掲示板

note.com投稿記事

ピタゴラスの木

https://elementy.ru/posters/fractals/Pythagoras

上記ウエブサイトの図を利用していますが,説明文はわかりやすくするために書き換えています.

 

この図形は正方形ばかりでできています.3つ組の正方形が囲む3角形が直角3角形なので,ピタゴラスの定理が成立するので,ピタゴラスの木と呼ばれます.

この構成規則のため木全体が制限されるので,最大の正方形を1とすると,木は6×4の長方形に収まります。したがって,その面積は24を超えません.各ステップで,正方形の辺は1/√2倍に縮小され(面積は1/2)ますが,生じる縮小された正方形の数は2倍ですので,いつも同じ面積が追加されて行きます.このため,木の領域は無限大になるはずです.しかし実際には,正方形がかなり速くから重なり始め,領域がそれほど速く成長できません.それは有限ですが,正確なことはわかっておらず,これは未解決の問題です.

3角形の底辺の角度を変えると,木の形が少し異なります.そして,60°の角度で,3つの正方形すべてが等しくなり,木は平面上で周期的なパターンに変わります.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

正方形を長方形に置き換えることもできます.そうすれば,木は本物の木のように見えます.そして,いくつかの芸術的な処理により,かなりリアルな画像が得られます.

 

 

レビィ曲線

https://elementy.ru/posters/fractals/Levy

 

 

 

 

 

 

 

 

 

 

 

このオブジェクトは1906年にイタリアのエルネスト・セサロによって研究されましたが、その自己相似性とフラクタル特性は、1930年代にフランス人のポール・ピエール・レヴィによって研究されました。このフラクタルの境界のフラクタル次元は、 1.9340にほぼ等しい...。しかし、これはかなり複雑な数学的結果であり、正確な意味はわかっていません。

華やかなフォントで書かれた文字「C」に似ていることから、レビィCカーブとも呼ばれます。よく見ると、レヴィの曲線がピタゴラスの木の冠の形に似ていることがわかります。

バリエーション
歪んだ曲線は、各ステップで等角線の右三角形の代わりに他の右三角形を使用することによって得られます。

Levyレヴィ Cカーブの別バージョンは、セグメントではなく文字Pで開始する場合に作成できます。以下は、このカーブを作成する最初の3、8、および11番目のステップです。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

レヴィ島は、正方形を基準にすると得られます。

有限単純群

(訳者による要約)

単純群とは,自明な正規部分群以外の正規部分群を含まない群です.乱暴な言い方をすれば,自然数では素数のようなものです.有限群を単純群の積で表すのは,自然数を素因数分解するイメージです.

(定理)有限単純群は次のいずれかと同型である.
1.素数位数の巡回群
2.5次以上の交代群
3.Lie型の単純群
4.26個の散在型単純群

 1~3は系列ですが,どちらにも属する群も存在し,この分類は重複を許すものです.4は系列に属さず存在する群なので散在型と呼ばれます.モンスター群は散在型単純群に分類されます.この記事の趣旨はこのような数え上げの問題では分類完了と言い切れないということで,有限単純群の分類に踏み込んで理解する必要はありません.

 この分類定理は,10年を越える500以上もある論文を繋ぎ合わせて得られる結論ですが,論理の繋ぎにギャップがある可能性はあり.分類に抜けがないとは言えません.理論全体を理解している人は10人いるかどうかで,今後とも証明が完全であることを証明できるかどうか疑わしいと言うことです.

結晶点群は32個ですが,この中の単純群は1,2,3,4(mod2),-1,mで,1は例外,3以外は位数2です.

ーーー 

■数学は何処へ行くより3, Brian Davies(ロンドンキングスカレッジ)

https://elementy.ru/nauchno-populyarnaya_biblioteka/164681/164685


これから説明する3番目の危機も、不必要な複雑さに関連していますが、ある意味ではもっと深刻です。この場合、私たちはコンピュータは使いませんが、「純粋数学」におけるコンピュータの証明が容認できない理由です。私が提供する例は、現代数学の中心的な分野の1つである群論に関連します。

1970年代に、100人を超える群論専門家が一種のコンソーシアムを結成し、単純な有限群の完全な分類を目標にしました。この問題は非常に骨の折れるものとして提起され、その解決策は、純粋数学で「フロー法」と「分業」を使用した唯一の例です。ダニエル・ゴレンシュタインの指導の下で、問題は「パッケージ」に分解され、世界中の数学者のさまざまなグループに割り当てられました。10年間の集中的な作業の後、3つの可算無限の系列族と、26個の散在型で構成されるすべての有限単純群の完全な分類をまとめることに成功しました[訳注)約500編の論文]。 「モンスター」と呼ばれる最高位数の散在型の存在は、コンピューターの助けを借りてのみ証明することができました。 幸いなことに、この問題をめぐる危機は、群分類の詳細に立ち入ることなく議論することができます。有限単純群が何であるかを知る必要さえありません。

1980年代には、群分類自体と同じくらい興味深いことが起こりました。外向きのポジティブな変化です。コンピューターを使わずに「モンスター」の存在を証明する方法の発見です。さまざまな数学者グループの努力を組み合わせて、模索された証明の大規模な研究を実施することが決定されましたが、期待される結果の代わりに、以前に受け入れられた証明の多くのギャップが特定されました。ほとんどの穴にはパッチが適用されていましたが、1990年に単純な有限グループの完全な分類が得られたという記述は時期尚早であると見なされるほど、深刻であることが判明しました。時が経つにつれて、このギャップはアシュバッハーとスミスの証明で埋められ、再びその証明は非常に正しいように見えました[3]。この最終的な証明の20巻のうち、これまでに公開されたのは不完全な5巻だけであり、これは定理が「証明」されてから四半世紀後のことです。詳細については、[3]、[27]を参照してください。プロジェクトに最も関心のある参加者の1人であるミハエル・アッシュバッハーは、いつの日か新しい有限単純群が発見される可能性を排除していません。
その特性がすでに知られているどれかに関連しているなら、大したことではありませんが,
アッシュバッハーは、根本的に新しい有限単純群である可能性を排除していません。その場合は、分類に関するすべての作業を最初から始めなければなりません [4]。Jean-Pierre Serre は用いられる証明の正しさと完全さに懐疑的であることを記しておきます [24].

アッシュバッハーは、証明は「外見は十分に強い」と考えています。それは、特定された欠点が、証明のメインラインに影響を与えることなく、適度な量の追加作業でこれまでに修正できたからです。残念ながら、これは証明が正しいことを意味するものではありません。証明の強さは、そのリンクの最も弱いものによって決定されます。これまで、ドロップされたリンクが比較的簡単に新しいリンクに置き換えられたという事実は、これが将来何度も成功することを保証するものではありません。

個々のスレッドの切断があるネットワークの形の証明をイメージしましょう。ネットワーク全体の整合性を脅かさないで、どこかにハエが這うのに十分な大きさの穴があることは排除できません。ハエ(この場合は有限単純群)の大部分は捕らえられますが、すべてではありません。

数学的知識を相互に関連する事実のウェブと比較するという考えは、線形論理の役割を減らし、数学的証明の問題を確率論的平面に移します。これは必然的に不必要な複雑な構造につながります。この考えは新しいものではありませんが、数学者自身が向かうのは比較的最近です。同様の類似点は、特にアシュバッはー [4]によって与えられており、「古典的な数学」とは対照的に、データを整理するさまざまな方法が豊富な、情報集約型の科学としての現代の数学と生物学の類似点を示しています。

有限単純群の最終分類案の完成(徹底的な最終報告書を発行するという意味で)に関しては、自然な老齢化で主要な参加者を失ったために危機に瀕しています。さらに10年後、それらのほとんどは生命や数学から消え、分類を完了するのに十分なほど問題を深く理解している科学者は少ないでしょう。しかし、プロジェクトが徹底的な最終報告で終わったとしても、少なくともマルチボリューム証明の主要な行を理解していると主張する権利を持っている数学者は、おそらく世界に10人もいないでしょう。

したがって、次のような状況になります。数文で定式化された問題の解決には、数万ページのテキストが必要です。証明は完全に書き留められておらず、一貫して書き留められているわけではなく、おそらく書き留められることはなく、最後に、1人の個人が完全に理解することはできません。しかし、得られた結果は重要であり、群理論の枠組みの中でさまざまな問題を解決するために広く使用されていますが、その正確性は依然として大きな問題です。

もちろん、群分類の問題を解決する簡単なアプローチができる可能性もあります。しかし、同じように、これが起こらない可能性もあります。アシュバッハーは、(まだ記録されていない)利用可能な証明の推定全長が過去四半世紀で減少していないという事実を考えると、比較的単純な証明の可能性について懐疑的です。チューリングの研究から、証明が定式化よりも何倍も長い定理があることがわかります。実際、これら2つの長さの比率は任意に大きくすることができます。コーエンは、「中程度に複雑さの数理論の基本問題でさえ、圧倒的多数が合理的な理解を超えている」と確信しています[13]。したがって、将来的には、この種の新しい発見のみが期待できます。

 

Tスクエア

Т-квадратelementy.ru
このフラクタルは、T定規の形をしています(英語ではT定規をT-squareと呼ぶそうです)。レース模様のようです。

 

 

 

 

 

 

 

 

 

 

 

 

始めに与えられた辺の長さ1の正方形(暗い部分)の中心に,①辺1/2の正方形を白く塗ります。次に,②正方形の4つの頂点を中心に,①の正方形の辺の1/2の辺の正方形を白く塗ります。このように繰り返し,次の世代で追加する正方形は,前の世代の正方形の頂点を中心に,辺の長さは前の世代の1/2にします。
無限回繰り返したときにできるフラクタルのフラクタル次元は,
log_{2}4 = 2 です。

 

 

 

 

 

 

 

 

 

 

無限に繰り返すと,始めに与えられた正方形のどの点をとっても、その近傍には白く塗りつぶされた点があり,始めに与えられた正方形のほとんどすべてが白くなり,残りの領域は0に等しく,フラクタルは始めに与えられた正方形(面積1)全体を占めます。しかし、塗りつぶされた部分の境界の長さは無限です。

コンピュータで証明のステップは大丈夫か


数学は何処へ行くより2, 
Brian Davies, Notices of the American Mathematical Society, декабрь 2005, vol. 52, №11.

コンピュータプログラムを書いたことのある人は誰でも、最も単純で最も短いものでさえ、数学者とは異なり、間違いを許さないことをよく知っています。構文のわずかなエラーはコンパイラーによって認識され、そのようなプログラムの実行は即座に停止されます。コンパイラは2つの異なる変数に同じ名前を使用することをスキップしますが、プログラムの出力はほとんど意味がないため、このようなエラーに気付くことは困難です。多くの場合、数学的なエラーは、同様のタイプの単純な問題に対してプログラムを実行することによって検出されます。その解決策は事前にわかっています。この場合、問題の入力パラメーターを変更することで、モデルが予測どおりに動作することを確認できます。

標準ソフトウェアパッケージに含まれているユーティリティで発生する可能性のあるエラーと不正確さは、それらの重要性と発現の希少性のために、識別することははるかに困難です。それにもかかわらず、わずか数百行の長さのプログラムは、数学者の生活を信じられないほど楽にすることができ、プログラムをデバッグすることで最終的に正しく動作できることを示しています。長くて複雑なプログラムを使用すると、本当の問題が発生します。最近、すべての部門のコンピューターに誤ったソフトウェア更新がインストールされたため、英国政府の管理がほぼ1週間麻痺しました。

ソフトウェアの正確さの正式な検証は、応用数学論理の分野の専門家とビジネス担当者の両方の関心事です。特に、Windows XP[訳注)この論文は2005年]の信頼性の向上は、プログラムの機能の根底にある数学的アルゴリズムの正式な整合性チェックの数学的方法に基づく強力なソフトウェアの正確性分析ツールのおかげで達成されました。ただし、いくつかの点で、サイバネティクスと数学の問題は根本的に異なる面にあります。 Javaなどの一部のプログラミング言語の技術文書は、数百ページの長さになる可能性があります。これは、最も洗練された定理が必要とするよりもはるかに長いものです。ソフトウェアの「特異な」動作がバグなのか、プログラムの機能なのかを判断するのが難しい場合もあります。ハング(多くの場合、バッファオーバーフローが原因)は、間違いなくプログラマの欠陥です。たとえば、LATEXが、ユーザーの要求に応じず、何かをすることを拒否した場合、開発者がそのような機能を必要であるとは全く考えていなかったためで,明確なことを言うのはより困難です。一般に、大規模なソフトウェアパッケージの開発に不適切な技術仕様は、プログラマーによる技術仕様の不適切なパフォーマンスよりも、予測できない経済的影響を伴う壊滅的な障害を起こす原因です。


ソフトウェアの正しさの公式的証明により、一部のサイバーネティシストは厳密な数学に同じ方法を適用しようと試みましたが、現時点でこの分野の活動は明らかにうまく行っていません。以下の発言から、私が分析している分野では、正当性の公式的証明の実施に大きな困難が予見されていることがはっきりとわかります。他の分野では(たとえば、数学論理や代数で)価値のあるアプリケーションを見つけるかもしれませんが、これらの分野で働く専門家にこれを判断させてください。たとえこれらの詳細が重要でなくても、起こっていることの雰囲気を読者に伝えるために、ここで詳細を少しだけお話しましょう。数学的分析におけるほとんどすべての定理の証明は、外部の事実に基づいています。これらは読者が知っていることを意図しているため、通常は説明されません。例えば、ディリクレ境界条件を持つ有界ユークリッド領域でのラプラシアンのスペクトル分析に専念していると述べることから始めるなら、このトピックだけでもおそらく数百のモノグラフと数千の出版物があり、著者はそれらのほとんどに精通しているとして、この場合、著者は、読者が気付かない可能性のある、新しくてあまり知られていない論文のみを参照します。これは、そのような記事を読む人が、このジャンルの古典に精通している可能性が高いことを意味します。

この道筋に沿って多くの罠があり、時折それらに陥ります。数学的な分析では、同じ定理の複数のバージョンが存在することが多く、異なる初期の仮定に基づいて同様の結論が出されることを忘れがちです。モノグラフには、多くの場合、セクションまたは章の冒頭に、最初の仮定の単一の表示がされ、定理を使用して、その後、著者はどこにも仮定に言及しません。

多くの場合、証明のステップを正当化するとき、著者は元のソースを引用せずに、いくつかの古典的な結果を参照します。最近、私の学生の一人がマーサーの定理の誤適用を見つけました。マーサー自身の定式化は、1次元間隔でカーネルを使用して動作しますが、私はより一般的な定式化を使用し、説明はなしでした。学生が私のバージョンを立証するように私に依頼したとき、私が使用した解釈をカバーするのに十分な一般的な定理の主張を文献で見つけることができませんでした。半ダースの本をめくった後、私はこの証明を自分で書くことにしました。私のように、線形間隔の元の証明に精通している人なら誰でも、有限数の次元を持つケースにそれを拡張可能なことは明らかに見えます。しかし、一般的な形で定理を厳密に証明するのに4ページかかりました。私は、この場合に必要な結果の証明可能性が明らかであったため、重大な教育上の間違いを犯しませんでした。残ったのは、マーサーの証明のすべての論理ステップを1次元のケースから多次元のケースに丹念に転送することだけでした。結局、生徒は私の証明に満足しました。

専門家は、議論中の文脈に合うように古典的な定理を修正することが可能である場合、ほとんど本能的に「理解」します。どうやら、専門家を区別するのはこの能力です。時折、集まって、あらゆる領域の多かれ少なかれ完全な説明を含むモノグラフを書く力を持った数学者がいます。同僚は後で参照するものがあるので、これは大きな問題です。しかし、そのようなモノグラフは、作者が自発的または無意識に均質な文脈でそれを構築するため、実際の状況を歪めるだけである場合があり、そのようなモノグラフで与えられる多くの定理は、より弱い条件下でも当てはまります。

結晶空間群

結晶空間は周期的な世界です.周期的な空間を,対称性で分類すると,3次元では230種類の空間群になります.2次元では壁紙群とも呼ばれ17種類です.

注)群というのは,
集合の元elementの間に演算が定義されて,任意の2元間で演算を繰り返して生じる元も集合に属する集合で,
(有限集合の場合も無限集合の場合もあります)

群の演算定義を満たす代数系のことです.

例えば,2次元の周期は,2つの独立なベクトル$$a,b$$を与えて,$$na+mb$$(格子点の集合)で表現できます.ただし,$$n,m$$は整数.格子点の集合の対称性は並進群で記述されます.格子点は,無限可算個ですから,並進群は無限群です.

結晶点群は32個ですが,この中の単純群は1,2,3,4(mod2),-1,mで,1は例外,3以外は位数2です.

 

 工事中!

 

 

帰無仮説(ヌル仮説)

 

 

 

 

 

 

 
 
レムデシベルが新型コロナ治療に有効であるのか/ないのかの議論があります.このような疑問に終止符を打つには,十分な統計的解析が行えるデータが必要です.偏見のある仮設に立って解析を始めてはなりません.統計的解析のスタート台は,帰無仮説(ヌル仮説)が鉄則です.これは,証拠がないので因果関係はないと見なすことです[推定無罪のようなもの].ただし,統計的結論がでた後でも,一つの症例が発見されただけでひっくり返る可能性があるのが,統計的結論というものです.これは結論に影響を与える非常に多くの要因があるからです.さらに,統計的結論を待っては手遅れになるという一面もあります.
統計的研究を行う際には,ヌル仮説に立ちます.そして,科学的実験あるいは臨床データに基づき,仮説の証明または反証を目指します.
ほとんどの場合,単一の「クリーンな」現象ではないため,結果の信頼性を保証するために測定を何度も繰り返す必要があります.したがって,得られたデータの統計的解析が必要になります.結果は多くの要因に依存するので,メインの要因とマイナーな要因を分離する必要があります.

たとえば,科学者が喫煙と肺がんの関連性を見つけたい場合,肺がんを患っている(または発症しなかった)喫煙者を1人見つけるだけでは不十分です.この科学者が喫煙と肺癌の間に関係があると主張できるようになるには,かなりの量のデータを収集して分析する必要があります.この種の研究では,ヌル仮説が重要な役割を果たします.ヌル仮説は,結果(あらゆる研究の最終目標)が存在しないという仮定です.喫煙と肺がんの関係を探る限り,そのような因果関係は存在しないというのがヌル仮説です.問題は,収集されたデータがこの主張を無効にするのにどのような意味で十分であるかということです.
実際は,喫煙と肺癌発生ではヌル仮説はずっと前に卒業しました.しかし,それを実証するための十分なデータがなかった頃は,これが単なる偶然の問題ではないということを証明できませんでした.大量のデータを得たので,ランダムな結果の可能性を最小限に抑えられ,ヌル仮説を卒業することができました.

ヌル仮説を卒業するためには,大量のデータを蓄積する必要がありました.科学者は「大きなサンプル」と言うでしょう.しかし,大きくなくても「質の良いサンプル」というものもあります.たとえば,ティコ・ブラーエの長年の正確な観測は,ケプラーの惑星運動の法則の発見につながりました.これは,ヌル仮説を拒否し,ケプラーの結果が正しいことを確認するのに十分でした.

病気とその疑わしい原因との間に相関関係があると主張する論文を読むときには,ヌル仮説を除外する前に,研究者が実際に十分な症例を調べたかどうかに注意してください.新型コロナの治療薬やワクチンに関しても同様です.

タイルとHeesh数


 

 

 

 

 

 

 

 

 

 

 

 

 

 

Haydar Nurligareev "Kvantik"# 10,2019より.Alexey Weiner画

 

正3角形,正4角形,正6角形は,それぞれ無限に広い平面をタイル張りできます(図1).

1つのタイルを中心に置き,その周囲を同じタイルで[重ならず隙間も空けず]取り巻きます(レイヤー1).
次のその周りを取り巻きます(レイヤー2).何周取り巻けるかがHeesh数です.1周も取り負けなければHeesh数は0.
正3角形,正4角形,正5角形は,それぞれ平面のタイル張りができる(図1)ので,Heesh数はです.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(図1)

正5角形のタイルは平面タイル張りができません(図2).正5角形のHeesh数は0です.

 

 

 

 

 

 

 

 

 

(図2) 

ランダムに選択されたタイルにもHeesh数があり,通常は0またはのいずれかです.
Heesh数が1,2,3,...の多角形はありますか?
1968年にハインリッヒヒーシュHeeshがこの問題を定式化する前は,Heesh数が0か以外の既知のタイルは1つしかありませんでした(図3).このタイルは多角形でさえなく,1922年にWalterLitzmanの著書「AmusingandStrangeNumbersandShapes」に最初に登場しました.Heesh数は1です.

 

 

 

 

 

 

 

 

 

(図3)

Heesh自身が,Heesh数が1に等しい別のタイルを見つけました.これは,正方形,通常の三角形,および同じ三角形の半分で構成される5角形です(図4).

 

 

 

 

 

 

 

 

 

 

 

 

(図4)

Anne Fontaineは,1991年にHeesh数が2のタイルの最初の例を示し,そのようなタイルを無数に作成しました.それらはすべて同じ正方形で構成されています.つまり,それらはポリオミノ図形です(図5).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(図5)

同年,ロバート・アンマンは通常の6角形に2つの突起を追加し,同じ溝を3つ切り取り,Heesh数が3の図を作りました(図6).アンマンのアイデアはシンプルでエレガントです.突起と同じ溝があるタイルを探す必要がありますが,その数は異なります.

 

 

 

 

 

 

 

 

 

 

 

 

 

(図6)

2001年にCasey Mannによって発見されたタイルの例を使用して,このアイデアがどのように機能するかを示しましょう.これは,4つの突起と5つの溝を持つ4セルの長方形の形をしています(図7).そのようなタイルのHeesh数が大きすぎない理由を以下で述べましょう.タイルのコピーで完全に覆われた正方形Sを考えてみましょう.各溝は同じ突起でしか閉じることができないため,正方形Sの内側にある溝と突起の数は 同じです.一方,正方形内の突起の数は、その面積(セル内)にほぼ等しくなります-タイルの各セルには突起が1つだけあり,溝の数はその面積の5/4にほぼ等しいためです-タイルでは,4つの突起ごとに5つの溝があるためです.しかし,大きな正方形では,これらの数を等しくすることはできません.

 

 

 

 

 

(図7)

サイズ2n × 2nの正方形 Sをタイルで完全に覆います。これには少なくとも$$2n・2n/4=n^{2}$$のタイルが必要です.それらには合計$$5n^{2}$$の 溝があり,すべて埋める必要があります.一方,これらのスロットは$$2(n+4)×2(n+4)$$の正方形S 'の内側にあります(図8).したがって,$$2(n+5)2(n+5)$$個以下のセルからの突起で埋められます.したがって,突起の最大値は$$2(n+5)2(n+5)= 4n^{2} + 40 n +100$$です.n > 100の場合,不等式$$n^{2}>40n+100$$は確実に満たされ,$$5n^{2}>4n^{2}+ 40n+100$$,つまり,突起よりも多くの溝があります.矛盾-すべてのスロットを埋めることはできません.したがって、このタイルのHeesh数は有限です.実際には3に等しい(図9)が,これまでのところ,コンピューター検索によってのみ証明することができます.

 

 

 

 

 

 

 

 

 

 

 

 (図8)

フィギュアを研究するのに最も簡単なのは,ポリオミノ,ポリアマンド, ポリヘックスです.それらはまた,互いに隣接する同じ「セル」で構成されており,ポリアマンドではセルは通常の三角形で,ポリヘックスでは通常の六角形です.ポリオミノ,ポリアマンド,またはポリヘックスからタイリングするときは,「市松模様」の紙にレイアウトします(図1).このような紙なら,コンピュータ検索を整理するのは簡単です.これが,Casey Mannケーシー・マンがHeesh数3のポリアモンドを見つけた方法です(図10).

 

 

 

 

 

 

 

 

 

 

 

 


(図9)

また,ケーシー・マンはHeesh数が有限であるがゼロに等しくない,突起と溝を備えたいくつかの新しい一連のポリオミノとポリヘックスを何とか入手しました.これが,ケーシー・マンのポリヘックスで,5つの六角形(突起と溝付き)で構成されています-このHeesh数は5で(図11),今日人類に知られている最大の有限のHeesh数を持つタイルです.

(図10)

 

 

 

 

 

 

 

 

 

 

 

(図11)

 

 

 

 

 

ロジャー・ペンローズ

 

 

 

 

 

 

 

 

 

 

 

カバーの図は,「美しい幾何学」p.76-84,p84準結晶より引用

 
ロジャー・ペンローズは,ブラックホールの研究で2020年のノーベル物理学賞を受賞しました.

ここでは,ペンローズのタイリングと準結晶を話題にしましょう.
参考:Alexey Panov、Pyotr Panov "Kvantik" No. 9,2019,アーティストAnnaGorlach
No.7と No.8の記事は,すでに別項で取り上げましたので,そちらをご覧ください.

■ ロジャーペンローズの非周期モザイク

 

ロジャーペンローズ.
写真:Biswarup Ganguly,Wikimedia Commons; CC-BA-3.0

 

 

 

 

 

準結晶の発見に先んじて,数学者の準備はできていた.
1960年代に,数学者は新しいオブジェクト-非周期モザイク-を発見し,研究を始めました.
モザイクとは,平面を完全に埋め尽くすような多角形のタイルで作られたパターンのことです.
非周期モザイクは,どのような平行移動でも自分自身に重ね合わせできないものです.


非周期モザイクの中で最も有名なのはペンローズモザイクです.このようなモザイクの断片を図22に示します.
これは,いくつかのタイプのポリゴンを使い特定のルールに従って組み立て,平面全体を埋め尽くします.
これは,宇宙の調和に掲載されたケプラーによる絵(図23)とよく比較され ます.
ペンローズ自身は,「彼は私がやったことに近いことをしようとしましたが,うまくいかなかった」と述べています.
*)ケプラーのトリアコンタヘドロンは,現代の結晶学のシンボルの1つです.

 

 

図:22(左)ペンローズモザイクの断片.

図:23. 宇宙の調和から.

 

 

 

 

 

 

 

別のタイプの非周期なペンローズタイリングについてもう少し詳述します.
それらは2種類の菱形で構成されています(鋭角36°の 痩せたものと鋭角72°の太いものです).
そのうちの1つを図24に示します.もちろん,前号の記事の図18ほど対称的ではありません.
並進で自分自身と重ね合わせができず,回転対称軸もありません
[訳注:局所的な回転対称はありますが,全域的な回転対称はありません].
ただし,繰り返し五角形の星が表示され,72°= 360°/ 5回転するとそれぞれが重なります
[訳注:局所的な5回回転対称],さらに,これらの星は2つのクラスに分けられ(図25),
一方のクラスの星は別のクラスの星と36°= 360°/ 10の回転だけ異なります.

 

 

 

図:24. 鋭角36°および72°の菱形のモザイク

 

 

 

 

 

 

 

 

有限数の平行四辺形からなる各領域は,モザイク内で無限に繰り返し,36°回転したものも無限に繰り返します.

 

 

図:25. 異なる色の星は36°回転だけ異なります

 

 

 

 

 

 

 

 

 

ここで,ペンローズモザイクの物理的特性について少し説明します.
■ アラン・マッケイ:モザイクの回折

 

アランマッケイ.
写真:Julyan-cartwright、Wikimedia Commons; CC-BY-SA-3.0

 

 

 

 

 

 

 

 

 

Alan McKayは,標準的物理実験手法を非標準的数学オブジェクトであるペンローズモザイクに適用することを提案しました.モザイクの各頂点を小さな円[ドット]に置き換えたドットパターンを縮小し,ドット間の距離が光の波長程度にしました.このミニチュアにレーザー光を入射し,シェヒトマンの実験のように,回折パターンは10回対称となることを得ました*).マッケイの論文は,シェヒトマンが最初の実験を行った同じ1982年に発表されました.
シェヒトマンがマッケイのこの仕事について知っていれば,彼はそれを参照し,彼の業績の早期承認が得られたところですが,シェヒトマンは当時マッケイの発見に気付いていなかったと言います.
[*)訳注:このような標準的物理実験は,オプティカルトランスフォームといいます.
縮小されたドットパターンがらの回折像が得られます.
ドットパターンと回折像の関係は,互いに2次元のFourier変換の関係にありますが,
厳密に言うと得られる回折像は位相の情報が打ち消された振幅の絶対値2乗になります.
そのため,回折像の対称性には必ず対称心が生じます.
回折像の対称性は5回対称ではなく10回対称になります.]

■ トリアコンタヘドロン(菱形30面体)とヘキサコンタヘドロン(星型60面体)

 

ロジャーペンローズとロバートアンマン. 
写真:Ludwig Danzer; MarjorieSenechalの記事「アンマンの奇跡」より

 

 

 

 

ペンローズの非周期タイリングの3次元アナロジーがあります.
そのようなモザイクの1つが,RobertAmmannによって発見されました.
これらは,前号の記事の図16の下部に示されているものとまったく同じ,
細長い平らな2種類の菱形の平行線から組み立てられています.
五角形の星が2次元のペンローズモザイクでよく見られるのと同じように(図24および25),
菱形30面体(トリアコンタヘドロン)は,アンマンの非周期空間モザイクや,60面の菱形の六面体でよく見られます.
星型60面体(ヘキサコンタヘドロン)は,菱形の多面体のリストにはありませんが,これは12個の凹所がある非凸多面体であるためです(図26).

 

図:26. 黄金比菱形[訳注:対角線比が]から組み立てられた星型60面体(ヘキサコンタヘドロン)

 

 

 

 

 

 

その後,物理学者は菱形30面体(トリアコンタヘドロン)と星型60面体(ヘキサコンタヘドロン)の形で実際の準結晶構造を作ることができました.

最後に,ヘキサコンタヘドロンとペンローズのモザイクに関するいくつかの演習を行います.
• 60個の黄金比菱形を使用してヘキサコンタヘドロンを作りましょう.また,トリアコンタヘドロンと菱形のフェドロフイコサヘドロンの両方が,このヘキサコンタヘドロンの12個のキャビティすべてにきちんと収まっていることを確認してください.
• トリアコンタヘドロンとヘキサコンタヘドロンがアンマンのモザイクによく見られるという事実について話しました.実際,ヘキサコンタヘドロンは20個の細長い平行6面体で構成でき,トリアコンタヘドロンは10個の細長い平行6面体と10個の扁平平行6面体で構成できることを確認してください.
• ペンローズタイリングの十分に大きな部分では,痩せた菱形の数に対する太い菱形の数の比が黄金比φ= 1.618に近いことが証明されています.
図24を使用して,このステートメントを確認しましょう.
• ペンローズモザイクは,他のすべての多面体と同様に,菱形で構成されているためゾーン[訳注:晶帯]もあります.今回のゾーンは,無限に続く菱形のチェーンです.各菱形は、共通の側に隣接する2つがあり,これらの側は平行です.

 

 

 

 

科学と社会に関する異端の考え(3)

■以下で紹介するフリーマンの第3の異端に関しては,私は異なる見方をします.私の視点もここで簡単に述べておきます.

 

 

 

 

 

 

 

 

 

 

フリーマンの言うように,コンピュータが研究所に設置さる大型機械から,各家庭で子供も使う家畜化になったと同様な足跡をたどり,バイオテクノロジーは,モンサントなどのグローバル企業の独占ではなく,ユーザーフレンドリーな道具として生活に浸透し家畜化しするというバラ色の未来に,私はあえて異は唱えません.
しかし,そのような世界になる前に,人類が破滅に向かう多くの岐路があり,これらを正しく乗り越えてバラ色の未来に向かえるか私は懸念します.日本の食糧自給率は低下の一途です.TPP協定に合意し,主要農作物種子法(種子法)の「廃止法」が2017年4月に成立,2018年3月末に廃止されました.地域に適した優良種子は地元の地で長期間の品種改良で得た人類の宝です.しかし.グローバル企業に種子を握られ,肥料も農薬もセットで生産性優先の産業農法の道を進むことになります.これとバイオテクノロジーが手を結んでいるのが現状です.自然農法を守ろうとする良心的な農家も存続が難しく,グローバル企業による遺伝子組換え(GM)種子,F1種子などが支配する産業としての農業は誰のためにもならないはずです.


■バイオテクノロジーの家畜化
フリーマンダイソンの講演の続き
https://elementy.ru/video/20/Ereticheskie_mysli_o_nauke_i_obshchestve?
3番目の異端はバイオテクノロジーの家畜化です。

50年前、プリンストンで、数学者のジョン・フォン・ノイマンは、エンコードされた命令、つまりコンピューター・プログラムを実行する最初のコンピューターを私の目の前で開発構築しました。コンピューターはフォンノイマンによって発明されたのではありませんが、コンピュータープログラムを発明したのは彼でした。ENIACと呼ばれるこのコンピューターは、5年前にペンシルベニア大学ですでに稼働していました。しかし、パンチカードに書かれたソフトウェアと電子ハードウェアの組み合わせにより、1台のマシンで天気を予測し、生物集団の進化をシミュレートし、熱核爆弾を作成する可能性をテストすることができました。フォンノイマンは、彼の発明が世界を変えることを理解していました。彼は、そのような機械の次世代が科学、ビジネス、政府の仕事の基礎になることを理解していました。しかし、コンピューターは常に巨大で高価になるのが彼には見えました。彼は、コンピューターが研究所や大企業を運営する大規模なセンターに設置されると想像しました。彼は、コンピューターが非常に小型で安価になり、主婦がコンピューターを使用して所得税申告書を計算し、学童がコンピューターで宿題をすることになるとは予測できませんでした。彼は、コンピューターが最終的に3歳児向けのおもちゃになるまで飼いならされ家畜化するとは予見できませんでした。彼は、21世紀にコンピューターゲームが日常生活の基盤の1つになることを予見することすらできませんでした。コンピュータゲームのおかげで、私たちの孫は今、不治のコンピュータ中毒を持つ人々として成長しています。
良かれ悪しかれ、健康か不健康かにかかわらず、人とコンピュータは今では夫と妻よりも強く結ばれ、死がそれらを分かつ時まで強く結ばれています。

 

 

 

 

 

  

フリーマンダイソン. 2009年3月23日,モスクワ,FIAN

 

 

 

この話は、フォンノイマンコンピュータとコンピュータゲームのバイオテクノロジーへの進化と何の関係があるでしょうか? 次のとおりです。
特別なセンターに設置された巨大機械としてのコンピュータのフォン・ノイマンの見方は、モンサントのような大規模な製薬会社や農業会社専用の職業としての遺伝子工学の一般的な認識と共通しています。
モンサントはコンピューターを使って水素爆弾を開発したため、フォンノイマンの活動を警戒するのと同じように、モンサントは有毒な農薬遺伝子を食用作物に導入しているため、一般の人々はモンサントを警戒しています。
遺伝子工学が大企業が所有する特別なセンターの特権であり続ける限り、それは不人気で議論の余地のある活動形態であり続けるだろう。


しかし、私は、コンピュータ業界の足跡をたどるバイオテクノロジー産業の偉大な未来を予見します。巨大機械が家庭に入ったように。この方向への最初のステップは、ペットショップで遺伝子組み換え熱帯魚が、新しく非常に明るい色になったのを見ました。バイオテクノロジーの国内化に向けた次のステップは、それがユーザーフレンドリーになるときです。私は最近、世界中の生産者が彼らの労働の成果を披露する世界最大のショーであるフィラデルフィアフラワーショーである幸運な日を過ごしました。サンディエゴ爬虫類ショーにも参加しました。爬虫類を繁殖させる人。フィラデルフィアには最高級のバラと蘭があり、サンディエゴには最高級のトカゲとヘビがいます。孫を爬虫類展に連れて行く祖父母にとって、主な問題はヘビやトカゲを買わずにそこから抜け出すことです。これらすべてのバラと蘭、そしてこれらすべてのトカゲとヘビは、情熱的で経験豊富な花と爬虫類の栽培者の努力の成果です。プロとアマチュアの両方の何千人もの人々が、このビジネスや他のビジネスに人生を捧げています。しかし、これらの人々が遺伝子工学的手法を利用できるようになるとどうなるか想像してみてください。庭師のためのDIYキットがあり、遺伝子工学によって新しい種類の蘭やバラを開発します。鳩の飼育者、オウムの飼育者、トカゲやヘビのためのキットもあり、新しい品種を育てることができます。

遺伝子工学は、それが子供や主婦の手に渡ると、新しい生物の多様性に巨大な急増をもたらし、大企業によって植え込まれた単一文化に終止符を打つでしょう。新しい品種が普及し、単文化農業と工業化の欠陥のために消えたものに取って代わります。ゲノムの作成は、絵画や彫刻のように創造的な、個人的な事柄、新しい芸術形態になります。傑作となる新しい作品はほとんどありませんが、それらはすべてクリエイターに喜びをもたらし、私たちの動植物の多様性を高めます。

バイオテクノロジーの家畜化の最終段階は、幼稚園の年齢までの子供のためのコンピュータゲームと同様にバイオテクノロジーゲームの作成ですが、コンピュータ画面上の画像の代わりに子供たちが本物の種子や卵で遊ぶという点で異なります。これらのゲームをプレイすると、子供たちは生物の成長が何であるかを深く感じるでしょう。勝者は、種子が最も傷ついたサボテンを成長させるか、卵のハッチからかわいい恐竜を育てる子供かもしれません。このようなゲームでは、多くの困難と可能な危険に関連付けられます。私たちは、子供たちが遊ぶときに自分自身や他の人を危険にさらさないように、厳格なルールを開発する必要があります。

 

 

 

 

 

 

 

 

フリーマンダイソン. 2009年3月23日,モスクワ,FIAN

 

 

将来、家畜化バイオテクノロジーの普及を待っているなら、この点で5つの質問に答える必要があります。まず、この流入を止めることができますか?
第二に、それは停止する必要がありますか?第三に、それを止めることができない、または望ましくない場合、社会はそれをどのように制限すべきでしょうか?第四に、このような制限をどのように正確に交渉するのでしょうか?
第五に、彼らは国家レベルまたは国際レベルで実施されていますか?
コンピュータ技術とバイオテクノロジーのたとえは、これらすべての質問に対する答えを深く考えるのに役立つかもしれません。家畜化バイオテクノロジーを不正に使用するほとんどの人は、おそらくインターネット上にコンピュータウイルスを広める若いハッカーのように、ささいなものになるでしょう。一方、コンピュータウイルスとインフルエンザウイルスや免疫不全ウイルスなどの実ウイルスとの間には有意な差がある。子供たちにバラやヘビと遊ぶことを許可したとしても、ウイルスとのゲームをどのように防ぐかという問題に直面します。

これが私がバイオテクノロジーについて言いたかったことです。