2019年8月の記事一覧

亀井図を素数のべき乗が作る1次元格子で拡張する

■2次元,3次元の格子点に配置された約数構造
左図の2次元格子{2n・5m}は,素数2および5が生成する2つの1次元格子{2n}と{5m}の直積で生まれる.10の2次元約数構造が,それぞれ格子点に配置されたものとみなせる.

右図の3次元格子{2p・5q・3r}は,3つの素数2,5,3がそれぞれ生成する1次元格子{2p},{5q},{3r} の直積で生まれる.これは,30の立方体約数構造が,3次元格子点に配置された構造とみなせる.

■4次元約数構造を,新設した1次元格子の格子点に配置してできる4次元+1次元格子の約数構造で,この格子点は37037(右端の4次元超立方体)の約数構造と,新設した素数3の1次元格子{3n}との直積で得られる.

0