数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
Fig.1
菱形30面体と12・20面体とは互いに双対な多面体です.双対の説明はFig1に図示しました.さらに,12・20面体は互いに双対な正12面体と正20面体とを重ねたときの共通部分でもあります.
注)Fig.1の重な合わせでは,共通部分はサッカーボール[5,6,6]の半正多面体ですが,正20面体のを少しづつ大きくしていくと,[5,3,5,3]の半正多面体(12・20面体)になる点があります.
菱形30面体の頂点は,正12面体の頂点(3回軸の位置)と正20面体の頂点(5回軸の位置)とから構成されています.菱形面の短対角線(正12面体の正5角形面の辺長)をaとし,長対角線(正20面体の正3角形面の辺長)をbとすると,a:b=1:Φ=2:1+√5 の黄金比です.正12面体の頂点のうちの8個を使い,一辺Φaの立方体を内接できるので,正12面体の外接球の半径は,R12=√3Φa/2です.
一方,正20面体の外接球の半径は,R20=(b/4)√(10+2√5)です.
寸法をa=2,b=1+√5,Φ=1.618にすると,R12=2.80,R20=3.08が得られます.
実際の製作は展開図に記入した寸法(10倍)にすると作り易いです.
ミラー紙(厚さ0.25mm程度の厚紙)を使って,展開図の鏡を作りピラミッド(内側が鏡)のような形に組み立てます.O点は立体(ピラミッド)の中心に相当し,O点の周囲は光の窓になります.覗くのは菱形面(ピラミッドの底面)の外部からです.
針金で正4面体ABCDを作り,持ち手をつけて,正4面体をシャボン液の中に浸してからゆっくり引き上げると,どのような面にシャボン膜ができるでしょうか?
実験してみてください.針金枠の正4面体の面にシャボン膜ができると思いますか?
多分,正4面体の中心Oと正4面体の辺でできる三角形,例えば,△OABなどの膜ができると思います.正4面体は辺が6個ありますから,このような膜は6枚あります.
Oから正4面体の各頂点へ,線分OA,OB,OC,ODの4本がありこの線分が3つのシャボン膜の境界になります.
(1)Oから正4面体の各頂点に向かう線分同士のなす角度は何度でしょうか?
(2)△OABのような6つの膜が1点で出会うOのような点が必ずできるでしょうか?
(3)正4面体の4つの面の面積合計と,△OABの面積x6とでどちらが大きいでしょうか?
(4)どのようなシャボン膜の形のつり合いが実現するでしょうか?
色々な疑問が起こり難しい問題です.実験してみて推測してみましょう.
針金の枠が立方体のときは,どのような膜の形になるでしょうか?
実験してみると下図のような膜ができると思います.
このような膜の形ができることを説明してください.
1976年,ドイツのRegensburg大学のKurt Fischerは,神経の生理学モデルを研究し,フィボナッチ数の発生をここでも発見した[177].神経繊維に沿って移動するインパルスは,ナトリウムまたはカリウムのイオンに由来し,n>=2の細胞からなる同一の膜貫通孔を通って流れる.微量のカルシウムイオンCa2+が孔に入ると,孔内のナトリウムイオンNa+の流れを止めることができる.
これらのイオンは,細孔の入り口を除いて,それぞれ1つまたは2つの細胞を占有することができ,これらの2つの状態をそれぞれ1あるいは2と標記する.図3.39は典型的な孔の状態で,0と表示したのは空の細胞である.
ナトリウムは,孔のいずれの端でも出入りすることができるが,カルシウムは孔の左側でのみ出入りできると仮定する.その結果,孔内のカルシウムイオンは,この孔を通るナトリウムの流れを妨げる.
ロシアの数学者Andrey Andreyevich Markov (1856-1922)にちなんで名付けられたこのマルコフ確率過程は,ツリー構造で表すことができる.木の頂点は細孔の可能な状態を表し,そのエッジは状態間の可能な遷移を表す.たとえば,図3.40に,5つの空でない細胞を有する孔の様々な可能な状態を示す.
図3.40
ツリーは2種類の頂点で構成されていることに注意せよ.すなわち,右端のセルに1,あるいは,右の2つのセルの中央に2があるものだ. レベル5のすべての状態は後者で,状態の右側にカルシウムが存在するため,ナトリウムイオンの右への移動がもはや実行可能ではない.図3.41に図3.40のツリー骨格が描かれている.これは図2.1のフィボナッチツリーに非常に似ている.いずれの図からも,5つの空でない細胞を有する孔は,レベル5に5=F5個の状態を有することがわかる.
図3.41
一般的に,n個の空でない細胞を有する孔は,レベルnにFn個の状態を有する.これは,レベルnの状態数がフィボナッチ再帰関係を満たすことからわかる.
1963年,カリフォルニア州サンノゼにあるサンノゼ州立大学のS.L. Basinは,”電気ネットワークに関心のある人々まで,我が友フィボナッチから逃れることはできない”[23]と書いた.ここでは,フィボナッチ数が電気ネットワークの研究にどのように現れるか示そう.
今年の桜