もし男の子だっら**と「勝」が入ったものでしたが,
届出のときに母が「克」に変えたのです.この名前,最近は流行りませんね.
「勝」は戦争中に流行った名前です.戦後の新宿の焼け跡や傷痍軍人の話,
小学校の2部授業,戦争の悲惨さを見,平和憲法を心から理解し,指導要領にしばられない授業がありました.
私が毎日書く日記に,毎日赤ペンでたくさん感想を書いてくれた先生のことなど思い出し話題にしました.
本題の「万華鏡の不思議」の内容は,ブログの別項目をご覧ください.
■鏡像の世界というのは不思議なものです.紙に書いた線対称の2つの図形(互いに鏡像)は,
紙面の上でどのように動かしても重ね合わせることはできません.
しかし,線対称の線で折り返せば2つの図形を重ね合わせることができます.
紙を折るという操作は,3次元の世界で出来ること.2次元(紙面)の世界に住むものには,想像できません.
同様に,右手と左手は3次元の世界で互いに鏡像ですが,
3次元の世界の中でどのように動かしても重ね合わせることはできません.
これらを重ね合わせることができるのは4次元の世界です.
大きな鏡が前にあるとします.鏡の前にある私たちの世界は,そっくり鏡像となって鏡の後ろにあります.
一方,その場所は,私たちの3次元の世界も実在します.不思議ですね.
太古の時代は,鏡の世界と私たちの世界は行き来ができる混沌としたものだったが,
黄帝が鏡の世界のものがこちらの世界に出てこられないように閉じ込めたという神話めいた話も信じたくなる気がします.
■(H29.4)全国学力テスト中学3年生.数学Bの1に万華鏡の問題が出題されています.正答率は低いとのことです.

https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/83/18267783/img_0_m?1508769250
★図4は正3角形の鏡室の万華鏡ですが,観察される映像はどれでしょうか.
★図5は2つの菱形がありますが,どのような運動により重ね合わせることができますか.
この問題は,3回回転軸が図の中にどのように配置しているか書き込むとよいのです.
するとB点には3回回転軸があることがわかります.2つの菱形は,この3回回転軸により移ります.
★図6の映像を作る万華鏡はどれでしょうか.
この問題の解き方は,映像に鏡映対称面(線対称)を書き込むと自然にわかります.
赤い線で書き込んだものが鏡映対称面です.万華鏡は鏡で囲まれた部屋(鏡室)で出来ています.
どの鏡室の図が正しいでしょうか.

0

ばくうこま

00014
東京おもちゃまつりで入手したバクウ・コマの動画をとりました.観察すればするほど大変興味深い.

 

おばんです^^/

中央の円のセンターがずれているので^^その振動で外側の駒が回るんですね!面白いです^^v

動画を見せて下さって<(_ _)>ありがとうございます。 

[ 愛ニャンコマリアと家庭菜園 ]

2017/10/18(水) 午後 5:32

返信する

> 愛ニャンコマリアと家庭菜園さん
そうですね.動画を見ないとわかりにくいですね.振動により両側のコマに回転が起こります(互いに反対まわり).振動を回転に変えるには軸受け穴に多少ガタがあるのがミソです. 

[ sgktani ]

2017/10/18(水) 午後 6:44

返信する

0

東京おもちゃまつり

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.10.17] No.189
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
<東京おもちゃまつり>が,東京おもちゃ美術館にて,10月14,15日に開催されました.
両日とも冷たい雨の降るあいにくの天気でしたが盛況でした.
私は10月15日に出かけ,バクウ研究所の富川義朗先生と佐藤芳弘先生にお会いしました.
いろいろな面白い「ばくうコマ」の展示があります.原理はなかなか奥が深い.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/73/18258773/img_0_m?1508164222

■振動で廻す
富川先生たちは,振動を回転運動に変える超音波モータの発明者です.おもちゃのトントン・コマはその応用です.
ミラクル・ツインという「ばくうコマ」は,中央の偏心した回転子が発生する振動を,
左右に置いた円板の軸受け穴に伝え,軸芯に回転モーメントを発生させるのです.このとき左右円板の回転方向は反対になります.
これはジャイロ・モーメント・モータの原理と同じとのことです.
■錯視を起こさせる(4回対称模様が3回対称に見えたり,5回対称に見えたり)のは,
軸芯自身の回転(=自転)に,軸芯が沿って転がる回転(=公転)が,加算/減算されることが原因でしょうが,
1回転の内に回転速度が3回/あるいは5回遅くなるというようなことが起こるのでしょう
(もし均一に回転しているなら像が流れてしまい何角形かはっきり認識できないでしょう).
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/73/18258773/img_2_m?1508164222
-------------------
お知らせ
10月21,22日に数教研の合同研究会が新宿であります.21日10:00-12:00は講演「万華鏡の不思議」で参加します.万華鏡も作ります.
詳細は以下をご覧ください. http://www.sukyoken.jp/…/the…/wp-sukyoken/img/notice_sep.pdf
お近くの方どうぞご参加ください.

0

最近思うこと

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.10.10] No.188
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
前号で9月26日に実施した数学月間勉強会(第2回)の様子をご報告しました.第3回は12月12日の予定です.
次回の第3回は,このシリーズ「結晶空間群で数学と物理を学ぼう」のクライマックスです.
多くの方のご参加をお勧めします.
その後の9月末から,公私にわたり色々なことが起こりました.今日は衆院選の公示の日ですね.
私事の方からご報告します.9月29日(金)に入院・手術をし,予定通り,月曜日に退院しました.
土日を含む3泊です.用事が一段落するこの時期まで2年越しで延期していた前立腺肥大の手術です.
お陰様で予定通り順調に終わりました.この手術は,従来の電気メスでは2週間の入院が必要で躊躇していましたが,
ホルミウム・ヤグ・レーザーでは3日の入院で治りも早いのです.
ホルミウム・ヤグというのはレーザー光を発振させる結晶の名前です.
ホルミウム・ヤグ・レーザー光の波長は2.1μmの長波長赤外線で,水に吸収され組織到達深度は0.4mm.
出血もほとんどない素晴しい医学技術です.
手術時間は長時間かかりましたが,患者は頑張りません.お医者さんが頑張りました.
病院食は美味しく11食全部完食.看護師さんはきれいだし,天国の様.でも本当に天国に行かなくてよかった.

さて,私がインターネットもTVも見なかった3日間に,政局好きなマスコミの興味は政権交代ばかり煽っていました.
細川新党のときも2大政党とか言って小選挙区制を煽ったのはマスコミでした.
私たちは,安倍政権は当然総辞職くすべきと思いますが,希望の党に政権交代すればよいと思っていません.
その後,希望が出した踏み絵で皮肉にも民進党が分解してたいへんわかり易くなりました.
福袋のような政党では投票することができませんから良いことです.
この選挙の争点は,憲法を改正するか守るかです.雑音に惑わされないようにしましょう.

0

数学月間勉強会(第2回)の報告

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.10.03] No.187
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
9月26日,14:30から,数学月間勉強会(第2回)を開催しました.様子をご報告します.
第1回は,空間の周期でしたが,今回,第2回のテーマは,有限図形の対称性(点群)でした.
次回,第3回は,周期的な空間に点群を配置して,繰り返し模様の対称性(結晶空間群)を構築することになります.
鏡映面だけから生まれる対称性の例として色々な万華鏡と,
その万華鏡の映像が群を生成する場合としない場合の説明をしました.
参加者の三野さんは,ゾムツールで作った格子を展示しました.
■さて,今回考察する有限の対称図形の例は,皆さまの馴染み深いプラトンの正多面体5種類から始めました.
すなわち,正4面体{3,3},正6面体{4,3},正8面体{3,4},正12面体{5,3},正20面体です{3,5}.
ここで用いた{p,q}の記号は,シュレーフリの記号といい「正p角形が頂点でq個集まっている正多面体」を記述しています.
p,qを入れ替えた{q,p}の図形は,{p,q}と互いに双対と言います.p,qを入れ替えるというのは図形で言うと,
頂点を面に/面を頂点に替えた図形ということです.すなわち,{4,3}と{3,4}は双対,{5,3}と{3,5}は双対です.
互いに双対な図形の対称性(点群)はもちろん同一です.
ある正多面体や,互いに双対な正多面体を組み合わせて(混合して),
頂点を切る(切頂)操作で色々な半正多面体が得られますが,
生まれた半正多面体は,もとになった始めのプラトンの正多面体と対称性(点群)は変わりません.素性は隠せないのです.
周期的空間=結晶空間で,可能な点群の回転対称には制限があります.
許される回転対称は,2回軸,3回軸,4回軸,6回軸だけです.
何故かというと,正5角形や正7角形のタイルでは隙間なく平面が張れないからです.
従って,正12面体(正20面体)の点群は結晶点群ではありません.3次元の結晶点群は32種類あります.
■今回の主題は,点群を2つの群の積に分解して,その群の構成を見る群論手法を説明です.
群Gの中に正規部分群Hを見つけると,「商群G/Hが作れて,G/Hはより小さい群(Gの部分群)G’に同型である」
という準同型定理を応用しています.群Gの要素で注目したある性質が同じとする基準で要素を束ねたものを考えると,
群Gはより小さな群G’に写像できるというわけです.記号で書くと,G/H=G’
これは,群Gの正規部分群をH,部分群をG'として,これらの積で群Gが作れるということです.正確に言うと,
G=H(x)G',G=H(s)G',G=H(・)G'(modH)のどれかのタイプの積で作られます.
(x)は直積,(s)は半直積,(・)は条件積と言います.[数学記号(環境依存文字)は,〇の中にxやsや・が入ったもの]
条件積が現れる最後の群では,G'(modH)は,Hの要素だけ異なるものは同値と思えという条件で群が成り立つという意味.
modは法としてと読みます(時計で13時と1時が同じなのは,mod12で数えるから).
文章での説明は,ここまでにしますが,詳しくは私のブログをご覧ください.
勉強会では,ここで必要になる:正規部分群,準同型定理,直積,半直積の説明をしました.
条件積の具体的な例として,4回対称群4の分解結果を掲載しておきます;4=2(・)4(mod2)
■次回第3回は,11月末あたりを予定していますが,まだ確定していません.
決まりましたらお知らせをします.

0

数学的曲面が拓くジャグリングの世界

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.09.26] No.186
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
本日は,数学月間勉強会があります.ご興味のある方ご参加ください.
「結晶空間群で,物理と数学を学ぼう」第2回
主催●日本数学協会,数学月間の会(SGK)
日時●9月26日,14:30-17:00,(開場14:00)
会場●東京大学出版会,会議室
最寄り駅●京王井の頭線「駒場東大前」
参加費●無料
問合せ・申し込み●sgktani@gmail.com,谷克彦(SGK世話人)
数学月間勉強会の特徴は,物理と数学の両視点から数学誕生を理解できるところで,
特に初心の若い方々にもお勧めします.
第2回テーマ●「美しい多面体と点群,結晶点群の鑑賞」
(注意)東京大学出版会は,線路沿いの留学生会館の敷地内です.東大構内ではありません.
ーーーーー

9月23日に開催された日本数学協会,第15回年次大会で,松浦昭洋(東京電機大学)氏の,
「数学的曲面が拓くジャグリングの世界」と題する講演と見事なパフォーマンスがありました.
数学的曲面とは,球内部,シリンダー内部,円錐内部などの2次曲面や,負曲率が付随する鞍部,
懸垂曲線(円弧で近似)などで,これら色々な曲面に沿って,
面白い運動をさせるジャグリングの披露がありました.
例として,シリンダー内部の面に沿ったボールの運動を,単純化した説明しましょう.

https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/88/18228588/img_1_m?1506338017

皆さん,A→Bと進んだボールの転がる方向は,次のどちらでしょうか?(1)上昇する/(2)落下する.
意外に見えるのがジャグリングの醍醐味/味噌ですよ.大雑把に言うと,
A点で速度vで転がりだした質量Mのボールは角運動量Ω=MvRをもって,
シリンダー壁に沿って楕円軌道を描きます.従って,(1)が正解です.
松浦氏の正確な計算によると,運動は単振動のようで,上下方向の振動周期はT=√14π/Ω(Ωは定数),
1周期当たりの水平方向の回転数は1.87だそうです.2回転近くするので
楕円軌道が少し崩れて8の字のような軌道を描きます.
ホールインワンで確かにカップに入ったはずのボールが上昇して外に出て来ることがあるそうです.
それはこの現象のせいです.

0

タイル張り可能な五角形タイルの発見

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.09.19] No.185
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
お知らせがあります.
数学月間勉強会ー「結晶空間群で,物理と数学を学ぼう」第2回
主催●日本数学協会,数学月間の会(SGK)
日時●9月26日,14:30-17:00,(開場14:00)
会場●東京大学出版会,会議室
最寄り駅●京王井の頭線「駒場東大前」
参加費●無料
問合せ・申し込み●sgktani@gmail.com,谷克彦(SGK世話人)
数学月間勉強会の特徴は,物理と数学の両視点から数学誕生を理解できるところで,
特に初心の若い方々にもお勧めします.
第2回テーマ●「美しい多面体と点群,結晶点群の鑑賞」
第1回は空間の周期でした.
周期的空間の代表は結晶内部の世界です.だから,周期的空間は結晶空間とも呼ばれます.
周期があれば,単位構造があるわけですから,結晶空間はデジタル化された空間です.
無限に広い平面を埋めるのに,繰り返し模様が使われます.
ポスターを繰り返して並べ大きなポスターにするのも,平面のデジタル化です.
数学月間勉強会(現在のシリーズ)では「デジタル化された空間」の対称性の数学をテーマにしています.
ーーーーーーーーーーー
■今回のメルマガは,平面のエッシャー風タイル張りの話題です.
サンディエゴの主婦マジョリー・ライスMarjorie Riceが,タイル張りの問題に出会ったのは,
1975年のScientific Americanのマーチン・ガードナーのコラムだった.これは,
古代ギリシア時代から数学者を魅了し続けてきた<<平面をタイル張りできる「タイル」の形
(一つのタイルで平面を分割するテッセレーション)>>の問題です.
私も関心のある問題で,ガードナーのこのコラムを載せたサイエンスは当時読んで手元にあります.
平面のタイル張りは,任意の3角形,任意の4角形タイルでできます.凸7角形以上のタイルでは不可能です.
凸6角形の場合は,タイル張りできるタイルの形が3タイプあることを,ラインハルトが学位論文で証明しました(1918).
難しいのは凸5角形の場合です.1975年時点のガードナーのコラムには,11タイプ
(1967年にカーシュナーが発見した3タイプを含む)が掲載されています.
この問題では,タイプ分けの条件が,とても難しい.連続変形によりどちらのタイプにも属するものがあるし,
出来上がったパターンが全く違うように見えたりもするので,新しいタイプであるかどうかの判定はなかなか難しい.
ライスもこの点にずいぶん苦労したに違いない.
1975年のガードナーのコラムのを引用すると,ーーーーーーーーー
カーシュナーの論文には,平面を埋める凸多角形が他にないことの証明はでてこない.
その「最大の理由」は,編集者の「完全な証明は,かなり大きな本を必要とするだろう」
という序文から読みとられる.---------
そして,実際にまだ新しいタイプがあったのだ.

■以下は,natalieの記事(Quantamagazine)による:
https://www.quantamagazine.org/marjorie-rices-secret-pentagons-20170711/
ライスが五角形タイリングに憑りつかれてから,家族はしばしば彼女が台所のカウンタートップの形を
ひそかにスケッチしているのを見ている.彼女の娘,キャシー・ライスは,「母は落書きしていると思った」と語った.
高等学校で1年しか数学を取らなかったライスは,
誰も知らなかった五角形のテッセレーションパターンの新しい族を発見していたのです.
ライスは,今年の7月2日94歳で亡くなりました.
認知症のため,五角形タイリングの物語がついに完結したのを彼女が知ることはなかったが,
ガードナーの提起から数十年が経過していた.
コンピュータ支援の新証明法で,フランスの数学者 Michaël Rao が,
ライスが発見した4つを含む15の凸型五角形が存在することを証明した.

■フロリダ州生まれのマージョリ・ジック(Marjorie Jeuck),結婚後ライスは,ワンルームカントリースクールに入り,
そこで2学年をスキップし,年長の子供たちと一緒に学びました.彼女は勉強好きでしたが,数学を学んだのは短期間だけです.
貧困と文化的規範のため,大学に進学するなど思いもよらない時代でした.
1945年,彼女は,敬虔なキリスト教徒のギルバート・ライスと結婚し,
ギルバートが軍の病院で働くワシントンD.C.に移りました.後にサンディエゴに移住しますが,
マージョリ・ライスは,幼少の息子と一緒に、その地で商業芸術家としてしばらく働きました.
その子供は亡くなりましたが,他の5人の子供がおります.
ライスにとって,数学は楽しみでした.
「聖書が重要のように,勉強も大切にした」,「他に勢力をつかい,時間を無駄にすることはなかった」
とキャッシーは語っています.息子のダビデは,
「彼女は黄金比とピラミッドに魅了され,膨大な図面と計算でそれらを研究していました」と述べています.
ライスは,子どもたちが学校に通っている間に自分も読めるようにと,
息子の一人にScientific Americanの定期購読を許可しました.
デービッド・スズキの「物の本質」に関するインタビューで,彼女はタイル張りについてのガードナーのコラムを読んだとき,
「誰も以前に見たことのないこれらの美しいものを,見つけられたら素敵と思った」と回想している.
彼女はこのテーマに魅了され,どのタイプのものが他と違うのかを理解しようと努めた.
数学的な背景がないので,独自の記法システムを開発し,数ヶ月で新しいタイプを発見したとも語っています.
発見して驚き喜んで,彼女は彼女の仕事をガードナーに送りました.
ガードナーはそれをペンシルバニア州のモラヴィアン・カレッジのタイリング問題の専門家である
ドリス・シャツシュナイダーに送ってくれました.ガードナーはちゃんと取り次いでくれたのです.良い話です.
一方,ライスは,自宅の誰にもこれの話をしませんでした.
「私のお父さんは,お母さんが何をしているか,発見のことなども全く知らなかった.
私たちの気を引くことが色々あるから,お父さんがパターンを見つけるのに何時間も費やす気持ちなど
全く思いもよらない」と娘は話しました.
一方,シャツシュナイダーSchattschneiderは,ライスの発見が正しいことを確認した.
ライスのアプローチは,マイケル・ラオが新しいコンピュータ支援の証明に取り入れたのと同じもので,
五角形の頂点がタイル張りの頂点で一緒になる可能性があるさまざまな方法を検討することでした.
シャッシュナイダーは雑誌の記事で次のように語っています.目的に合う五角形の角と辺の条件を決定し,
条件を満たす五角形を得ます.この方法で,
ライスは最終的に4つの新しい凸形五角形とほぼ60種類のテッセレーションを発見しました.
ライスは恥ずかしいと講演を断ったが,シャッシュナイダーの招待で,彼女と夫は大学の数学会に出席し,
彼女は聴衆に紹介された.彼女は1996年に "The Nature of Things"ドキュメンタリーでインタビューを受け,
ワシントンにある数学協会のロビーのタイルフロアに彼女の五角形テッセレーションの1つが展示され,
エッシャー風の絵画で彼女の五角形のパターンを記念している.

■この間,他のアマチュアも大きなタイル発見をしました.ソフトウェアエンジニアのRichard James IIIは,
ガードナーのコラムを読んだ後で,1975年に新たなタイプの五角形を発見しました.
2010年,オーストラリアのジョーン・テイラーは,1990年にペンローズのタイル張りを見てタイル張りに魅了され,
非周期のタイル張り(テッセレーション)する奇妙なマルチパートタイルを発見しました.
ライスの娘は「発見のためだけの発見だったが,認められて幸せだった」と語った.
彼女は他の数学者が探していた何かを見つけることができたのだ.

Natalie Wolchover @nattyover
Senior writer for @QuantaMagazine covering physics and related things. I have a Klein bottle that contains the universe.

0

グループ 角3等分の作図

サンディエゴの主婦マジョリー・ライスMarjorie Riceが,タイル張りの問題に出会ったのは,1975年のScientific Americanのマーチン・ガードナーのコラムだった.これは,古代ギリシア時代から数学者を魅了し続けてきた<<平面をタイル張りできる「タイル」の形(一つのタイルで平面を分割するテッセレーション)>>の問題です.
私も関心のある問題で,ガードナーのこのコラムを載せたサイエンスは昔読んで手元にあります.平面のタイル張りは,任意の3角形,任意の4角形タイルでできます.凸7角形以上のタイルでは不可能です.凸6角形の場合は,タイル張りできるタイルの形が3タイプあることを,ラインハルトが学位論文で証明しました(1918).難しいのは凸5角形の場合です.1975年時点のガードナーのコラムには,11タイプ(1967年にカーシュナーが発見した3タイプを含む)が掲載されています.この問題では,タイプ分けの条件が,とても難しい.連続変形によりどちらのタイプにも属するものがあるし,出来上がったパターンが全く違うように見えたりもするので,新しいタイプであるかどうかの判定はなかなか難しい.ライスもこの点にずいぶん苦労したに違いない.
1975年のガードナーのコラムの文章を引用すると,ーーーーーーーーー
カーシュナーの論文には,平面を埋める凸多角形が他にないことの証明はでてこない.その「最大の理由」は,編集者の「完全な証明は,かなり大きな本を必要とするだろう」という序文から読みとられる.---------
そして,実際にまだ新しいタイプがあったのだ.

■以下は,natalieの記事(Quantamagazine)による:
https://www.quantamagazine.org/marjorie-rices-secret-pentagons-20170711/
ライスが五角形タイリングに憑りつかれてから,家族はしばしば彼女が台所のカウンタートップの形をひそかにスケッチしているのを見ている.彼女の娘,キャシー・ライスは,「母は落書きしていると思った」と語った.
高等学校で1年しか数学を取らなかったライスは,誰も知らなかった五角形のテッセレーションパターンの新しい族を発見していたのです.ライスは,今年の7月2日94歳で亡くなりました.認知症のため,五角形タイリングの物語がついに完結したのを彼女が知ることはなかったが,ガードナーの提起から数十年が経過していた.
コンピュータ支援の新証明法で,フランスの数学者 Michaël Rao が,ライスが発見した4つを含む15の凸型五角形が存在することを証明した.

■フロリダ州生まれのマージョリ・ジック(Marjorie Jeuck),結婚後ライスは,ワンルームカントリースクールに入り,そこで2学年をスキップし,年長の子供たちと一緒に学びました.彼女は勉強好きでしたが,数学を学んだのは短期間だけです.貧困と文化的規範のため,大学に進学するなど思いもよらない時代でした.1945年,彼女は,敬虔なキリスト教徒のギルバート・ライスと結婚し,ギルバートが軍の病院で働くワシントンD.C.に移りました.後にサンディエゴに移住しますが,マージョリ・ライスは,幼少の息子と一緒に、その地で商業芸術家としてしばらく働きました.その子供は亡くなりましたが,他の5人の子供がおります.
ライスにとって,数学は楽しみでした.「聖書が重要のように,勉強も大切にした」,「他に勢力をつかい,時間を無駄にすることはなかった」とキャッシーは語っています.息子のダビデは,「彼女は黄金比とピラミッドに魅了され,膨大な図面と計算でそれらを研究していました」と述べています.
ライスは,子どもたちが学校に通っている間に自分も読めるようにと,息子の一人にScientific Americanの定期購読を許可しました.
デービッド・スズキの「物の本質」に関するインタビューで,彼女はタイル張りについてのガードナーのコラムを読んだとき,「誰も以前に見たことのないこれらの美しいものを,見つけられたら素敵と思った」と回想している.彼女はこのテーマに魅了され,どのタイプのものが他と違うのかを理解しようと努めた.数学的な背景がないので,独自の記法システムを開発し,数ヶ月で新しいタイプを発見したとも語っています.
発見して驚き喜んで,彼女は彼女の仕事をガードナーに送りました.ガードナーはそれをペンシルバニア州のモラヴィアン・カレッジのタイリング問題の専門家であるドリス・シャツシュナイダーに送ってくれました.一方,ライスは,自宅の誰にもこれの話をしませんでした.「私のお父さんは,お母さんが何をしているか,発見のことなども全く知らなかった.私たちの気を引くことが色々あるけれど,お父さんがパターンを見つけるのに何時間も費やす気持ちなど全く思いもよらない」
シャツシュナイダーSchattschneiderは,ライスの発見が正しいことを確認した.ライスのアプローチは,マイケル・ラオが新しいコンピュータ支援の証明に取り入れたのと同じもので,五角形の頂点がタイル張りの頂点で一緒になる可能性があるさまざまな方法を検討することでした.シャッシュナイダーは雑誌の記事で次のように語っています.目的に合う五角形の角と辺の条件を決定し,条件を満たす五角形を得ます.この方法で,ライスは最終的に4つの新しい凸形五角形とほぼ60種類のテッセレーションを発見しました.
ライスは恥ずかしいと講演を断ったが,シャッシュナイダーの招待で,彼女と夫は大学の数学会に出席し,彼女は聴衆に紹介された.彼女は1996年に "The Nature of Things"ドキュメンタリーでインタビューを受け,ワシントンにある数学協会のロビーのタイルフロアに彼女の五角形テッセレーションの1つが展示され,彼女はエッシャー風の絵画で彼女の五角形のパターンを記念した.

■この間,他のアマチュアも大きなタイル発見をしました.ソフトウェアエンジニアのRichard James IIIは,ガードナーのコラムを読んだ後で,1975年に新たなタイプの五角形を発見しました. 2010年,オーストラリアのジョーン・テイラーは,1990年にペンローズのタイル張りを見てタイル張りに魅了され,非周期のタイル張り(テッセレーション)する奇妙なマルチパートタイルを発見しました.
ライスの娘は「発見のためだけの発見だったが,認められて幸せだった」と語った.彼女は他の数学者が探していた何かを見つけることができたのだ.

Natalie Wolchover @nattyover
Senior writer for @QuantaMagazine covering physics and related things. I have a Klein bottle that contains the universe.

0

美術・図工 御殿まり★★

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.09.12] No.184
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
とっとりサイエンスワールドin倉吉は,8月27日に開催されました.
1,250人の来訪者があり,例年のように盛況でした.万華鏡は120人作りました.
昨年は,鳥取サイエンスワールドの終わった直後,
翌々日に地震がありびっくりしました.多くの方が避難生活をし,
サイエンスワールドの会場だった梨っこ館もガラス天井が落ちたそうです.
隣のプールは7月20日になってやっと利用開始にこぎつけました.
白壁土蔵群,赤瓦館でも地震の被害がありました.
今年,その赤瓦二号館を訪れたとき,見つけた御殿まりの写真です.



 

 

 

 

 

 

 

 

 

 

 

これらはみんな一人の方が作ったものだそうです.お会いしたいものでしたが,
残念ながら不在でした.どれも良いできですね.
正6面体群(正8面体群)と正12面体群(正20面体群)が美しく目につきます.

Q1:さて私はどれを選んだでしょう?

私が選んだのは,前者の方でした.

 

 

 

 

 

 

 

 

 

これと同じ対称性の図形を掲載しましょう

 

 

 

 

 

 

 

これはともに,半正多面体[4,6.6]ですが,立方体のx,y,zの方向に,4回軸があり,
体対角線の方向に3回軸があります.2回軸のある方向も確認してください.
結局,これらは皆,球面正6面体{4,3}や正8面体{3,4}と同じ対称性(点群)になります.

Q2: 球面正12面体{5,3}や菱形30面体はどれとどれでしょう.

これらの対称性(点群)は,正12面体やその双対の正20面体と同じです.
菱形30面体は,12・20面体;あるいは半正多面体[3,5,3,5]の双対図形で,これら3つの対称性はすべて同じです.

Q3: この他に半正多面体[6363]があります.探してみましょう.

0

万華鏡の定理

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.09.05] No.183
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
いつの間にか9月になってしまいました.
皆様,いかがお過ごしでしょうか.つまらぬ騒ぎばかりで,肝心のことは報道されない今日この頃です.
私は,8月20日,鳥取,8月27日,倉吉で,とっとりサイエンスワールドの万華鏡をやりました.
例年通りの多数の参加者がありました.9月に入って母の三回忌もやりました.
さて,今回は,先週に続いて,万華鏡の話です.

■昔,万華鏡の定理(一寸大げさですが)というのを,ブログに掲載したことがありました.
「万華鏡の映像には重なり合いもできないし,空白の隙間もできない」というものです.
ここでいう万華鏡とは,何枚鏡でも構いませんが,鏡で囲まれた筒(鏡筒)の中を覗くものです.
3角形の鏡室を単位タイルとして,映像平面がタイル張りされるのは,
平面がすきまなくタイル張りできる3種類(3角定規のセットにある形)のみで,
その他の鏡室(分数型の3角形と呼びました)では,タイル張りには鏡室タイルの分割されたものが必要になります.
これらは,なかなか複雑なタイル張りで,難しいタイル張りパターンなのですが,
タイル張りが複雑でも,寧率することがすぐ言えるのは,表題の万華鏡の定理です.

https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/84/18199784/img_0_m?1504490120

目の位置(覗き穴)をEとし,映像平面上の任意の点A3に注目しましょう.
EとA3を結んだ線分が鏡面をよぎる点をA3'とします.映像A3が何故見えるかというと,
A3'からEの方に光線がやって来るからで.この光線はどこから来たかと言えば,
万華鏡の鏡筒の中で反射を繰り返し,物体Aから出た光が到達するからです.
映像A1やA2に 関しても同様です.映像平面上の任意の点と目の位置Eとを結ぶと,
必ず鏡筒鏡面の1点をよぎります.
すなわち,映像と鏡面は1:1に対応しており,映像平面上の点で,
対応する鏡面上の点がないということは起こりません.よって,万華鏡の定理が証明されました.
ただし,対応した鏡面上の点で,たまたま,平面鏡のつなぎ目に当たるなど,現実には反射が起着ないこともあり得ます.
しかし理想的には,このつなぎ目は無限小の幅と考えれば,定理に影響を与えず隙間なく領域が飛び移ると推測できます.
さて,ついでに言及しますが,映像のもとになる鏡室の物体Aと映像面上の映像A1,A2,A3,....とは,
図からわかるように,1:(複数)の対応になります.

(注)反射率をr(0<r<r)とすると,n回反射を繰り返した高次の反射では,明るさがr^nになります.
高次の反射程暗くなり,これが万華鏡の視野地平線を決めます.

0

万華鏡のまとめ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.08.29] No.182
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今年の夏も,とっとりサイエンスワールド(11年目)は,鳥取県の西部,東部,中部地区と3か所で順に開催されました.
全体で3,000人規模の参加者がある県民に愛されるイベントです.
私は万華鏡で参加しており,毎年,鏡の組み合わせを変えたものを作ってきました.この日曜日は
中部会場でサイエンスワールドが行われ,1,250人の参加者がありました.私は,今戻ったばかりでこの報告を書いています.
万華鏡は,過去のブログに詳細に載せているのですが,この機会にそのエッセンスだけをまとめておきましょう.
■万華鏡の映像が私達の心をとらえるのは,空間の対称性だけではありません.
時間の流れとともに映し出される「千変万化だが一度切しか見られない」映像に生命を感じるからでもありましょう.
ワンド(試験管)の中を降りゆくガラス屑の運命は,運動方程式ですべて定まっているのですが,
時折カオスの起こる期待で目が離せません.万華鏡の魅力は,対称性(秩序)とカオス(乱れ)の混在にあります.
■合わせ鏡の不思議
合わせ鏡が生み出す完全な秩序は,無限に繰り返される「結晶世界」に入り込んだようでもあります.
平行に向かい合う2枚の合わせ鏡の間に物体を置くと,一直線上に物体の映像が繰り返し無限に並びます.
もし,合わせ鏡が平行でなくθの交差角とすると,映像は直線上でなく円周上に並びます.
円周上の反対側で両側から伸びて来た映像がぴったり重なる条件を考えましょう.1回の反射で出来る映像は裏返っていますが,2回反射を繰り返すと初めの向きに戻ります.結局,元の物体とその鏡映像のペアが繰り返すことになります.
つまり,交差角θの合わせ鏡の作る繰り返し単位の中心角は2θです.
従って,映像が円周の裏側でつながり,完全なn回回転対称ができる条件は,360°/2θ=n(整数)となり,
これは,物理学者ブリュースター興の特許(1817)に記載されています.
■今年作製している2枚鏡の万華鏡(ブリュースター型)の2枚鏡の交差角はθ=15°です.n=360/2θ=12ですから,その映像に,12回回転対称があることを確認してください.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/86/18186486/img_0_m?1503932181

■3枚鏡の万華鏡
◆整数解の基本領域
平面をきれいに埋める万華鏡
https://rdsig.yahoo.co.jp/blog/article/titlelink/RV=1/RU=aHR0cHM6Ly9ibG9ncy55YWhvby5jby5qcC90YW5pZHIvMTcwNzc4ODcuaHRtbA--

https://rdsig.yahoo.co.jp/blog/article/titlelink/RV=1/RU=aHR0cHM6Ly9ibG9ncy55YWhvby5jby5qcC90YW5pZHIvMTcwNzgyNjQuaHRtbA--
◆分数解を許す基本領域
分数解の頂点のまわりに乱れのある万華鏡
https://rdsig.yahoo.co.jp/blog/article/titlelink/RV=1/RU=aHR0cHM6Ly9ibG9ncy55YWhvby5jby5qcC90YW5pZHIvMTcwODAzNjYuaHRtbA--

https://rdsig.yahoo.co.jp/blog/article/titlelink/RV=1/RU=aHR0cHM6Ly9ibG9ncy55YWhvby5jby5qcC90YW5pZHIvMTcwODA0MzkuaHRtbA--

https://rdsig.yahoo.co.jp/blog/article/titlelink/RV=1/RU=aHR0cHM6Ly9ibG9ncy55YWhvby5jby5qcC90YW5pZHIvMTcwODA0NzUuaHRtbA--

0

数学アートと結晶学

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.08.22] No.181
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
8月も後半というのに,夏らしい日が戻るのでしょうか.待ち遠しいですね.
8月20日は鳥取,27日は倉吉でとっとりサイエンスワールドが開催されます.良い天気だと良いのですが.
私は,万華鏡作りで参加します.写真は,去年のワークショップの様子です.
https://www.facebook.com/TottoriSW/photos/pcb.1802505856693503/1802505710026851/?type=3
各地でこのような数学への関心を高めるイベントが盛んになることを願っています.

■8月8日は算盤の日でもありましたが.私は,夕方,神保町で開催された数学アート展に寄りました.
ここで取り上げた写真の作品は,三野一也さんの作品です.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/35/18164535/img_0_m?1502278321
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/35/18164535/img_1_m?1502278321
左図は体心立方のデリクレ胞(切頂8面体{4,6,6},あるいはケルビン立体とも呼ばれる)を隙間なく積み上げたところ.
右図は,準正多面体{3,4,3,4}を積み上げています.
準正多面体{3,4,3,4}も切頂8面体{4,6,6}も双対図形は,菱形12面体(これは,立方体心格子のデリクレ胞)です.
右図は菱形12面体の積み上げ(体心格子)そのものでなく,その逆空間に準正多面体{3,4,3,4}を積み上げた
(ただし,{3,4,3,4}はデリクレ胞ではないので正8面体の穴の残る構造)です.
準正多面体{3,4,3,4}は,正8面体と組み合わせて,空間を隙間なく充填できますが,
それらの個数比はいくつかわかりますか?
空間を充填する立体の組み合わせを,以下に図示したのでご覧ください:
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/83/18167283/img_0_m?1502409506
空間を隙間なく充填する多面体や,その対称性は,結晶学の中心課題でしたが,美しいアートにもなりますね.

■3次元の周期的な空間は,互いに独立な3つのベクトルの線形結合で表現できます(これが格子です).
抽象的には整数環上の加群と言えばそれまでですが,結晶学では,格子を対称性の観点から分類しようとしています.
立方体と同じ対称性の格子は,3種類あり,立方単純格子,立方体心格子,立方面心格子です.
単純格子は単位胞に格子点を1つ含みますが,体心格子は単位胞の中に格子点を2つ,面心格子は格子点を4つ含みます.
単位胞の定義は,不統一に思われるでしょうが,これは単位胞の定義に,
対称性が満たされる最小の単位という条件があるからです.
さて,ベクトルa,b,cで定義される格子に対して,逆格子(a*,b*,c*で定義される)があり,
例えば,a,bで張られる面にC*ベクトルは垂直などです.つまり,格子と逆格子は互いに双対になります.
また,立方面心格子と立方体心格子は互いに双対です.
従って,立方面心のデリクレ胞(菱形12面体)と,立方体心格子のデリクレ胞(切頂8面体{4,6,6},
あるいは,ケルビン立体とも呼ばれる)もまた互いに双対です.
例えば,シリコン結晶(ダイヤモンド構造)は面心格子で,
デリクレ胞(固体物理では,ウィグナー.ザイツ胞という)は,菱形12面体,
シリコンの逆格子のデリクレ胞(第1ブリルアンゾーンともいう)は,ケルビン立体です.

0