2018年2月の記事一覧

テッセレーションとは

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.02.27] No.208
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
2月24日,新宿ルノアールで日本数学協会の読書会があり,日本テセレーションデザイン協会の荒木義明氏が講演しました.
馴染みのない方もおられるでしょうが,普通はテッセレーションと書き,平面を分割する意味です.
コンピュータグラフィックスで立体や平面を三角網やポリゴンで表したりしますね.
あのようなメッシュを作る平面分割がテッセレーションです.
私たちは,平面のタイル張り問題といいますが,平面をタイルで埋め尽くすことを.
小学校3年生から扱うことが指導要領に載っているそうです.
敷き詰めの扱い方は,パズルと同様で親しみやすく子供たちも興味を持つでしょう.
美しい模様を作ろうとし,組み合わせの多様さや,持続的により良い価値を求めることになるそうです.
一方,このパズルをより深く追求すれば,ペンローズの非周期のタイル張りに導くことも可能です.

閑話休題.しかしながら,平面タイル張りの本質的な重要さは,周期的なタイル張りにあります.
タイル張りをやるなら,ぜひ周期性に触れてほしいと私は思います.エッシャーのタイル張り作品を見ても,
すべて周期的ではありませんか.私たちの周りには周期的な平面や空間で溢れています.
結晶の内部構造は,角砂糖を積み上げたようなブロック細工です.周期的空間は「結晶空間」とも呼ばれる所以です.
角砂糖のブロック1個が単位胞で,結晶空間は単位胞が10^20も積み重なっています.
平面の例で言ったら,正6角形を,蜂の巣のように無限に並べて,無限に広い平面を作ることができます.
このような平面は,正6角形でデジタル化された平面です.
このデジタル化された平面の対称性は,もとの正6角形1つの対称性と同じです.
同様に,正方形を並べた無限に広い平面(正方形でデジタル化された平面)の対称性は正方形の対称性と同じです.
無限に広い空間も,デジタル化するととても扱いやすくなります.
平面のタイル張りは,無限に広い平面のデジタル化に結びつくところが非常に役に立ち面白いのです.
この数学課題を美しさにつなげようとする意図は私は賛同できません.

0

教育数学研究集会の感想★

2月13-16日にRIMS研究集会「教育数学」に参加しました.4日間にわたり討論が行われ,種々の側面から考えるべきことがらが提起されました.今日の数学の暗い状況や明るい側面などさまざまです.これからよく考えてみなければなりません.
■以下は私の感想の一部ですーーー
数学教育については,エリート教育よりも底辺全体の学力アップが重要です.
ともかく,数学を勉強することは,将来何をやるにしても無駄ではない.習った数学がそのまま役に立つというのではなく,習ってから使う時が来るまでに長期間経過していることが多く,数学は役に立たないと言う人を増やしてしまう.
国語教育とは異なる日本語教育が最重要である.クリティカル・リーディングというのは,国語教育のように記述から感情を問うのではなく,内容を問うもので,そのような日本語教育が必要とされる状況である.国会まで論理が噛み合わない(故意に,はぐらかすのもある)社会になってしまった.
共通一次試験のように多数の問いに答を当てはめるスピード対応のテストではなく,考えるテストをしたいものだ.解けることと理解する(わかる)こととは違う.わかったときの大きな喜びは,誰しも経験したことがあるだろう.子供たちにその喜びを味合わせたいものて,真の学力になる.
さて,現代はsociety5.0といわれるビッグデータ・データサイエンスの時代です.対応できる新しい数学が必要です.旧来の統計数学は役にたたず,統計の背景分野の理解やセンスの養成が必要です.

0

第4回数学月間勉強会予告

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.02.13] No.206
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
大雪にならなければよいですね.日本海側の地域にお住いの方お大事に.
私は,今日から京都大学数理解析研究所の研究集会に参加します.
雪にならずに帰れるとよいですが,ちょっと心配です.
さて,数学月間勉強会の第4回を3月末実施の計画を進めています.確定しましたらアナウンスします.
4回目の内容は,群論の応用に関係のある群の表現の話です.
今日は,その入り口をちょと覗いて見ましょう(入口だけですので後日続編を載せます).
色々な電子デバイスは,結晶という舞台で起こる電子や光子のパフォーマンスを利用しています.
結晶という舞台で観測される色々な現象の対称性には,それが起こった舞台「結晶」の対称性が反映されているはずです.
この因果律は,Pierre Curieの原理(19894)と呼ばれます.
特性の対称性(点群)Gproperty ,結晶の対称性(点群)Gcrystal とすると,
 Gproperty⊃Gcrystal
因果律の心は,原因となる場(結晶)の対称性は,すべて結果(特性)に反映されなければならないが,
原因以上の対称性が結果に生じることは妨げないということです.実際に場(舞台)である結晶の対称性より,
その結晶で観測される特性の対称性か高いことは,色々な現象で観測されています.
例えば,結晶で起こるX線回折像の点群は,結晶構造の点群と対称心の直積になることはFriedel則として知られます.
さらに,このFriedel則以上にX線回折像の対称性が上昇する特殊な結晶構造があることも知られています.

■群の表現
有限群G={a,b,c,・・・・,z}の各元aに,複素数を成分とするn次正則行列D(a)を対応させ,
群Gの演算構造を行列の集合D={D(a),D(b),・・・,D(z)}の中で再現することを,群の表現と言います.
つまり,群Gの任意の2元a, bに対し,集合Dでも,D(ab)=D(a)D(b)が成立すれば,集合Dは群Gと準同型な群をなします.
異なるa,b∈Gに対して,D(a),D(b)∈Dも異なれば,GとDは(1:1対応)同型な群です.
異なるa,bも同じD(a)に対応させる(例えば,すべて1に対応させる)ような対応(準同型)でも,
D(ab)=D(a)D(b)が成立しますので群Gの表現です.
◆表現の基底
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/87/18415987/img_0_m?1518439242

ψ_iはf次元の列ベクトルの成分です.ψ_iに対称操作G_aが作用すると,
ψ_iの1次結合に変換されます.ここに現れるf×f次元行列Dを対称操作G_aの
行列表現と言い,列ベクトルψを表現の基底と言います.
このようにすると,群Gを行列の集合Dに対応させることができ,群Gは
行列を元とする群Dを扱う問題に変えることができます.
行列表現を,どの様にして何に使うかは,第4回勉強会のテーマですが,近いうちに続編掲載します.

0

数学月間流数学1

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.02.06] No.205
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
私は,来週2月13~16日の京大,数理科学研究所の研究集会に参加します.4年前の研究集会のときは大雪でした.
京都でも大雪でしたが,こちらに帰ってきた夜は東京も大雪でした.今年も雪にならなければよいのですが,
なんだか悪い予感がします.この研究集会は公開ですからどなも聴講できます.
そのとき発表する内容からの抜粋を以下に転載します(省いた部分も機会があれば披露しましょう).
抜粋はしたものの,今回は長文が続きます.お読みいただけたら幸いです.
気分転換に,今年,子供たちが作る万華鏡の映像動画をリンクしておきます https://youtu.be/v9xVnCQ64Po

■数学月間流数学から教育数学への提言
私たちの数学月間は,社会が数学を知ると同時に,数学が社会を知る双方向活動であるべきだと思います.
数学研究会や同好会であれば,数学だけを論じればよいが,数学月間では数学が働きかける場に立ち数学を見ます.
抽象数学であってもそれが使われる場(対象)と連携した数学の話ならば,数学周辺の人々の共感を得ることでしょう.
数学周辺から数学をとらえる必要があるのだが,数学者はその必要性を感じていないし,
数学周辺に付随したものに気を散らすことは好まない.しかし,歴史的にも数学の発生起源は,
科学技術や社会課題にあり,その数学概念の発見にも現場の科学者たちが寄与しています.
現在でも種々分野の実験結果や法則の中に新しい数学の萌芽があるに違いありません.
教育数学においても,数学の作用する場(対象)からの数学概念の導入が望ましいと考えます.
■今年から始めた数学月間勉強会の目指すもの
(1)米国MAMは,今年から,「数学及び統計学月間」MSAM(Maths and Statistics Awareness Month)となりました.
統計学が強調されたのです.複雑系,画像識別,ビッグデータ解析,レイティングやランキングの予測などが
主要テーマとして登場するようになった背景には,圧倒的なコンピュータ利用と人工知能AIの発展があります.
現代は,衛星からスマートフォンまで大小のソースから,データがリアルタイムで集められます.
予測解析法の革新が期待でき,数学,コンピュータ・サイエンス,データ科学,統計学には実り多い時期です.
Google, Yahoo, Amazon, Facebook, Twitter等々で,私たちのさまざまな情報が蓄積され,
携帯電話も私たちの位置情報を送信しています.嫌なことですが,スノーデンの告発で明らかになったように,
個人情報,個人メールを含むあらゆる通信情報が,米国NSAにより収集(collect it all)され,
進歩したAI技術で検索や解析ができる監視社会になりました.それはともあれ,検索,解析,予測での数学の役割は重要です.
データ解析の基本は評価関数に対する最小二乗法にあり,例えば,材料中の化学状態分布図を得るには,
単成分のスペクトルを基底に1次結合を作り,最小二乗法で混合状態のスペクトルを決定(特異値分解を使う)します.
大規模行列であるがランク落ちのため不定解となる画像の推定は,至る所スパースな解という条件下で最小二乗法に持ち込み,
少ない観測点数でサンプリング定理を超越する驚くほど高解像の解が得られています.
天文学や医用画像などで適用され,MRI撮影の高速化にも寄与しています.実際,画像は大部分の領域でだらだら変化し,
急峻な変化する箇所は少ない(スパース)ので,このような圧縮センシングや画像圧縮jpgが成功しています.
離散数学はコンピュータと相性が良いわけですが,教育数学においても重要性が高いと思います.

0