ブログ倉庫

PCR検査の統計(谷)

検査陽性者数
日本国内(2021.03.23)

 

東京都(2021.03.17)

 

検体採集日と,判定確定日や発症日は医師判定までのタイムラグを含む.
検査数はPCRだけでなく抗原検査も含む.
*ジョンズ・ホプキンス大学,東京都,厚労省のデータを用いました.

・検査陽性率=陽性者数/検査数 はどのくらい?
上のデータより,国内では4.9%,東京都では6.5%と推定するのが適当であろう.

1.サンプリングの偏りが変化している
PCR検査を受診できるグループは限定されている.初期は,無症状者は検査対象外でした.その後,クラスター対策で局所的な検査対象になり,現在の対象者の限定は明確でないが,無症状者が増えているようだ.
状況に応じて対象カテゴリを広げるのは当然で,感染抑止のために無症状の有病者を把握することは必要である.感染疑いの濃いグループをサンプリングするので偏りがあるわけですが,この基準自体も変化している.
このように,統計のプラットホームが変化しているから,変化を時系列に並べて,単純に発生率の変化と解釈することはできません.

2.統計量の定義
日本疫学会の定義によると,集団の有病率とは,その時点で,疾病を有している人の集団人口にたいする割合.集団の疾病発生率(罹患率)とは,一定期間に発生した疾病者のその集団で疾病感受性のある人口にたいする割合です.
有病率(t)=疾病を有する人数(t)/集団人数(t)
発生率(t)=新規陽性者(t)/集団内の感受性のある人数(t)

 

毎日,発表される新規陽性者の数は,発生率に近い概念ですが,集団内の感受性のある人数が未知なので,発生率とは正確には同じではありません.
PCR検査陽性率=新規陽性者/検査数で定義しますが,これも,サンプル集合の偏りと変化のために,単純比較はできません.そのため,累積数の比でこれを定義することにしました.

本来,有病率や罹患率などの統計量の時系列での変化を論じるには,ランダム・サンプリングの検査であるのが原則です.
ランダム・サンプリングで行われた調査としては,厚労省が抗体検査を行ったことがありますが,東京都で陽性率が0.1%程度だったと思います(2020.6).現時点での陽性率(多分増加している)が知りたいです.
東京都の人口は約1,400万人,これまでの感染者累積11.7万人を用い,0.84%が抗体保有者率が見積もれます.

現時点の感染者=感染者累積ー回復者累計ー死亡者累計ですから,これを仮の有病者(t)と定義します.有病者(t)と新規陽性者(t)は同義語ではありませんが,比例すべきと予想します.しかし,推測される有病者数に対して,現在のPCR検査数で拾い上げられる陽性者は圧倒的に少ない.
PCR検査数の増加が必要な所以です.特に,無症状の有病者はPCR検査のサンプル集合から除外されているのも問題です.

いくつかの定義を明確にしたい
PCR検査陽性者は有病者と同じか?
有病者から無症状者が除外されるのは良くないだろう.どの時点で患者(罹患者)と呼ぶのか?

今後考慮すべき問題
無症状者も感染に寄与すること,PCR検査で陰性となる変異株の出現などあり,これらのパラメータをどう定義するか?実効再生産数には反映される.
感染拡大の結果やワクチン接種による持続的な抗体形成により,感受性のある人口を減少させます.

0

PCR検査から有病率推定(谷)

陽性率を,p(+)=累積陽性者数/累積PCR検査数と定義すると,東京都の2021.3.17までのデータや厚労省の公表データを用いて,陽性率は,東京都で約6.5%(全国で4.9%,厚労省)になります.しかし,PCR検査の感度と特異度の情報(酒井健司,朝日デジタルなど)を入れてベイズ推定し,陽性的中率p(罹患|+)や偽陰性率p(罹患|-)を求めました.

ランダム・サンプリングのデータがないので,罹患率(有病率)も陽性率に等しいと仮定せざるを得ませんでした.
注)日本疫学会の定義によりますと,有病率と罹患率は異なります.

有病率=ある時点における疾病を有する者の数/調査対象全数
罹患率=ある時点における発生新規患者数/感染感受性のある人数

罹患率は,集団内の感染感受性のある人数に対して定義されるので,2つの定義で分母が異なります.さらに,有病率でいう「ある期間で疾病を有する者の数」は,罹患率でいう「新規感染者の数」とは異なるわけですが,タイムラグを考慮すれば,どちらも同様な傾向と近似ができそうです.

ここでは,有病率と罹患率を同義語として扱いました.毎日発表される,新規感染者数は,罹患率とは異なりますがよく似た指標であります.

 

 

東京都の2021.3.17までの陽性者累計116,293人,検査実施累計1,779,950人を用い,現在の陽性率はx=6.5%程度(全国ではx=4.9%)程度と推定します.
ランダム・サンプリングではないし,データが不足しているので,罹患率(有病率)も陽性率に等しいと仮定します.

(注)ここで対象となるサンプル集合は,PCR検査を受診できる限定されたグループですので,ランダム・サンプリングではなく偏っており(発症条件が課さたグループ),その陽性率は一般集合より若干高値でしょう.また,サンプリング条件が感染状況とともに変化しているので,単純な時間変化の比較はできません.
================================
■条件付き確率についての「ベイズの定理」とは次のように説明できます.
p(Y|X)p(X)=p(X∩Y)=p(X|Y)p(Y)
記号の意味は例えば以下の様です.
p(X) Xが起こる確率
p(Y|X) Xが起こった後でYが起こる確率
p(X∩Y) XかつYが起こる確率
ベイズの定理は,X(原因)が起きた後でY(結果)が起きる確率p(Y|X)と,XとYを入れ替えた確率p(X|Y)を結び付ける定理です.
===============================
■PCR検査の精度
新型コロナ検査、どれくらい正確? 感度と特異度の意味(酒井健司,朝日デジタル)などにより,次のように仮定します.
PCR検査の感度とは,罹患者がPCR検査で陽性(+)と正しく的中する確率のことで,あまり大きくなく0.7程度といわれます.真の罹患者でもPCR検査が陰性(-)(偽陰性)となる(罹患者を取りこぼす)確率が0.3程度あるそうです.
PCR検査の特異度とは,非罹患者を正しく陰性(ー)と判定する確率のことで0.99程度です.非罹患者を陽性(+)(偽陽性)と判定するのは稀で0.01程度の確率ですが,非罹患者の割合が多い集団(罹患(有病)率が小さい集団)では,無視できない偽陽性数になります.

 

■これらの仮定の下で,以下の2つを推定しましょう.
ただし,ベイズの定理を使います.
罹患(有病)率をp(罹患)≡x,非罹患(非有病)率を1-xとします.
(1)PCR検査で陽性と判定されたとき,罹患者である確率を求めなさい.

 

青線グラフ

つまり,PCRの結果が陽性のときでも,その的中率はp(罹患|+)=83%(x=6.5%附近)程度です.
罹患していても,検査感度のため,検査の結果が陽性にならない偽陰性が30%あり,罹患者をとりこぼしている.
一方,検査の特異度が高いので,偽陽性率は0.1%と小さいにも関わらす,非罹患者の割合(1-x)が多い集団では,陽性判定中に占める偽陽性の数も無視できない.これらの原因のため的中率が低下します.
(2)罹患(有病率)を推定しなさい.
(陰性)判定されたものの中に見逃された罹患者のいる確率p(罹患|-)は,

 

赤線グラフ

陰性と判定されたものの中に見逃された患者である可能性は,p(罹患|-)=2%(x=6,5%の付近)ほどある.
従って,全人口のなかで推定される罹患(有病)率は,
p(罹患)=x・p(罹患|+)+(1-x)・p(罹患|-)

第1項:第2項=真陽性:偽陽性=5.40:1.87
x=6.5%のときには,陽性中に占める偽陽性の数は25%程度である.

 

 

0

数学が自然を記述する

物理の発展に先立ち,それが必要とする道具としての数学が,先回りして常に用意されていたという歴史観があります.
そのように言いたくなる事例は確かにたくさんあります.X線結晶学に先立ちすべての空間群が求められていたこともその例です.このような廻りあわせはドラマチックで面白いのですが,数学がすべてに先だってあるはずだと信じるのは妄想です.
ニュートンの微積分のように,現場が新しい数学の源泉であったことは多く,このような開拓場面に立ち会ったのは,
数学者ではなかった(物理学者,化学者,工学者,...様々,そして,新数学分野を開拓した後,彼らは数学者と呼ばれている).つまり,新しい数学の源泉の多くは,自然の現象の中にありました.

(注)ニュートンは,自分の研究に必要な道具としての数学(微積分)も開発しました
(ニュートンは謙虚にも自分は巨人の肩に乗っただけだといいました).
(注)ニュートンは,惑星の動きを理解するために新しい数学(微積分)を発明しなければなりませんでした.
このような19世紀は科学の発展局面で興味深い時期です.その後,偏微分方程式の理論が生まれ,
波の伝播,熱伝達を説明する最初の場の理論が構築されました.フーリエ,ラプラスのような数学者は、
この物理学を理解するために新しい数学を発明しました.
弦理論の現在は,このような興奮する局面にある.

自然(宇宙や現象)を数学は記述することができます.あたかも数学があって自然がそれに従って作られた
という反語的表現も実は同語反復です.数学が先にあってその通りに宇宙ができているわけではありませんが,
森羅万象の自然の中に数学も含まれるので,自然を記述する数学は存在するはずです.
人間も生命も自然の中に存在しますからやはり数学で記述されるはずです.
もし人間が宇宙に居なくてもそのような数学は存在すると私は思います.
ーーー
2004年5月のノーベル物理学賞を受賞したDavidGrossがモスクワを訪れ、弦理論と理論物理学の今後について講演し,
その時のインタビュー対談は,数学と物理学の協働テーマは啓蒙的で興味あるものです.

ーーーーー
20世紀の終わりに,新しいタイプの非常に緊密な協力(物理学者と数学者の間)が登場しました.
弦理論と場の量子論では,物理と数学が非常に密接に関連しています.

弦理論が非常にロシア的という理由は,物理学と一体となったロシアの数学者の伝統(オイラーに代表される)があるからです.
ゲルファンド,アーノルド,..など.

ハイゼンベルグが量子力学(行列力学とも呼ばれる)を発見したとき,彼は数学としての行列を知りませんでしたが,
今日では行列は大学の教養課程で教えられています.
弦理論の数学ツール経路積分も,時がたてば普及するでしょう.

1930年代に書かれた量子力学に関する最初の教科書を見ると,とてもひどいものです.教科書は時間とともに良くなります.
他の分野でもまったく同じことが起こっています.力学や電磁気学に関する最初の記事と教科書は非常に複雑でした.
アインシュタインが電磁気学を研究したとき,彼は苦労しました.今や学校で電磁気学を普通に習います.

私たちが自然や数学を発明していると言うのは間違っています.逆に,私たちは自然によって発明されました.
数学は,自然を理解し,その中で最適な生存を実現するためのツールとして,私たちが創造した言語から成長してきました.
だから数学は本質的に自然の一部であり,数学が自然を記述するのが得意です.

いつの日か,銀河の反対側にある別の文明とのつながりを確立するとしましょう.世界は1つしかないので,
宇宙人は私たちとほぼ同じ物理学を持つことに誰もが同意します.彼らは我々と同じ数学を持っているでしょうか?
一部の数学者はノーと言うでしょう.彼らは我々と全く異なる数学を発明する可能性はあります.
でもやはり,彼らの数学は私たちの数学と非常に似ていると思います.

■現代のコンピューターの数値計算能力は驚くべきもので,それらは理論物理学者の働く方法に強い影響を与えました.
多くの人はもはや微分方程式を解こうとはせず,単に数値的にシミュレートします.
例えば,スティーブン・ウルフラムはすべてを計算し尽くそうとします.

実際20〜30年前のデバイスの機能と比べると,今できることは驚くべきことのようですが,
コンピュータはまだそれほど賢くはありません.計算手法は幼児期に開発されたままです.
私たちが計算アルゴリズムについて話すときに使用または考えるすべてのコンピューターは古典的です.
量子コンピューターとコンピューティングのための量子力学システムを使用するプログラムを実装すれば,
従来のコンピューターよりも指数関数的に優れたパワーを得ることができることがすでに証明されています.

量子力学もパラドックスを背景に発生しました.一方では古典物理学であり,他方ではボーアの原子モデルであり,
このパラドックスは量子力学によって解決することができました.

弦理論の最も注目に値するアプリケーションの1つは宇宙論です.弦理論家は宇宙論者や天体物理学者と多くのことを話します.
宇宙論者たちは現在、ビッグバンとビッグバン自体の後の宇宙の発達の初期段階を理解しようとしています.
この分野では,私たちの関心のある領域が重なっています.
弦理論の他のアプリケーションもあります.特に,私たちが新しい数学を発見しているという事実.
この理論は科学の発展に不可欠なステップであり,量子力学と同じように多くの用途があります.
参考書:
リサ・ランドール,「ワープする宇宙―宇宙の隠された次元の謎を解き明かす」
バートン・ツバイバッハ,「弦理論の学生のための良い教科書」

0

断捨離はやりません

あけましておめでとうございます.
今年はcovid19の感染拡大で先行き不透明な年になりました.
皆様それぞれに悔いのない良い年になりますように.私も気を引き締めて全力で努力していこうと思っています.
新年を迎えましたが,今,私は荷物ゴミの中におります.年末に多くの荷物を,私のところへ運び込んだからです.何故そんなことになったのかと言うと,来週には,私の育った家の取り壊しが始まるからです.私は,小,中,高校も地元の公立学校に通い,大学も歩いて通える距離でしたので,引っ越しをしたことがありません.
私の育った家は,戦後に建てた始めは2部屋だけの小さなものでした.戦後の焼け跡はそのようなバラックばかりがありました.その後の70数年に増築や補強が行われましたが,ずっと同じところに住んだので,父母の物や私の物が山ほどで,高価な物は何一つありませんがそれぞれに思い出があります.そのため,大変気が進まない断捨離でした.9月のまだ暑い最中から週に2日程度通い荷物の整理を進めましたが,とうとう年末が来てしまい,選別の間に合わない残りを全部私のもとに運び込む羽目になったのです.

母は編み物が好きでした.私が小さいときに見た光景は,いつも頼まれた編み物をしている母の姿でした.母は田舎の女学校を出て東京にでて来ました.あるとき,下宿でネクタイを編んでいて、金色の絹糸を色合わして買うために,お店にそれを持参したところ,お店の主人が「見本でウインドウに飾りたい」といって買い上げてくれたそうです。「そう,恥ずかしいわね」と口では言ったものの,かなりいい値だったのでうれしかったそうです。松坂屋の斜め前の大きな糸やでのことでした。市役所で洋裁も習う時間があったようです.東都服装学校にも少し行ったそうです.兵隊さんの猿股を作るにも,糸を何センチも無駄にしないような時代のことでした.
私は子供の頃,毛糸を両腕に通して母の毛糸玉を巻くのを手伝いました.長い時間腕を上げて振っていると疲れるものです.セーター1着作るのに,20玉が必要と母から聞いていました.
母の遺ししセーターに毛糸の玉巻きを手伝いし幼き日の想い出

今回,母の残した毛糸の編み物や和服など,大きな7つの段ボールを田舎に送りました.田舎では使ってくれるそうです.
未使用の毛糸は友人の知るグループで使うというので差し上げました.

庭に私の分身のような樹齢70の枇杷の木があります.今,白い花を盛りとつけています.可哀そうですが,実をつけることなく今年は切られてしまいます.木は動けませんから.合掌
我食いし枇杷の種より育ちたる樹齢は七十の白き花盛る

 

 


物置に釣り道具を見て悔やまれる父の釣行につき合わざりし日々
父の軍隊手帳をウエブに公開し見知らぬ方に難読箇所の教えを受く

 

 

0

一つ火

 
■時宗総本山,遊行寺の御滅灯(おめっとう),一ッ火(ひとつび)は,11月27日の夕刻から行われます.

遊行寺のウエブサイトによると:-----
「一ッ火」は遊行寺年中行事の中で最も荘厳な法要です。順に灯火が消えていき、やがて完全な暗闇に包まれた本堂に幽音の念仏が響きます。そして暗黒の世界にただ一つ灯される新たな灯明が、光り輝く念仏の世界を本堂内に映しだします。
この法要には、「一年間の悪業を懺悔し、来年の善行を志す」という意味合いもあります。
なお、本年、主役である「報土役ほうどやく」は、藤澤清孝ふじさわせいこう(鎌倉市材木座來迎寺住職かまくらしざいもくざらいこうじじゅうしょく).「後灯役」は、望月輝山もちづききざん(総本山内近司そうほんざんないごんす)が務めます。
本年度は、新型コロナウイルス感染症対策のため、参拝人数を制限させていただきます。-----

 

本堂内の火が次々に消され、最後にこの大光灯を報土役が消し、後灯を後灯役が消します。この漆黒の闇のなかで十八念仏が始まり、報土役・後灯役は、火打ち石で火を起こします。一度目は空中で火花を散らす「見せ火」で、二度目で「火口箱」に火花を打ち込みます。打ち込まれた火は、闇からしだいに灯明へと移され、再び弥陀と釈迦の光明に照らされた世界が戻ってくることを表現します。-----

時宗のこの伝統行事は,京都,東山の西連寺でも行われていることをウエブで見ました.


現在、外灯も整備され夜遅くまで街の灯りも消えることもなく、「暗闇」の怖さや心細さというものを経験することも少ない。漆黒の闇につつまれた堂内で、徐々に明るくなっていく様を目の当たりして光の有り難さを経験することでしょう。

■2016年11月27日は,夕方からの雨でどんどん寒くなりました.私は,母の一周忌の折に,ご住職からお聞きしたばかりの「一ッ火」に参加してみようと思い,藤沢,遊行寺に出かけました.遊行寺は,落語(鈴振り)でも,箱根駅伝の中継でも,有名で知っていましたが,私が遊行寺に行ったのはこのときが初めてです.「一ッ火」は,5時に始まり9時近くまで行われました.外の雨は氷雨のようになり寒い夜でした.
「一つ火」の最後に,大僧正直々に全員(何百人でしょうか,例年より少ないそうです)が,お札をいただきました.その行列の長いこと.大僧正は97才.すごい大声でのお話,さすがです.(この方が,当時,運転免許返上で話題になった方ですね).
「一っ火」というのは,本堂のロウソク(それぞれ或るものを象徴して配置され,20~30本位ある)の火を,複雑な手順(方法や役回りがいろいろ)に法り次々に消して行き真っ暗に...,そして静寂.十八念仏が始まり,火口箱に火花を打ち込み,灯明に移されます.再び弥陀と釈迦の光明に照らされた世界が戻ってきます.念仏は美しい合唱の音楽になって響ます.

■大きな百目蠟燭*)の炎は長く伸びて明るい.じっと見ていると,炎はピタッと動かない.それが突然瞬き始める.また,ピタッとまる.これが周期的に繰り返されます.この自励振動の機構**)に感嘆して見入ってしまいました.実に面白い.まるで活きているように間欠動作をします.
面白い現象です.ロウソクの炎の瞬きと,静止が何故繰り返されるのだろうか?どちらの状態も安定でないわけで,この移り変わりが起こる理由を考え込んでしまったのです.


注*)大きな和蠟燭です.100匁目あるかどうか知りません.明るく点燈し,嫌な臭いもしません.和ろうそくはハゼの実などから作るようです.ハゼの実や和ろうそくのことなどをどなたかお書きください.
 むかしの むかしの かざみの とりの
 ぼやけた とさかに はぜのは ひとつ
 はぜのは あかくて いりひいろ
 ちいさい あき ちいさい あき
 ちいさい あき みつけた



注**) 類似な現象として;
・近づけた2本のロウソクの瞬きの周期が揃う(協同する)という現象があります.以下に,協同現象のyoutube実験動画を引用します.
・蛍の明滅がそろってくる協同現象も知られています.
・私が昔係わったことのあるプラズマディスプレイ装置では,放電スポットが周期的に明滅する自励振動の現象がありました.

 

0