2020年9月の記事一覧

笑い話と計算

こんなクイズを何処かで聞いたことがありませんか?
1人10ドルのホテルに3人が止まり,30ドル支払いました.ホテルフロントが5ドル値引きしてくれ,女中を介して返金してきましたが,途中で女中が2ドル抜いたので,3人に渡ったのは1ドルづつです.結局,それぞれ9ドルづつ支払ことになり,全員でホテルに27ドル,女中が2ドル持っています.残りの1ドルはどこに消えたのでしょうか?
ややっこしくて変な気分ですが,お判りでしょう.27ドルと2ドルを足す意味は何でしょうか?

このような計算の笑い話は,落語のツボ算にも出てきます.買ったツボを返品するときに,支払った金額と返品するツボの値段を足してしまうのです.
数学の方程式を作るときに,左辺に足すか右辺に足すかよく意味を考えて式を作らないと,このようなとんでもないことになります.

落語の時そばでは,そば代金の16文を数える間に,8のときに時間(八つ)を混ぜ込むことで,1つスキップし金額を1文ごまかします.与太郎が真似をするときは,時間が(四つ)で,逆戻りし損をしてしまいます.これは,お金と時の呼び名という単位が異なり足すことのできないものを足すトリックです.我々ももう少し複雑な問題ではありますが.方程式を立てるときに単位の異なるものを足してしまうような式を立ててしまうことがよくあります.笑い話ではすみません.

話のついでにもう一つ,落語に出てくる不正な計算について述べましょう.落語花見酒では,酒だるを担いで売りに行く2人の間で,お金をやりとりしているうちに,お酒が全部なくなってしまう話です.これは売上金の公金横領に当たるわけですが,お金はお金でも,公金と自分の金というカテゴリーの違うものの区別ができなかったために起きた笑い話です.

最初の例に戻ると,ホテル取り分は25ドル,女中取り分は2ドル,客支払い分は3x9=27ドルで何の不思議もありません.

■以上をブログに掲載した時に,読者の方から「三方一両損」の話が出ました.
江戸っ子の職人が3両入りの財布を拾って,落とし主に届けると,落とし主はいらないと意地を張る.どちらも江戸っ子らしくていいですね.
大岡越前守が,1両出して4両にし,2両づつ分けさせる名裁きをします.
拾ったまま届けず手元に置けば3両ある.届けてもらって受け取っておけば3両ある.
奉行も関わらなければ1両出さずに済む.しかし,結局3人とも1両ずつ損をしたというのです.


■今回もう一つ,35頭のラクダと3人の兄弟(アラビア数学奇譚,3章より)を追加しましょう.

35頭のラクダを,父の遺言によれば,長男Aが1/2,次男Bが1/3,3男Cが1/9に分けろというものです.
かぞえびとペレズミがラクダをつれた友人と通りかかります.

ペレズミは言います「ここにある友人のラクダを上げますから36頭にしましょう」
36頭で計算すれば,すべて割り切れて,A,B,Cの3人のすべてが得をします.
なぜなら,
35/2<36/2=18
35/3<36/3=12
35/9<36/9=4

その結果,18+12+4=34頭ですみますから,1頭は友人に返却して,余った1頭は相続の問題を解決したペレズミがもらいます.

0

窓内の円

2019.02月号より,文 Юрий Белецкий +図 Алексей Вайнер

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


■オデッサ州立フィルハーモニー協会(建築家-A.I.ベルナルダーツィ)
の窓は,円と弧のパターンで装飾されています.
この窓は,すばらしい幾何学問題を提供しています.

白板に描いたように,小さな3つの円の中心$$O_{1},O_{2},O_{3}$$は1つの直線上にのります.証明してください.

 

 

 

 

 

 

 

 

■この問題をみて思い浮かべるのは,以前掲載した以下の2つの記事です.
アポロニウスの窓,アルべロス(靴屋のナイフ)という形のなかに面白い幾何学世界があります.
反転の利用ーパップスの定理
https://note.com/sgk2005/n/n56056054e23c

インドラの網と反転円
https://note.com/sgk2005/n/nec1396b13bd4


アルべロス(下図のオレンジ色の形)の中で,パップスの定理が成立しています.しかし,円$$ω_{2}$$と円$$ω_{1}$$の中心を結ぶ線は,水平ではありません.

 

 

 

 

 

 

いま問題になっているオデッサの窓内の円では,$$O_{1},O_{2}$$を結ぶ直線は水平になるのですが,その原因は,外側の大きな円(半径$$r$$)内で重なり合う2つの円(半径$$ar$$)に接するように,半径$$xr$$の円を決定することによります.しかる後に,この半径$$xr$$の円に接するように,半径$$yr$$の円を描くと,この円の中心は半径$$ar$$の中心線上に存在するようです.
問題のオデッサの建物図では,$$a=2/3$$(大きな円の直径を3等分する位置に柱がある)のようですが,実は,同じ半径の円が重なっていれば(任意の$$1/2<a<1$$)成り立つようです.

 

接する4つの円の半径の間にはデカルトの定理という式が成り立ちますが,それを計算するのは容易ではありません.幾何で解くことにしました.

 

 

 

 

 

 

 

 

 

 

 

 

円の接する条件を図示すると,辺の長さが,$$1-x,1-a,a+y,x+y$$の4角形になります.4角形の対角線は,$$a+x,1-y$$です.この条件は関係する円が接するための条件です.$$1-x$$の辺が垂直なのは対称性から明らか,半径$$yr$$の円の中心と,半径$$ar$$の円の中心を結ぶ$$a+y$$も垂直として,$$x$$と$$y$$を解くと,

 

この$$x,y$$を用いて,互いに対向する辺の長さを求めると,互いに等しいことが証明でき,矛盾は出ません.

 

従って,この4角形は長方形になり,辺$$x+y$$は水平であることがわかります.

0

桃子さんよりの解答の投稿

この式を証明していきたいと思います。n桁の数字を$$(x_n),(y_n),(z_n)$$とすると、

$$ (x_n)=(10^n-4)/6 $$

$$(y_n)=(10^n)/2$$

$$(z_n)=(10^n-1)/3$$

と表せる。元記事より

$$ x_{n}^{3}+y_{n}^{3}+z_{n}^{3}=10^{2n}x_{n}+10^{n}y_{n}+z_{n} $$


を証明すれば良いことがわかる。

$$x_{n}^{3}+y_{n}^{3}+z_{n}^{3}=((10^{n}-4)/6)^{3}+(10^{n}/2)^{3}+((10^{n}-1)/3)^{3}$$

$$ {10^{2n } }x_{n}+10^{n}y_{n}+z_{n}=10^{2n}(10^{n}-4)/6+10^{n}10^{n}/2+(10^{n}-1)/3 $$
$$=10^{3n}/6-10^{2n}/6+10^{n}/3-1/3$$

ゆえに

$$(x_n)^3+(y_n)^3+(z_n)^3={10^(2n)}(x_n)+(10^n)(y_n)+(z_n)$$


が成立する。

大まかなものだとこういう感じです。

0

菱形多面体

菱形30面体とサッカーボール(あるいはフラーレン)の関係の続編です.
菱形は正多角形ではありませんから,菱形多面体は正多面体ではありませんが,正多面体や準正多面体と密接な関係がありますので,菱形多面体に集中して見直しましょう.菱形12面体と菱形30面体があります.それぞれの菱形多面体は,準正多面体6・8面体と12・20面体の双対多面体として得られます.
(注)双対多面体というのは,面と頂点を入れ替えて対応させて作る多面体です.例えば,準正多面体の6・8面体は,正6面体の面と正8面体の面よりなり,正6面体の面を対応させた頂点と,正8面体の面を対応させた頂点とで,菱形12面体の頂点は構成されています.

 

(美しい幾何学p.21より)

 

 

 

 

 

 

 

 

 

 

 

 

 

■菱形12面体は,空間を隙間なく充填できる立体です.菱形12面体の面を合わせて空間を充填すると,立方面心格子の配列ができます.

 

 

(美しい幾何学p.61より)

 

 

 

 

■菱形12面体の見える万華鏡を作る

 

 

(美しい幾何学p.44,45より)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 さて,菱形12面体の菱形面の対角線比は,1:√2であることを確かめてください.
菱形30面体の菱形面の対角線比は,黄金比2:1+√5であるを確かめてください.


■IQライトと呼ばれるランプシェードの話が,kvantik(2019.07)に載っていました.重さはたったの100グラムで,30枚の薄いフレキシブルプレートを組み立てて作ります.各プレートは菱形の形状で,4つのフックがついていて組み立てます.このデザインは,デンマークのデザイナーHolger Strömによって1973年に作られたそうです.
名称のIQはInterlocking Quadrilateralsーー連動した四角形の略.
菱形面が5つ集まる場所と3つ集まる場所があることに注意して,組み立てましょう.

0

膜の振動モード,クラドニ図形

 
カバー写真は私のバイオリンですが,低音域に共鳴点があり振幅が大きくなり音が開くような気がするのです.バイオリンの音質が何とかならないかと思って,昔,高い本だと思いながら気まぐれで買った「楽器の音響学」安藤由典という本が手元にあります(残念ながら役には立ちませんでした).この本のp.132に,バイオリン胴板の振動モードの図(小橋,時田,日本音響学会誌,Vol.8,p.15,'52より引用したもの)があります.本自体古いし引用文献も大変古いので,もっと詳細な実験がその後どこかに発表されていると思います.特に調べていませんので,もしお気づきの方おられましたらお教えください.

 

バイオリンは駒から1cm付近の弦を弓で振動させ,駒から指板上の指で押さえた点までの長さの弦が振動し,その振動を胴で共鳴させます.共鳴箱の役割が重要です.定在波の振動の節となる場所は節点,2次元の面ですから,定在波の振動の節点は節線となって領域を取り囲んでいます.
振動モードの図で白い部分と斜線部分は振動方向が逆になっているので,斜線との境界線が節線です.周波数が上がるにつれて細かい領域に分かれて行くのは納得できるでしょう.楽器は特別な共振域ができないよう設計されあのような形になるのだ思いますが,ある音域が共振気味に耳元で鳴るのは良くありません.私はそれを見抜けずに迷った挙句良くない方を購入してしまいました.


■ここで,クラドニ図形の次の動画をご覧ください.


振動の腹では粉末は払いのけられ節線に集まります.この実験で見られる興味深い図形をクラドニ図形といいます.
振動から生じる節線についてのさまざまな疑問は,200年以上にわたって科学者を魅了してきました.1809年,クラドニがパリを訪問した後,フランス科学アカデミーはコンテストを発表しました.その目的は,「弾性表面の数学的理論を構築し,それが実験データとどの程度一致するかを示すこと」でした.この賞は1816年にソフィー・ジャーメインが受賞しました.その数学的モデルは,少し後のグスタフ・キルヒホフによって完成しました.

ここでこの話題を取り上げたのは,「トリニティオプション-サイエンス」第16号(310),2020年8月11日に,フョードル・ナザロフ,ミハイル・ソディン,アレクサンドル・ログノフによるこのテーマの紹介記事で,
アレクサンドル・ログノフが,2020年のヨーロッパ数学会のEME賞(数学への卓越した貢献が認められた35歳未満の10人の研究者に4年ごとに授与)を受賞したニュースを見たからです.

 

■周波数が上がると定在波の節線集合の形はだんだん細かくなりますが,どのように変わるのでしょうか.
バイオリンやギターなどの楽器は,圧縮に抵抗する弾性体の板を振動させますが,膜の振動であれば一定張力のみの弾性体ですみます.実際の楽器の振動計算をするのが目的ではなく,この節線集合サイズの振る舞いを知るのが目的ですので,アレクサンドル・ログノフは扱いが単純化できる膜モデルを用い,ラプラス微分方程式の各周波数に対する固有関数のゼロ節線集合のサイズに関するヤウ・シンツンとニコライ・ナディラシビリの予想を証明しました.

■この問題は,工学的には,2次元のFourier解析で膜の振動を正弦波の固有振動の重ね合わせに分解し,ラプラス方程式の固有関数を与えられた境界条件で解く有限要素法でコンピュータを用い数値解を得ることができます.
ラプラス演算子をΔ,振動数ωの固有関数 v_ω(x) は微分方程式
Δv_ω(x)+ 4(π^2)(ω^2)v_ω(x)= 0 の解です.節線集合は,条件 v_ω(x )= 0を満たすxの集合で,与えられた境界条件を満たすように解く問題です.


Fourierはナポレオン時代の数学者ですが,熱伝導の微分方程式の境界値問題を解くために開発したFourier解析を公開したのは1822年でした.従って,現代なら使う2次元のFourier変換もクラドニの時代にはありませんでした.

しかしながら,問題を精密に解くことと,現象の本質を理解することとは目的が違います.計算すればそうなるとか,一口ではいえないというのでは,本質が理解できたことになりません.

節線集合に関する有名な問題は,40年以上前に出された節線集合サイズに関するヤウ・シンツン予想です.節線の長さが,周波数ωの線形関数として増加する予想しました. それらは通常,膜を小さな正方形に分割し,それぞれのサイズを推定します.そのような推定のための便利なツールは,倍加指数(ハウスドルフ次元に似る)であり,立方体Qから倍の立方体2Qに変えたとき,固有関数の最大振幅の比の対数を倍加指数と定義しました.倍加指数が有界のままであれば,立方体Qに該当する節点集合のサイズも有界であるとの予想です.ニコライ・ナジラシビリは,ヤウ・シンツンによって提起された問は,調和関数の関連する質問に還元できることに気づきました.しかし,正方形が小さな断片に分割されたときに調和関数の倍加指数がどうなるかという問題は,2016年にアレクサンドル・ログノフとエフゲニア・マリンニコワの研究が発表されるまで進展していませんでした.

0