平面タイリングの観賞

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.02.03] No.049
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
1種類の形(2等辺3角形)の赤色と黄色のタイル(赤タイルと黄タイルは互いに鏡像)
で作ったタイル張り模様を鑑賞しましょう.
1種類のタイルで,平面をタイル張りすると,必ず周期的なタイル張りになってしまう
と思い込むのは間違っています.確かに,
Fig.4 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/97/16430597/img_5_m?1422741853 や
Fig.5 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/97/16430597/img_6_m?1422741853
のような周期的なタイリングはすぐ思いつきます.
しかし,
Fig.2 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/97/16430597/img_1_m?1422741853 や
Fig.3 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/97/16430597/img_2_m?1422741853
のように非周期なもので,平面をタイル張りするものがあります.
Fig.2は中心に回転対称があるタイリング模様で,点群5mの対称性です.
Fig.3は,2つの目がある螺旋パターンのタイリングで,
水平線は映進面だと思うかもしれませんが,このパターンには周期がありませんから
映進操作はできません.螺旋の目の間(中心)に対称心があります.

さて,ここで万華鏡で作られるタイリング模様
Fig.1 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/97/16430597/img_0_m?1422741853
の登場です.
この万華鏡を生む3枚の鏡は1つの頂点では点群を生成しますが,他の2つの頂点では点群を生成しません.
従って平面を赤と黄色の市松模様で埋めることはありません.
全体の代数系は,群より緩いもの(特殊な亜群)になってしまいますから非常に複雑です.
対称操作は局所的で,独自の作用域と値域があり興味深いものです.
作用域,値域の制限のために,一つのタイル全体が無傷で写像されるパターン内の位置と,
部分が写像される位置があり,このような複雑なタイリング模様ができます.

**************
ご感想コメントなどを,
http://blogs.yahoo.co.jp/tanidr/16430597.html あるいは 以下のメールにお寄せください.