ブログ倉庫

対称性の話

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2014.11.18] No.038
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
◆正3角形の対称性
正3角形は,中心に回転軸を立て右回りに120°回転しても,
始めの状態と全く同じで,回転したかどうかわかりません.
この回転を続けて2回行い240°の回転になっても同様です.
120°の回転を3回続けて行うと1回転して始めの状態に戻ります.
つまり,正3角形には3回回転対称があります.
このような回転軸を3回軸といい,記号は3と書きます.
その他に,正3角形は鏡映対称があります.図に示した赤い線が鏡映面です.
ここにある3枚の鏡映面は3回軸の作用で互いに移り変われるわけで,
全部同じ性質です.従って,正3角形の対称性は,3回軸と1種類の鏡映面があり,記号では3mと書きます.
◆正4角形の対称性
正3角形の場合と同様に,こんどは中心に4回回転軸があります.記号は4です.
正4角形を見ると鏡映面が4枚あることがわかります.図で赤線で描いた2枚と
オレンジ線で描いた2枚です.4回軸によって,赤い鏡映面どうしは互いに移り変われるし,
オレンジ鏡映面どうしも移り変われますが,赤とオレンジの鏡映面は,互いに移り変わることができません.
従って,今度は2種類の鏡映面があることになります.正4角形の対称性は,記号で4mmと書くことに注意してください.
◆同様に,正5角形,正6角形の場合は,図のようになることを各自確かめてください.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/42/16226942/img_0?1414074741

◆対称図形の重ね合わせ
正3角形の部品を複数重ね合わせると,一般に,全体の対称性は低下するが
配置の仕方により全体の対称性が上昇することもある.
このようなことをとり上げている本は見かけませんが,とても面白い現象です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/01/16227001/img_0?1414076174

◆対称性の重畳
正6角形は正3角形の対称性を含んでいますから,
正6角形と正3角形を鏡映面が共通になるよう重ね合わせる(下左)と正3角形の対称性が残ります.
正3角形と正6角形の回転軸をそろえて,鏡映面が共通でないように重畳すると,
結果は3回回転対称だけが残ります(上左)
他の図も同様ですので,各自確認ください.正6角形と正5角形の重畳の場合は,
6回回転対称と5回回転対称に含まれる下位の対称性(共通な部分群)はないので,
鏡映面の一致がなければ,対称性はなにも残りません(上右).
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/01/16227001/img_1?1414076174

0