数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.01.26] No.099
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
皆さまご機嫌いかがですか.東京でもちょっと雪が降ったりしました.
今は寒いですが,晴天の日が続いています.日本海側はだいぶ雪が降っているようですが
被害などありませんように.
今回取り上げる伝統工芸の「大川組子」は,FBの友達からの情報と
ブログの友達からの情報で知りました.ウエブやSNSで得られた情報がことの起こりです.
写真は,見事な伝統工芸の格子です.寸分も違わない見事な細工です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/64/17219564/img_3_m?1452480087
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/64/17219564/img_2_m?1452480087
この模様の対称性を鑑賞しましょう.
これらの組子は,正3角形2つでできている菱形の胞(セル)を単位としています.
そして,全体を一貫する格子があり,胞(セル)は格子の中に詰め込まれています.
第二の図の右側コラムに,そこに使われている胞(セル)の中身(5種類)を取り出しました.
これらはどの中身も周期的に繰り返すなら,どれもみんな6回対称(p6mm)になります.
違った中身へと移り変わる境界の状態は,対称性で記述するのは困難です.
その複雑さに,数学がまだ追着かない芸術の深さがあるようです.
胞の中身に変化があっても,格子が同じ一貫したものになっています.
これは,人工結晶などで見られる格子整合という状態を連想させます.
素晴らしい「大川組子」の写真をウエブで探してたくさん鑑賞しました.
「大川組子」の格子は,3角格子(正3角形2つの菱形),正方格子,
六角形格子の3タイプがありました.
多くの工芸作品は,みんなこのうちのどれかで,他の格子は使われないようです.
そこで思い当たったのですが,これは,正多角形のタイル張りが,
正3角形,正4角形,正6角形の3種であることと似ています.
そして,上で述べたように3角形の中に入る胞の中身の対称性は3mです.
正多角形の格子を用いることと,胞の中身も格子の対称性と同じにすることは
安定な釣り合いを考えれば当然のことで,
昔から職人は,寸分もたがわぬ組子を作るために
力のつり合いと対称性を直観的に理解していたことがわかります.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.01.19] No.098
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
鏡は左/右を逆転する(上/下は逆転しない)のが不思議だという人がいます.
そんなに不思議でしょうか?実物と鏡像とは,上は上に,下は下に,左は左に,右は右に映る
(対応する)のですから当たり前で,不思議でも何でもありません.
それでも,鏡像の世界はなんだか不思議な感じがするのは確かです.
この不思議さはどこに原因があるのでしょうか?実物と鏡像を考察してみましょう.
実物は我々の世界にあり,鏡像は鏡の中の世界にあります.
それなのに,鏡像を我々の世界の中にあるように思うことが,この混沌の原因なのです.
■ちょっと脱線ーーーーー
「太古の時代は,我々の世界と鏡の中の世界の行き来ができたそうだ.
(このようなことは4次元の世界なら実際に可能である.)
鏡の中の生き物とこちらの世界の生き物は仲良く一緒にいたのだそうです.
ある夜,突然,鏡の世界の住人達が我々の世界で好き勝手を始めるようになった.
そして人々は,鏡の中の住人の正体が「混沌」であることに気付いたという.
そこで,黄帝が魔力によって「混沌」を鏡の世界に閉じ込め,
姿や動きも我々の世界の模倣しかできないようにした.」*1)
混沌の中から湧き出るように次々と生まれてきたさまざまなものが宇宙を形作った.
そしてこれを神の技として語り伝えられた.
呪文の効果が切れて,鏡の世界の住人達が勝手に動き出すことが将来起こるかも知れない.
私は幻想怪奇小説が大好きです.そのようなテーマの小説*2,3)
のうちで私が好きなものは「パイプをすう男」です:
一人の男が寂しい一軒家に住んでいます.
毎夜,ランプを卓に置き食事をとる.正面の張出し窓の五枚の窓ガラスに,五つの人影が映る.
彼が食事をとれば人影も同じように食事をとって,
彼が食後の煙草に火をつければ,同じように火をつける.
ガラス窓が五稜形をしてるから当たり前だが,毎夜のことだった.
ところが,ある夜,恐ろしいことが起こった.彼は,煙草に火をつけて
いつものように正面の窓ガラスに映る自分の姿に眼をやった.
すると,その一番左の端の窓ガラスで,五番目の彼の姿が同じように火をつけた.
が,つけたのは,彼のように紙巻ではなくてパイプだった.....」*2)
*1)Turbulent mirror, J Briggs & F. D. Peat, 訳:高安秀樹,高安美佐子
*2)パイプをすう男,M・アームストロング,幻想と怪奇 1(ハヤカワ)
*3)わな,H・S・ホワイトヘッド,怪奇幻想の文学(新人物往来社)
ーーーーーーー閑話休題
■鏡映像の左右反転
x軸に垂直な鏡面があるとします.鏡面内に原点(0,0,0)があり,上方向がy軸です.
この鏡面により,(x,y,z)の点は(-x,y,z)の点に映ります.
つまり,y,zは変わりません(上は上に,左は左に対応)が,xは-xに変わります(前向きが後向きに対応).
この鏡面は,xの符号だけ反転します.だから,右手は鏡に映ると左手に変わります.
鏡像は鏡の世界にあるのですが,我々は,鏡の世界を我々の世界の延長のように認識しようとします.
つまり,鏡の世界の天井と地面を,我々の世界の天井と地面と共通のものと直観してしまいます.
そして,鏡像を我々の世界に連れ込んで,前後の向き(鏡像はx方向が反転している)を,揃えようとします.
上下方向(y軸)は,鏡の世界と我々の世界は共通,前後方向(x軸)は鏡像では反転しているので,
我々の世界に鏡像を連れてくるなら,反転したx軸をそろえるため,y軸(左右方向)が反転してしまいます.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.01.12] No.097
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
先週に引き続き,モアレの美しさを鑑賞ください.
(A)2枚の格子を全く傾けずに(交差角0°)重ねたもの
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/68/17214068/img_0_m?1452512081
(B)2枚の格子を交差角10°で重ねたもの
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/68/17214068/img_1_m?1452512081
(C)2枚の格子を交差角15°で重ねたもの
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/68/17214068/img_2_m?1452512081
(D)2枚の格子を交差角20°で重ねたもの
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/68/17214068/img_3_m?1452512081
(E)2枚の格子を交差角30°で重ねたもの
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/68/17214068/img_4_m?1452512081
2枚の全く同じ格子(3角格子)を重ねます.
3角格子(6mmの対称性)の非対称の領域は0°~30°です.
そこで交差角(回転角)を0°~30°の範囲を実験しました.
言及したい注目点は3つ:
(1)元の3角格子の格子点の集合(並進群A)と,重ね合わせで生じた共通格子点の集合(並進群B)の関係は,
BはAの部分群であることです.
例えば,交差角30°の時の2つの格子に共通な格子点(スーパーラティスという人もいる)は,
coincident-site-latticeで,Fig(E)に示します.
あたかも,結晶の表面構造や高分解能電顕による格子像観察の映像のようです.
(2)連続的に交差角度をかえると,生じた拡大された格子像がズーム・アップして面白いです.
交差角が小さいと拡大率は大きくなります.Fig(B~D)
(3)モアレ現象は,薄膜の干渉で生じる現象にも似ています.
例えば,複写機ドラムの感光体塗膜の厚さにより,界面と表面からの反射光の干渉があります.
望まない干渉縞を除去するそんな特許を昔書いたことがあります.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2016.01.05] No.096
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
新しい2016年がスタートしました.皆様のご健康とご成功を祈ります.
やる素振り,やった振りで国民を期待させ欺くのはもう化けの皮がはがれてきました.
日本にとって2016年は大事な年です.良い年になりますように.
■モアレMoire
2枚の同じグレーチング(格子模様)を重ねたとき,もとのグレーチングの拡大像のようなものが
新たに生じるのを見たことがありますか.これはモアレ現象の一種です.
The superposition of two regular nets produces a secondary enlarged net of the same shape.
2枚の全く同じグレーチング(格子模様)を重ねると,たいてい相互にわずか傾いていますから,モアレ(モワレ)縞を生じます.
これは,2枚のグレーチング模様の重なった場所はよく光を通し明るく見えるためです.
重なる場所の出現は周期的ですから,重ね合わせ像のコントラストに周期的な分布ができます
(ビート,うなりのようなものです).そしてあたかも,グレーチングの拡大像を得たように見えます.
グレーチング相互の傾きがわずかなら生じる像の拡大率は大きく,傾きが大きくなると拡大率は小さくなります.
下の3つの写真は,最近ある店の中で撮影したもので,今回モアレのテーマを思い出したのもこのせいです.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_2_m?1451706758
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_0_m?1451706758
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_1_m?1451706758
3枚の写真は,それぞれ全く同じ2枚のグレーチングが平行移動(傾きはなく)して重なっている状況です.
これらの写真を見ると,2次元的なビート・パターンが生じているのですが,
全く同じグレーチングが平行にずれても,新しいビート・パターンは生じないはずです.
ではなぜこのようなビート・パターンが生じたのでしょうか?
それは,2枚のグレーチングの間にスペース D があるために,観測者から視差(パララックス)があり,
前方のグレーチングよりも後方のグレーチングを小さく見込むためです.
これは,わずかに寸法の違うグレーチングを重ねたのと同じ現象なので,
このためにビート・パターンが生じているのです.
とても美しいので,よくわかるように以下の写真を追加します.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_7_m?1451706758
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_8_m?1451706758
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_9_m?1451706758
■詳細考察
では,計算してみましょう:ノギスの副尺の原理を思い出すと良いかもしれません.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_6_m?1451706758
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/63/17194663/img_5_m?1451706758
本当のグレーチングの格子のサイズ a
2枚のグレーチングの間隔 D
視点から表面のグレーチングまでの距離 L
後ろのグレーチングの縮小割合 δ/a≡q<1
として,生じるビートの周期 T を求めて見ましょう.
a/(D+L)=(a-δ)/L より δ/a=D/(D+L)
T≡n・a=(n+1)(a-δ)より δ/a=a/(T+a) ⇒ T=a(1/q-1) ← D, L を消去した
あるいは, T=a(L/D) ← q を消去した
さて,この例で生じた新しいビートの周期は, T=5a のように観測されます.
従って,L/D=5 が得られます.あるいは,1/q=6,つまり δ/a=1/6 です.
2枚の同一なグレーチングの間隔Dで重ねたとき生じるビートが,もとのグレーチングのn倍に見えたら,
観測点から表面のグレーチングまでの距離はL=n・D です.これは,距離Lを測定する道具に応用できるでしょう.
ただし,n=1(T=a)はモアレとは言いません.a/2周期の均一なコントラスト分布です.