2017年8月の記事一覧

星型正多面体

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.08.15] No.180
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
お盆の最中です.皆様お元気でお過ごしでしょうか.
夏日ではないが天気が悪いこの頃です.今日はどうでしょうか.
私も墓参に行きますので,今回は予約発行です.

■星型正5角形の頂点Aから始めて,A→C→E→B→D→Aと辺をたどり元に戻ると,
1つの頂点で2×360°/5だけ辺が回転することがわかります.
この星型5角形を5/2と書くのは,2x360°/5=360°/(5/2)だからです.
この星型5角形が頂点で5つづつ集まる{5/2,5}は,星型小12面体になります.

https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/585014/02/17957102/img_0?1491137213

https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/585014/02/17957102/img_1?1491137213

■さて,この星型小12面体{5/2,5}は,プラトンの正多面体(正12面体)を芯にして,
その正5角形の面に正5角錐を貼りつけた形です.
同様に,プラトンの正多面体(正20面体:正12面体に双対)を芯にして,
その正3角形の面に正3角錘(正4面体)を貼り付けてできる形は,
星型大12面体{5/2,3}と呼ばれます.これら2つの星型は,ケプラーの星型多面体とも呼ばれます.
序に,この2つの星型に双対な,{5,5/2},{3,5/2}はポアソンの星型と呼ばれます.
■星型小12面体は,五芒星の面Fが12枚,稜の数Eが30,頂点の数Vが12ですので,
F-E+V=-6(我々の知っているオイラーの多面体定理では2)となります.
これは星型小12面体の空間が,球の位相と異なり,穴が4つ空いた浮輪と同じ位相であるためです.

■正多面体とは,多面体のすべての面が同じ正p多角形で,かつ,
すべての頂点の周りの状態は同じで,正p多角形がq個集まっているものです.
このような正多面体をシュレーフリの記号で{p,q}と書きます.
凸の正多面体には,正4面体{4,4},正6面体{4,3},正8面体{3,4},
正12面体{5,3},正20面体{3,5}の5種類があり,プラトンの正多面体といわれます.
多面体の面を頂点に,頂点を面に換えた新しい多面体は,元の多面体と互いに双対とよばれます.
すなわち,{p,q}と{q,p}は互いに双対です.
凸の条件を外して正多面体を考えると,次の4つの星型正多面体があります.
{5/2,5},{5,5/2},{5/2,3},{3,5/2}です.
前者2つは互いに双対,後者2つは互いに双対です.
正5/2角形の面とは,正5角形の頂点を1つ飛びに結んでできるいわゆる五芒星です
(五芒星の辺をたどると,辺の向きが2回転して五芒星が閉じる).
頂点の周りに5/2個の正多角形が集まるとは,頂点に集まる5個が,
五芒星の辺のように2回転して初めの正多角形に戻るわけで,
入り組んだ凹部ができます.以下に4つの星型をリストアップします:
ーーーーーーーーーーーーーーーーーーーーーーーーー
星型正多面体,星型の芯になる正多面体,星型の頂点を結んだ枠が作る正多面体
{5/2,5}    正12面体       正20面体
{5,5/2}    正12面体 正20面体
{5/2,3}    正12面体       正12面体
{3,5/2}    正20面体       正20面体
ーーーーーーーーーーーーーーーーーーーーーーーーーー

0