ブログ倉庫

理科・実験 MRI装置の画像化の仕組み★

MRI(核磁気共鳴イメージング)

■プロトン(水素の原子核)はスピンを持ち,磁石の性質(核磁気)があります.
強い静磁場下に置かれたプロトン核磁気は,向きは揃い,歳差運動している状態です.歳差運動の周波数(ラーモア周波数という)は,磁場が強いほど高く,MRI装置の静磁場は1.5T程度と超強力なので,ラーモア周波数は64MHz(ラジオ電波の周波数領域)程度です.静磁場下のプロトンに,このラーモア周波数の電波が照射されると吸収共鳴が起こり,歳差運動の振幅が増大し横倒しの状態で回転(古典論的なイメージ)しています.一方,歳差運動をしているプロトン核磁気からは同じ周波数の電波が放射されるので,これを検出することにします.
生体組織は,水をはじめ水素原子を含むいろいろな組織です.つまり,プロトン核磁気は組織の至る所に分布していて,その水素の属する組織の環境(診断情報)がそのプロトン核磁気の性質に反映されています.すなわち,核磁気の歳差運動の縦緩和,横緩和という現象に違いが出ます.照射電波を切ると,励起されていた核磁気の歳差運動が定常状態に戻る(緩和)のですが,静磁場方向の核磁気成分の復元緩和を「縦緩和」,静磁場に垂直面内の成分の減衰緩和を「横緩和」といいます.
組織の各点で,これらの緩和定数を測定し,マップに表示できれば,診断に役立つ組織の特徴を反映したイメージングになります.
■さて,画像の位置情報はどのようにして得られるのでしょうか.
このためには,静磁場の他に傾斜磁場を印加します.傾斜磁場はペアのコイルによって発生させ,数十mT/m程度の大きさです.静磁場方向をzとするとz方向に沿って強度が変化するz-傾斜磁場,x方向に沿って強度が変化するx-傾斜磁場,y方向に沿って変化するy-傾斜磁場の3種類があります.傾斜磁場の印加された空間内では磁場の大きさが一定になるのは1つの平面です.例えば,静磁場と同じ方向のz-傾斜磁場を印加すると,磁場一定の平面はz軸に垂直な平面です.プロトン核磁気のラーモア周波数は,その場の磁場強度に比例するので,もし,共鳴吸収する電波の周波数をスキャンすれば,各断層平面ごとの電波を順次採取することができます.
次に,各断層面上の(x,y)位置情報を得る仕組みの説明をします.断層上のプロトンの歳差運動を励起後に,y-傾斜磁場の印加と停止,その後続いて,x-傾斜磁場の印加を行います.まず,y-軸に沿って歳差運動の周波数が変わりますが,y-傾斜磁場が切られると,y-軸に沿って位相変化として残ります.続いてx-傾斜磁場が印加されるので,x-軸に沿った周波数変化ができます.結局,断層面上の点(x,y)から放射される電波は,x-座標に沿って周波数が変わり(周波数エンコーディング),y-座標に沿って位相が変わる(位相エンコーディング)ものが採取できます.
傾斜磁場を印加して,空間の位置情報を得,画像化を可能にしたのは,Lauterbur(1973)のNatureに載せた論文です.Lauterburらは2003年のノーベル賞を受賞しました.
■緩和時間の測定には,傾斜磁場や照射電波のON/OFFが必要で,傾斜磁場の立ち上がり時間も考慮した複雑なパルスシークエンスです.256x256画素の測定でもかなりの時間を要します.高分解能画像を得るには,正攻法ではさらに細分化した画素数の測定が必要になり膨大な測定時間になるでしょう.パラレルイメージングなどの手法に加えて,MRIの高分解能かつ高速化を実現したのは,別項目で言及した「圧縮センシング」という方法です.

0