色々な課題を解くと,フィボナッチやリュカの数列が現れることが多い.これらの数を生み出す仕組みは「再帰的」で非常に効率が良い.
ちなみに, フィボナッチ数列の再帰関係は:$${F_n=F_{n-1}+F_{n-2 } }$$
$${F_2=F_1=1}$$とすると,$${F_3=2}$$などと続き,フィボナッチ数列 1,1,2,3,5,8,13,21,34,...…が得られる.
つまり,DNAに記録された簡単な設計図の指示で成長する植物などに,これらの数列が現れるのはごく自然なことである.
フィボナッチ数列で数を生み出す仕組みは,数の本質に迫るものがあるようで,見かけは異なる課題が、フィボナッチ数列に帰着することが多い.
いくつかの代表的な課題を取り上げて,再帰関係の導出過程を「ひながた」として示しておきたいと思う.
こここで選んだ課題と解法は,①Fibonacci and Lucas Numbers with Applications, by Kosbyから引用した.
■フィボナッチについて
フィボナッチ数列1,1,2,3,5,8,13,21,34,55,89,144,233......は,各項は前の二つの項の和である.この数列は,数論において特別な役割を果たすが,多くの不思議な数値的性質を持っている.
例えば,$${1+1+2+3+5+8}$$はフィボナッチ数21より1小さい.
これらの数の2乗の和は,2つのフィボナッチ数の積になる: $${1 +1+4+ 9+ 25+ 64=8\times13}$$.
次の項との比$${1:1,2:1,3:2,5:3,8:5,...}$$は,黄金比$${Φ\approx1.618}$$に近づく.
幾何学的には,辺の長さがフィボナッチ数である正方形は,黄金の螺旋を形成するようにうまく組み合わされる.
人間がこのようなパターンに魅了されるずっと以前から,植物はフィボナッチ数の経済効率を発見していた.パイナップル,ヒマワリ,アーティチョークなど,螺旋構造を持つ多くの植物の葉や蕾には,連続したフィボナッチ数の組が見られる.パイナップルを調べると,一方向に8列,もう一方向に13列が螺旋状に並んでいるのがわかる.動物界では,ミツバチは各世代にフィボナッチ数の祖先を持つ.
ーーー以上 ②30-second Maths, Richard Brown, p.24より引用.
1202年,フィボナッチとしても知られるレオナルド・ピサーノは,著書『Liber Abaci』(計算の書)の中で,ウサギの繁殖に関する謎かけを行った.
おそらく非現実的であろうが,1ヶ月ごとに1組の成ウサギが1組の子ウサギを生み,子ウサギが成ウサギになるまで1ヶ月かかると仮定して,
1月に1組の子ウサギから始めると,12月までに144組の子ウサギが生まれる! もちろん,これはフィボナッチ数列である.-----
フィボナッチは,1202年にLiber Abaci (リベル・アバシ) 「計算の書」を出版し,アラビア数字と数学をユーロッパに導入した功績が大きい.イタリア人の商人である父と北アフリカに滞在したときに,アラビア人と共に学んだ.
■ フィボナッチ数列は簡単な再帰関係に基づき,数を生み出す仕組みだが,数学の色々な概念と結びつきがあり,いろいろな数学の分野に現れるので,良い数学分野の紹介に利用できる.