2015年2月の記事一覧

ステレオ投影の性質

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.02.24] No.052
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
球表面を平面に投影するステレオ投影
地球儀を2次元平面の地図に

■性質1: 円は円として写像される
ステレオ投影というのは,球表面の点 Z(ξ,η,ζ)を,
北極 Nと結んで,南極 Sでの接平面 Π上の点 z=x+iyに投影することです.
N(0,0,1),S(0,0,0)を直径とする球面の式は,ξ^2+η^2+ζ^2=ζ であり,
この球面はリーマン球と呼ばれます.
Z(ξ,η,ζ)は, (0,0,1)と(x,y,0)を結ぶ直線上にあるので,
ξ=x(1-ζ), η=y(1-ζ), これらを球の式に代入すると,ζ=r^2/(1+r^2)となる.
ただし, r^2=x^2+y^2 である. まとめると;
ξ=x/(1+r^2) ,η=y/(1+r^2),ζ=r^2/(1+r^2)
逆に解くと,x=ξ/(1-ζ),y=η/(1-ζ),r^2=ζ(1+r^2)
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/95/16518295/img_2_m?1424438241
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/95/16518295/img_3_m?1424438241

平面上の任意の円の方程式は a(x^2+y^2)+bx+cy+d=0 である.
この円の方程式の x, yに,上記の表式を代入し,
ξ^2+μ^2=ζ(1-ζ)を用い整理すると
(a-d)ζ+bξ+cη+d=0 が得られる.
この1次式は平面を表し,球表面との交線は円となる.従って,
「平面上の円は球面上の円から投影され」この逆も成立することがわかる.
以上で証明は終わりですが,直観的な説明を補足します.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/95/16518295/img_4_m?1424438241

リーマン球上の円は平面Ωで球を切った切り口で,PQはこの円の直径です.
△NPQおよび△Nqpは,直径NSを含み,円の直径PQおよびpqを含む平面です.
図に示すように両三角形でα,βは互いに等しく,両三角形は互いに相似です.
PQを直径とする円に相似な円が,平面Π上にqpを直径として投影されるでしょう.

■性質2: ステレオ投影は等角写像
複素関数 f が,複素平面領域 D のあらゆる点で微分可能*なら,Dで正則といいます.
*微分可能とは,どの方向からその点に近づいても同一の微分係数が確定することで,
微分係数が0や∞になる点は特異点といいます.
正則関数による写像は等角写像*です.
*写像された像が歪んでも,微小部分の角度は元の像の角度と変わらない.
ステレオ投影(複素平面からリーマン球面への写像 f )は,正則関数なので,
任意の点z0で交差する曲線の投影結果も,
それらの交差角度が保存されたまま投影されます(等角写像).
(f(z1)-f(z0))/(f(z2)-f(z0))=(df/dz)(z1-z0)/(df/dz)(z2-z0)=(z1-z0)/(z2-z0)
ただし,z1,z2→z0 で成立.
lim arg(f(z1)-f(z2))=lim arg(z1-z2))
偏角について成立するこの式は,微小領域で写像による角度が保存されることを示す.
Fig.1に示した横倒しの地球儀のステレオ投影の様子を見ると
平面に投影した地球の下側半分の子午線は,大変歪んでいるが
互いに直交している状態は変わっていないことがわかる.

■諸科学への応用
等角写像は工学の色々な分野で利用されている.
色々な境界条件に合うようにする等角写像は,流体力学で活躍している.
何度でも微分可能であるという複素関数の性質も
我々の身の回りの現象を記述する方程式で頻繁に利用されている.

ご感想やコメントなど,以下のブログあるいはメールにお寄せください.

0

エッシャーの双曲面分割

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.02.17] No.051
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
前号に引き続き双曲面分割の話です.

■エッシャーの「極限としての円」のシリーズが生まれるまで

コクセターとエッシャーは1951年の国際数学会で出会いました.
1958年にコクセターはこの分割を掲載した論文をエッシャーに送り,
これがエッシャーの「極限としての円」の作品群を生むことになります.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/08/16506608/img_0_m?1423875894

エッシャーの双曲面分割作品のシリーズ1は直線魚のモチーフでした,
天使と悪魔など,このシリーズの作品群があります.
そして,シリーズ3の洗練された作品に至り完成します.

■次に示すのは,エッシャーの作品「極限としての円3」です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/08/16506608/img_1_m?1423875894

白い線で分割されたタイル張りは,複数の正多角形による準正則タイル張り
[4,3,4,3,4,3]のように思うかもしれません.
しかし,白い線は直線ではないのです.白い線は,双曲世界のフチの円周と
直交しません(80°で交わる).実は,右図に示される黒い線が直線です.
右図のように正8角形のタイルが頂点で3つづつ集まる正則分割{8,3}と
見るのが正しいのです.エッシャーの作品は,黒い線は顕に出さずに
白い線を見せて見事に数学的に正確で芸術的な作品に仕上げています.
このエッシャーのトリックについては,コクセターが論文で指摘しています.

0

色々な幾何学平面

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.02.10] No.050
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■ユークリッド幾何,楕円幾何,双曲幾何
色々な幾何空間があります.大きく分けて,ユークリッド幾何空間と非ユークリッド幾何空間です.非ユークリッド幾何空間には,楕円幾何,双曲幾何の支配する幾何空間があります.これら3種を,平面を例にとり比較します.
(1)我々の常識の通用するのはユークリッド平面です.
ご存知のように,ユークリッド平面では,直線外の1点を通る平行線は唯一本だけ引けます.
(2)球の表面は楕円幾何平面の例です.地球の表面だけを想像しましょう.
地球自体は,3次元ユークリッド空間の物体ですが,表面だけなら楕円幾何平面の例です.
楕円幾何平面の直線は大円(球の中心を含む平面による球の切り口)です.地球上の2点間の距離が最小のものは大圏コースと呼ばれますが,これは地球の大円上の線分のことです.地球は3次元ユークリッド空間の物体ですから,地表の2点を地球内部を通る直線で結べば最短距離でありますが,地表だけの2次元平面では大圏コースが最短です.球表面の異なる2つの大円は必ず2点(直径の両端)で交わります.そのため楕円幾何平面では.平行線はありません.また,地球儀の緯線のようなもの(小円)は大円でないのでこの世界では直線になりません.
(3)双曲幾何平面では,ある直線に対する直線外の1点を通る平行線は無数に引けます.双曲幾何平面は楕円幾何平面のように閉じていないので,イメージを持ちにくいのですが,ポアンカレがうまいモデルを提唱しました.このモデルはポアンカレの円盤モデルといいます.双曲幾何の世界を表すのに円盤を用い,この世界の直線は円盤のフチに直交する円弧とします.このように定義された世界では,ある直線に対する直線外の1点を通る平行線は無数に引けることがわかります.

■3種の幾何平面で,平面の正則分割を考える
さてこれからやることは,それぞれの幾何平面で,正多角形のタイルによるタイル張りを考えることです.このような問題は,平面の正則分割とも呼ばれます.
それぞれの幾何平面での多角形は,それぞれの幾何平面の定義による直線で囲まれているものです.それぞれの幾何平面で,3角形の内角の和Sは,S=π(ユークリッド平面),S>π(楕円平面),S<π(双曲平面)になります.
正p角形が頂点でq個集まってタイル張りがなされている状態{p, q}で,正p角形の内角の和を表す式を等号で置くと (2π/q)p=(p-2)S が成り立つので,
1/p+1/q=1/2 (ユークリッド幾何)
1/p+1/q>1/2 (楕円幾何) 
1/p+1/q<1/2 (双曲幾何)
となります.それぞれの幾何平面で,許される{p,q}の整数解を求めると,以下のことがわかります.
(1)ユークリッド平面での正多角形によるタイル張りは,正3角形,正4角形,正6角形で可能.{3,6}.{4,4},{6,3}が解です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/93/16488893/img_0_m?1423315106
(2)楕円幾何の平面では,正6角形以上の正多角ではタイル張りができません(閉じた立体になりません).
調べてみると,正5角形のタイルでは,頂点に3つのタイルが集まるもの{5,3},正4角形のタイルでは,頂点に3つ集まるもの{4,3},正3角形のタイルでは,頂点に5つ{3,5},4つ{3,4},3つ集まるもの{3,3}が作れます.結局,5種類の正多角形によるタイル張りがあり,これらはプラトンの正多角形に対応した球面立体です.ここでは{5,3}に対応するもののみ掲載します.黄色い球面正5角形が頂点で3つ集まっているものです.黄色いタイルに5mの対称性があるとき,赤で塗った三角形を中心から見込むような万華鏡を作るとこの映像が再現できます.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/93/16488893/img_1_m?1423315106
(3)双曲幾何の平面では,正則分割は無限にあります.
例として{6,4}と{5,4}のものをとりあげ掲載しました.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/93/16488893/img_3_m?1423315106
例えば,{6,4}の映像を3角形の万華鏡で作るには,
下図の中心に頂点のある三角形の2辺は平面鏡,残りの1辺は円盤のフチに直交する円弧の鏡を使います.しかしながら,この円弧は数学的に反転円として定義されているのですが,現実の光学法則では火線という収差があるので,あまり奇麗な万華鏡映像にはなりません
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/93/16488893/img_4_m?1423315106

■円盤の中の不思議な世界
私たちの宇宙は膨張していることが知られています.
遠方の宇宙のフチの後退速度はものすごく,光速に達すると,
こちらに光はやって来ません,そこが宇宙の果です.
宇宙銀河の回転速度は,宇宙のフチに行くほど大きく
高速で運動する世界の長さは,我々から見ると縮んで見えます
つまり,宇宙は双曲幾何の世界に似ています.
双曲幾何の円盤の内では,円盤のフチに近づくほど空間が縮みます.
この世界では,直線に沿って旅する自分自身もフチに行くほど縮むので
いつまで歩いても世界の果てに到達できません.
同様に,円盤の中心に近いほど距離が大きくはかどるので,
円盤の外から見ている我々には,直線が円盤の中心方向に膨らんで見えます.
一方,円盤内の世界にいる者にとってはこれが最短距離で直線なのです.

0

平面タイリングの観賞

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.02.03] No.049
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
1種類の形(2等辺3角形)の赤色と黄色のタイル(赤タイルと黄タイルは互いに鏡像)
で作ったタイル張り模様を鑑賞しましょう.
1種類のタイルで,平面をタイル張りすると,必ず周期的なタイル張りになってしまう
と思い込むのは間違っています.確かに,
Fig.4 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/97/16430597/img_5_m?1422741853 や
Fig.5 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/97/16430597/img_6_m?1422741853
のような周期的なタイリングはすぐ思いつきます.
しかし,
Fig.2 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/97/16430597/img_1_m?1422741853 や
Fig.3 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/97/16430597/img_2_m?1422741853
のように非周期なもので,平面をタイル張りするものがあります.
Fig.2は中心に回転対称があるタイリング模様で,点群5mの対称性です.
Fig.3は,2つの目がある螺旋パターンのタイリングで,
水平線は映進面だと思うかもしれませんが,このパターンには周期がありませんから
映進操作はできません.螺旋の目の間(中心)に対称心があります.

さて,ここで万華鏡で作られるタイリング模様
Fig.1 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/97/16430597/img_0_m?1422741853
の登場です.
この万華鏡を生む3枚の鏡は1つの頂点では点群を生成しますが,他の2つの頂点では点群を生成しません.
従って平面を赤と黄色の市松模様で埋めることはありません.
全体の代数系は,群より緩いもの(特殊な亜群)になってしまいますから非常に複雑です.
対称操作は局所的で,独自の作用域と値域があり興味深いものです.
作用域,値域の制限のために,一つのタイル全体が無傷で写像されるパターン内の位置と,
部分が写像される位置があり,このような複雑なタイリング模様ができます.

**************
ご感想コメントなどを,
http://blogs.yahoo.co.jp/tanidr/16430597.html あるいは 以下のメールにお寄せください.

0