2020年9月の記事一覧

膜の振動モード,クラドニ図形

 
カバー写真は私のバイオリンですが,低音域に共鳴点があり振幅が大きくなり音が開くような気がするのです.バイオリンの音質が何とかならないかと思って,昔,高い本だと思いながら気まぐれで買った「楽器の音響学」安藤由典という本が手元にあります(残念ながら役には立ちませんでした).この本のp.132に,バイオリン胴板の振動モードの図(小橋,時田,日本音響学会誌,Vol.8,p.15,'52より引用したもの)があります.本自体古いし引用文献も大変古いので,もっと詳細な実験がその後どこかに発表されていると思います.特に調べていませんので,もしお気づきの方おられましたらお教えください.

 

バイオリンは駒から1cm付近の弦を弓で振動させ,駒から指板上の指で押さえた点までの長さの弦が振動し,その振動を胴で共鳴させます.共鳴箱の役割が重要です.定在波の振動の節となる場所は節点,2次元の面ですから,定在波の振動の節点は節線となって領域を取り囲んでいます.
振動モードの図で白い部分と斜線部分は振動方向が逆になっているので,斜線との境界線が節線です.周波数が上がるにつれて細かい領域に分かれて行くのは納得できるでしょう.楽器は特別な共振域ができないよう設計されあのような形になるのだ思いますが,ある音域が共振気味に耳元で鳴るのは良くありません.私はそれを見抜けずに迷った挙句良くない方を購入してしまいました.


■ここで,クラドニ図形の次の動画をご覧ください.


振動の腹では粉末は払いのけられ節線に集まります.この実験で見られる興味深い図形をクラドニ図形といいます.
振動から生じる節線についてのさまざまな疑問は,200年以上にわたって科学者を魅了してきました.1809年,クラドニがパリを訪問した後,フランス科学アカデミーはコンテストを発表しました.その目的は,「弾性表面の数学的理論を構築し,それが実験データとどの程度一致するかを示すこと」でした.この賞は1816年にソフィー・ジャーメインが受賞しました.その数学的モデルは,少し後のグスタフ・キルヒホフによって完成しました.

ここでこの話題を取り上げたのは,「トリニティオプション-サイエンス」第16号(310),2020年8月11日に,フョードル・ナザロフ,ミハイル・ソディン,アレクサンドル・ログノフによるこのテーマの紹介記事で,
アレクサンドル・ログノフが,2020年のヨーロッパ数学会のEME賞(数学への卓越した貢献が認められた35歳未満の10人の研究者に4年ごとに授与)を受賞したニュースを見たからです.

 

■周波数が上がると定在波の節線集合の形はだんだん細かくなりますが,どのように変わるのでしょうか.
バイオリンやギターなどの楽器は,圧縮に抵抗する弾性体の板を振動させますが,膜の振動であれば一定張力のみの弾性体ですみます.実際の楽器の振動計算をするのが目的ではなく,この節線集合サイズの振る舞いを知るのが目的ですので,アレクサンドル・ログノフは扱いが単純化できる膜モデルを用い,ラプラス微分方程式の各周波数に対する固有関数のゼロ節線集合のサイズに関するヤウ・シンツンとニコライ・ナディラシビリの予想を証明しました.

■この問題は,工学的には,2次元のFourier解析で膜の振動を正弦波の固有振動の重ね合わせに分解し,ラプラス方程式の固有関数を与えられた境界条件で解く有限要素法でコンピュータを用い数値解を得ることができます.
ラプラス演算子をΔ,振動数ωの固有関数 v_ω(x) は微分方程式
Δv_ω(x)+ 4(π^2)(ω^2)v_ω(x)= 0 の解です.節線集合は,条件 v_ω(x )= 0を満たすxの集合で,与えられた境界条件を満たすように解く問題です.


Fourierはナポレオン時代の数学者ですが,熱伝導の微分方程式の境界値問題を解くために開発したFourier解析を公開したのは1822年でした.従って,現代なら使う2次元のFourier変換もクラドニの時代にはありませんでした.

しかしながら,問題を精密に解くことと,現象の本質を理解することとは目的が違います.計算すればそうなるとか,一口ではいえないというのでは,本質が理解できたことになりません.

節線集合に関する有名な問題は,40年以上前に出された節線集合サイズに関するヤウ・シンツン予想です.節線の長さが,周波数ωの線形関数として増加する予想しました. それらは通常,膜を小さな正方形に分割し,それぞれのサイズを推定します.そのような推定のための便利なツールは,倍加指数(ハウスドルフ次元に似る)であり,立方体Qから倍の立方体2Qに変えたとき,固有関数の最大振幅の比の対数を倍加指数と定義しました.倍加指数が有界のままであれば,立方体Qに該当する節点集合のサイズも有界であるとの予想です.ニコライ・ナジラシビリは,ヤウ・シンツンによって提起された問は,調和関数の関連する質問に還元できることに気づきました.しかし,正方形が小さな断片に分割されたときに調和関数の倍加指数がどうなるかという問題は,2016年にアレクサンドル・ログノフとエフゲニア・マリンニコワの研究が発表されるまで進展していませんでした.

0