掲示板

note.com投稿記事

科学の発明:科学革命の新しい歴史・1

Алексей Левинのエッセイより抜粋 ИСТОРИЯ НАУКИ • 14.10.2016

ヨーク大学の歴史教授,デビッド・ウートンが表題の著書を出版しました.


'The Invention of Science' tells the story of the shaping of the modern worldThe central subject of this vibrant work is not really the inwww.csmonitor.com

 

 

 

 

 

ウートンは、科学革命の開始と終了の正確な日付を提唱しました:1572年と1704年。

ニコラウス・コペルニクスの モノグラフ天球の回転について(ニュールンベルクの出版社 Johann Petraeusから1543年に出版)。

 

ウートンは2つの理由から、コペルニクスの1543年を革命の開始とする従来の見解に同意しません。第一に、太陽中心(地動説のこと)[正確には太陽不動]コペルニクスモデルは、ケプラーとガリレオの研究の後の、17世紀の初めになってから天文学革命の要因になりました。16世紀の主要な天文学者は、コペルニクスモデルが天体の動きの計算を容易にすることは認めましたが、それが物理的な基盤を持っていることは否定しました(たとえば、砲弾がどの方向にも同じ距離を飛ぶという事実からも、地球回転の仮説は反駁できたと信じられました)。1580年代と90年代には、コペルニクスは天文学界に3人以下の信者しか持っていません、さらにそのうちの1人、ドイツのクリストフ・ロスマンは最終的に彼の敵の陣営に移りました。第二に、コペルニクスのモデルは、アリストテレスと古代の天文学者から受け継いだ地上世界とは根本的反する、月を越える(天上界)世界の絶対不変の概念をそのまま保持しています。ご存知のように、この概念は17世紀に完全に拒否されました。

コペルニクス前後の近代初期のヨーロッパの天文学は、非常に安定した研究対象でした。すべての天体は、大空で周期的な動きをし、それは永遠の世界秩序の現れと考えられていました。星は毎晩、天の同じ経路をたどり、明るさと数の両方で変化しません。彗星は唯一の例外でしたが、アリストテレスに続く科学者たちは、彗星を純粋に大気中の現象であると考えました。

このパラダイムは、1572年11月11日に最初の打撃を受けました。その夜、未来の偉大な天文学者であるティコ・ブラーエは、カシオペア星座の明るい星に気づきました。彼は、1574年3月に完全に消滅するまで、その輝きが徐々に薄れていくのを追跡しました。その前から、彼は1573年に出版され、ヨーロッパ中に衝撃を与えた本「DenovaetnulliusævimemoriapriusvisaStella」で彼の観察を説明しました。そのため、ブラヘはヨーロッパの科学者として初めて、星に予期しない変化が発生する可能性があることを発見しました(現在知られているように、彼は超新星爆発を見ました。(11月6日に韓国で、2日後に中国で、日本でも記述があります)。

左:TychoBraheの著書「DenovaetnulliusævimemoriapriusvisaStella」からの星座Cassiopeiaの描画。 超新星は文字Iでマークされています。
右:スペクトルのさまざまな部分のフレームを合計して得られた超新星の残骸のスナップショット。 チャンドラ望遠鏡のウェブサイトで、この残骸が2000年から2015年の間にどのように変化したかを見ることができます。
http://mvshelter.blogspot.ruからの画像


数年後、彼は、彗星は月を越える世界に属していることを証明しました。これらの発見により、ブラーエは天体の動きの膨大な量の正確な測定を実行することを目的とした研究プログラムを創始しました。デンマークの王フレデリック2世の寛大さのおかげで、ブラーエはエーレ海峡のヴェン島にウラニボルグ天文台を建設し、ユニークな観測器具とアシスタントの助けを借りて、21年間、星、惑星、月と太陽の観測の膨大なアーカイブを蓄積してきました。これは、品質と幅の点で、ヨーロッパだけでなく、中国とイスラム教徒の東の最高の天文台でこれまでに行われたすべてをはるかに上回りました。惑星が楕円軌道で太陽の周りを回転することをケプラーが厳密に証明することを最終的に可能にしたのはこれらの材料であり、それによってコペルニクスモデルの主な弱点を修正しました。これらの状況を考慮して、ウートンは新しい星の発見とティコ・ブラーエの天文学的研究の始まりを科学革命の出発点として宣言します。この年代学は、コペルニクスの英国の支持者で、天文学者、数学者のトーマス・ディッグスの活動とよく合っています。彼は1576年に、宇宙空間が無限に広がり、星が地球から任意に遠く離れている可能性があることを最初に認めた人(ただし、ディッグスは依然として太陽を宇宙の中心と見なしていましたが、真に無限の宇宙には中心はありません)。ウートンが提案する最後の瞬間は、ニュートンの「光学」(反射、屈折、屈折、光の色の扱い)の出版された1704年です。


科学革命がヨーロッパの文化に与える影響の規模を明確に示すために、ウートンは、さまざまな時代の住民の知識と認識を比較することを提案しています。 16世紀の終わりに、典型的な高学歴のヨーロッパ人(英国の紳士)は、ほぼ確実に魔女と狼狼の存在を認め、錬金術と占星術の信頼性を疑うことはありませんでした。彼らは、自然は真空を恐れ、磁石はニンニクの影響でその力を失い、殺人者の存在下で死体が出血し、彗星は災害の前兆であり、正しく理解された夢は未来を予測すると信じていました。彼らは、地球が動かず、宇宙の中心にあるという公理として受け入れました(おそらく、彼らはコペルニクスについて何か聞いていたでしょう)。彼らはアリストテレスを人類の歴史全体の中で最大の知的権威と見なし、彼らの自然に関する知識は、プリニー・ザ・エルダー、ガレン、プトレマイオスの研究、またはおそらくそれらのポピュラー書に限定されていました。 彼らはまた、個人的な図書館-2、3ダースの本を持っていました。

2の累乗の概算法

https://elementy.ru/nauchno-populyarnaya_biblioteka/431670/Vsego_lish_stepeni_dvoyki

И. Акулич,«Квант» №2, 2012 に2の累乗の大きな数を求める問題があります.

(問題) 

$$S = 2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^{63}$$

$$S$$の値を計算しなさい.

$$2 S = 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^{64}$$

$$2S-S=S=2^{64}-1$$

計算機を使えば,$$2^{64}-1=18446 744 073 709551615$$ と計算できるでしょう.
計算機が無くても,許容できる精度でおおよその答えを見つけることができます。原則として、日常生活では(そしてほとんどの自然科学では)2~3%の誤差が許容されます.
$$2^{64}$$をどのように概算したらよいかという問題です.

 $$2^4 = 16$$,$$2^{10} = 1024≒1000=10^3$$ だから,

$$2^{64}=2^4・(2^{10})^6≒16・(10^3)^6$$

しかし,この誤差はかなり大きい.結局,1024を1000に置き換えること続けて6回.
このため,1.024倍の誤差の6乗$$1.024^6$$の誤差になります.

1よりも何倍も小さい数xについては、次の近似式を使うと精度が高い.

$$(1 + x)^n ≒ 1 +n・x$$ これを使うと,

$$(1+0.024)^6≒1+6×0.024=1.144$$

従って,$$2^{64}≒16・10^{18}・1.144=18304・10^{18}$$ と補正します.その結果,

$$S≒2^{64}≒18,304,000,000,000,000,000,000$$となり(18304の後ろに0が18個),
これは正解と1%未満の誤差になります.

■注

1.数字を2のべき乗の和で表すのは,数字を2進数で表すときに必要になります.

たとえば,$$2^{10}+2^9+2^8+2^7+2^6+2^4+2^3+2^2=2042$$, 2進数で表記すると$$11111011100$$

2.この問題の最初の式は,次の一般式の$$m=64$$の場合になります.

$$2^m = (2^{m–1} + 2^{m–2} + ... + 2^0) + 1$$

3.次の性質も役に立ちます:

$$10^{10}=(2・5)^{10}=2^{10}・5^{10}$$

$$2^{10}>10^3$$, $$5^{10}<10^7$$

ラクダを3つに切る方法は?

Григорий Мерзон, «Квантик» №5, 2020 より

この記事の図には,不要なものもありましたので,必要なものだけ掲載します.文章は冗長ですので私が全部書き換えました.解が1つしかないような記述も私は気に入りません.要するに,この問題は,以下の図(ラクダと言っている)を3つの部分に直線で切り分けて,それらを組み合わせて正方形を作れという主旨です.パズルの問題として予備知識なしで考えるとなかなか難しいかもしれません.

 

 

 

 

 

 

 

 

 

この図(ラクダ)を見ると,うまく組み合わせれば,エッシャーの周期的な絵のように寄せ木細工が作れることに気づきます.それは下の図のようになります.ラクダのモチーフが周期的に繰り返されていることがわかります.

 


一つのラクダの頭に注目すると,右斜め上に次のラクダの頭があり,それらを結ぶ直線上に周期的に繰り返す頭が現れることがわかります.

 

 

 

 

 

 

 

 

 

この周期はいくつかというと,3,4,5の直角3角形(この記事ではエジプト3角形と呼んでいる)にあてはめると,周期が5であることがわかります.

 

このエッシャーの周期的な絵(寄せ木細工)のような繰り返すラクダの壁紙は,斜めに置かれた1辺が5の正方形を周期にしています(私の説明流儀では単位胞と呼びます).

従って,以下のように3つの部分に直線で切れば,組み合わせて1辺5の正方形が作れます.

 

 

 

 

 

 

 

 

 

 

 

 

これがこの問題の答ですが,私は答えはこれだけではないことを指摘しておきたいです.

ラクダが3分割できる範囲にあるならば,単位胞の正方形はずらす(平行移動)ことが可能で,答えはこれだけではなくたくさんあります.

 

上の図は「ピタゴラスモザイク」といって,ピタゴラスの定理の証明になっています.これは9世紀にアラブの数学者アンナイリジとサビットイブンクラによって証明に使われたそうです.

アーティストAlexeyVayner

ラクダを3つに切る方法は?

Григорий Мерзон, «Квантик» №5, 2020

この記事の図はすべて掲載しますが,文章は冗長ですので私が全部書き換えました.要するに,この問題は,以下の図(らくだと言っている)を3つの部分に直線で切り分けて,それらを組み合わせて正方形を作れということです. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 この図(ラクダ)を見ると,うまく組み合わせれば,エッシャーの周期的な絵のように寄せ木細工が作れることに気づきます.それは下の図のようになります.ラクダのモチーフが周期的に繰り返されていることがわかります.

 

 

 



一つのラクダの頭に注目すると,右斜め上に次のラクダの頭があり,それらを結ぶ直線上に周期的に繰り返す頭が現れることがわかります.

この周期はいくつかというと,3,4,5の直角3角形(この記事ではエジプト3角形と呼んでいる)にあてはめると,周期が5であることがわかります.

 

 

 

このエッシャーの周期的な絵(寄せ木細工)のような繰り返すラクダの壁紙は,斜めに置かれた1辺が5の正方形を周期にしています(私の説明流儀では単位胞とよぶます).

従って,以下のように3つの部分に直線で切れば,組み合わせて1辺5の正方形が作れます.

これがこの問題の回答ですが,私は答えはこれだけではないことを指摘しておきたいとおもいます.

ラクダが3等分できる範囲にあるならば,単位胞の正方形はずらす(平行移動)ことが可能で,答えはこれだけではなくたくさんあります.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

そして彼が帰宅したとき、クヴァンチクは上の図は「ピタゴラスモザイク」といって,ピタゴラスの定理の証明になっています.これは9世紀にアラブの数学者アンナイリジとサビットイブンクラによって証明に使われたそうです.

アーティストAlexeyVayner

ソフィスト,ゴルジウスの第四定理

Дмитрий Германович Фон-Дер-Флаасс,«Квант» №5, 2010
のエッセイのまとめです.今回は短いが,彼の最も言いたかったことはここにあるのでしょう.最後に私(訳者)の感想を述べます.

そして今、第四の定理について、少しだけ、多分最も恐ろしいことを話します - "教えても、誰も興味を示さない”。この問題のいくつかの断片はすでに話しました。人々は有限群の研究に興味を持たなくなりました。やる人が減ってきて、テキストという形で保存されてきた知識の塊が不要になり、誰も読めなくなってきている。これは数学の多くの分野を脅かす不幸でもあります。

数学の分野によっては運がいい分野があります。例えば、グラフ理論と組み合わせの理論は同じです。本気でやり始めるにも、ほんの少し学べばよい。少し勉強して、数学オリンピックの問題が解ける。一歩踏み出して、未解決の問題があり、~やったーとなります。しかし、数学の多くの分野は、本当に美しく、それをやりたいと感じるためにも、あなたは多くのことを学ぶ必要があります。そして、その道中では、他にも多くの美しいことを学ぶことができます。しかし、道中で出会うこれらの美しさに気を取られてはいけません、そして、最後には、まさに迷路の中で、美しさを見て、そして、多くのことを学んで、この分野の数学ができるようになっていくのです。そして、この難しさは、そういった部分の問題です。数学の分野が発展するためには、それに従事しなければなりません。全ての困難を乗り越えて、そこに登って、その後もやり続けるというのは、多くの人には面白いはずです。そして今、数学はその難易度の高みに達しており、多くの分野で人知の限界が大きな問題となっています。

人類がこれらすべての問題にどのように対処するのか-私にはわかりませんが、それは興味深いものになるでしょう。

実はそれだけです。

訳注)感想:私は、このエッセイで例にあげられている有限群の問題に興味があります。しかし、この分野は数学者たちは興味を失っているようです。それは、数学の確立された分野で,これ以上研究するのは人間の理解できる限界だからです。これを乗り越えるのは、他のすべての分野の知識もマスターしている数学者ができる仕事でしょう。それを乗り越えられる人がいるのか,その人知はもう人間業ではないのか。そして、たとえ誰かが乗り越えても他の誰にも理解できず,その結果に誰も関心をもたないという状況が恐ろしい.

ソフィスト,ゴルジウスの第三定理

Дмитрий Германович Фон-Дер-Флаасс,«Квант» №5, 2010
3番目の定理-何かがわかっている場合、それは隣人には説明できません。

これらはまさに現代の数学で最も燃えている問題であり、おそらく最も誇張された問題です。人は何かを証明しましたが、その証明を他の人に伝えることはできません。または、彼が本当にそれを証明したことを他の人に納得させます。この範疇で最初の例であり、一般に最も有名なのは、4色問題です。しかし、これはまだここで発生する最も困難な状況ではありません。ここで、4色問題について少しお話しした後、さらに異常な状況を示します。

 

図: 5.
4色問題とは何ですか?これはグラフ理論の質問です。グラフは、エッジで接続されたいくつかの頂点です。これらの頂点を平面上に描画し、エッジが互いに交差しないようにそれらをエッジに接続できる場合、フラットと呼ばれるグラフが得られます。グラフカラーリングとは何ですか?トップスはさまざまな色で塗装しています。エッジに沿って隣接する頂点が常に異なる色になるようにこれを行った場合、色は正しいと呼ばれます。できるだけ少ない色でグラフを正しく描きたいです。たとえば、図5には、ペアで接続された3つの頂点があります。つまり、どこにも移動できません。これらの頂点は、必ず3つの異なる色になります。しかし、一般的に、このグラフを描くには4色で十分です(3色では不十分です。確認できます)。

百年の間、問題がありました:平面上に描くことができるどんなグラフも4色で着色できるというのは本当ですか?誰かが信じて4色で十分であることを証明しようとしましたが、誰かが信じずに4色では不十分な例を考え出そうとしました。また、そのような厄介な問題もありました。問題は非常に簡単に定式化されます。したがって、多くの人々は、軽薄な数学者でさえ、それに襲いかかり、それを証明しようとし始めました。そして、彼らは膨大な量の疑惑の証拠または疑惑の否定を提示しました。彼らはそれらを数学者に送り、新聞で叫んだ。私は4色の問題を証明しました!」 -そして誤った証拠のある出版された本さえ。要するに、ノイズが多かったのです。

結局、K。AppelとV.Hakenがそれを証明しました。ここで、証明のスキームについて説明します。同時に、この証拠が他の人には説明できない理由もわかります。人々は、フラットグラフがどのように機能するかを真剣に研究することから始めました。彼らは数十の構成のリストを提示し、すべてのフラットグラフでこれらの構成の1つを見つける必要があることを証明しました。これは証明の前半です。そして、証明の後半-これらの構成のそれぞれについて、それがグラフにある場合は、4色で色付けできることを確認できます。

より正確には、証明は反対からさらに進んでいます。グラフを4色で着色できないとします。前半から、リストからいくつかの構成があることがわかります。その後、これらの構成のそれぞれについて、そのような推論が実行されます。グラフにこの構成が含まれているとします。捨てましょう。誘導により、残ったものは4色に塗られます。そして、残りを4色でどのように着色しても、まさにこの構成をペイントできることを確認します。

カスタマイズ可能な構成の最も単純な例は、他の3つだけに接続されている頂点です。グラフにそのような頂点がある場合は、最後に色を付けたままにしておくことができることは明らかです。他のすべてに色を付けましょう。次に、この頂点がアタッチされている色を確認し、4番目を選択します。他の構成の場合、推論は似ていますが、より複雑です。

さて、これはどのように行われたのですか?このように多数の構成のそれぞれが常に手でペイントされていることを確認することは不可能です-時間がかかりすぎます。そして、このチェックはコンピューターに割り当てられました。そして、彼は多くの事件を調べて、これがそうであることを本当に確認しました。その結果、4色の問題が証明されました。

当初はこんな感じでした。厚い本に記録された推論の人間的な部分には、すべてが着色されていることの最終チェックがコンピューターに委ねられ、コンピュータープログラムのテキストさえも与えられたというフレーズが付随していました。このプログラムはすべてを計算し、すべてをチェックしました-実際、すべてが正常です。つまり、4色の定理が証明されています。

すぐに騒動が起こりました-そのような証拠は信じられませんでした。結局のところ、証拠のほとんどは人間ではなくコンピューターで生成されたものです。 「コンピュータが間違っていたらどうしますか?」 -そんな偏狭な人たちが言った。

そして、この証明の問題は実際に始まりましたが、それらはコンピューターの部分ではなく、人間の部分にあることが判明しました。証拠に欠陥が見つかりました。もちろん、複雑な検索を含むこのような長さのテキストにはエラーが含まれている可能性があることは明らかです。これらのエラーは見つかりましたが、幸いなことに修正されました。

 

ヨハネスケプラー

コンピュータ部分は残り、それ以来、同じ種類の検索を行うだけで、プログラムを書き直しさえして、複数のコンピュータでチェックされました。結局のところ、正確に何を列挙すべきかが言われれば、誰もが独自のプログラムを作成して、結果が期待どおりになることを確認できます。たとえば、証明にこのような大規模なコンピュータ列挙を使用することは問題ではないように思われます。どうして?しかし、同じ理由で、4色の問題の例ですでに明らかになっています。つまり、人間の証拠よりもコンピューターの証拠の方がはるかに信頼されており、少なくはありません。彼らはコンピューターが機械だと叫びました、そして突然それはどこかで故障し、道に迷いました、そこで何かが間違っていました...しかしこれはただありえません。コンピュータが誤ってどこかで誤動作し、エラーが発生した場合(0が誤って1に置き換えられた場合)、これによって誤った結果が生じることはありません。これは結果につながりません、それはプログラムが最終的に壊れることだけです。コンピューターが実行する典型的な操作は何ですか?彼らは、そのようなレジスターからそのような番号を取得し、そこに制御を移しました。当然、この数に1ビットの変更が発生した場合、制御は誰にも移されませんでした。そこにいくつかのコマンドが書き込まれ、すぐにすべてが破壊されます。

もちろん、コンピューター用のプログラムを書く際にエラーが発生する可能性がありますが、これはすでに人為的なエラーです。人はプログラムを読んで、それが正しいかどうかを確認することができます。人は他人の証明を読んで、それが正しいかどうかを確認することもできます。しかし、人間はコンピューターよりも間違っている可能性がはるかに高いです。他の人の十分な長さの証拠を読んでいて、それに間違いがある場合、あなたがそれに気付かない可能性があります。どうして?まず第一に、証明の作者自身がこの間違いを犯したので、それはそれが心理的に正当化されることを意味します。つまり、彼は偶然にそれをしたのです-これは原則として、典型的な人がそのような間違いを犯すことができる場所です。これは、この一節を読んで、それに気づかないことで同じ間違いを犯す可能性があることを意味します。したがって、人間による証明の人間による検証は、コンピュータプログラムの結果を他のマシンで再度実行して検証するよりも、信頼性の低い検証方法です。 2つ目はほぼすべてが正常であることを保証し、1つ目はどれほど幸運かです。

そして、この問題(人々が書いた数学のテキストの誤りを見つけること)では、それはますます困難になり、時には不可能にさえなります-これは現代の数学の深刻な問題です。あなたはそれと戦わなければなりません。まだ誰も知らない。しかし、問題は大きく、現在発生しています。これにはいくつかの例があります。これはおそらくあまり知られていませんが、最も近代的なものの1つです。これはケプラーの古い仮説です。彼女は三次元空間にボールを置くことについて話します。

 

図: 6
まず、2次元空間、つまり平面で何が起こるかを見てみましょう。同じサークルを作りましょう。それらが交差しないように平面上にそれらを描くための最良の方法は何ですか?答えがあります-あなたは六角形の格子のノードに円の中心を置く必要があります。このステートメントは完全に些細なことではありませんが、簡単です。

3Dでは、どのようにボールをしっかりと詰めますか?まず、図6に示すように、平面上にボールを配置します。次に、図7に示すように、同じ層の別の層を上に置き、止まるまで押します。次に、同じ層の別の層を上に置きます。直感的には、これは3次元空間にボールを置くための最もタイトな方法です。ケプラーは、このパッケージは3次元空間で最も密度の高いパッケージでなければならないと主張しました(そして最初に作成したようです)。

それは17世紀に起こりました、それ以来、この仮説はそれだけの価値がありました。 21世紀の初めに、その証拠が現れました。そして、あなたの誰もがそれを手に入れて読むことができます。インターネット上のパブリックドメインにあります。この記事は200ページです。それはある人によって書かれ、コンピュータ計算だけでなく、純粋に数学的な推論も含まれています。

 

図: 7
まず、著者は数学的な推論を使用して、問題を有限数のケースをチェックするように減らしようとします。その後、時々コンピューターを使用して、彼はこの有限の、しかし非常に多くのケースをチェックし、すべてが収束します、そして-万歳! -ケプラーの仮説が証明されました。そして、これがこの記事の問題です-誰もそれを読むことができません。それは重いので、場所によっては検索が本当に完了したかどうかが完全に明確ではないので、それを読むのは単に退屈だからです。 200ページの退屈な計算。人はそれを読むことができません。

一般的に言って、誰もがこの記事にはこの定理の証拠が含まれていると信じています。しかし一方で、これまで正直にチェックした人は誰もいません。特に、この記事はピアレビューされたジャーナルに掲載されていません。つまり、自尊心のある数学者は、「はい、すべてが正しく、ケプラーの推測が証明された。」

そして、これは唯一の状況ではなく、これは数学の他の分野でも起こります。最近では、セット理論、モデル理論、さまざまな分野で未解決の問題のリストに出くわしました。そして、ある仮説に対するコメントがあります。それは、このような記事で反駁されていると言われていますが、誰もそれを信じていません。

これが状況です。その人はその声明を証明しましたが、それを他の人に伝えることも、他の人に伝えることもできません。

最も恐ろしい例は、もちろん、有限の単純なグループの分類です。必要に応じて、それらが何であるか、グループが何であるか、有限グループが何であるかを正確に定式化することはしません。有限グループはすべて、ある意味で、単純なグループと呼ばれる単純なブロックから組み立てられます。これは、小さなブロックに分解することはできません。これらの有限の単純なグループは無限にあります。それらの完全なリストは次のようになります。これらは17のエンドレスシリーズであり、最後に26の個別のグループが追加されます。これらは個別の方法で構築され、どのシリーズにも含まれていません。このリストには、すべての有限の単純なグループが含まれていると言われています。この仕事は数学にとってひどく必要です。したがって、70年代に、その解決策に対するいくつかの特別なアイデアと希望が現れたとき、さまざまな国、さまざまな機関の数百人の数学者が問題を攻撃し、それぞれが独自の作品を取り上げました。いわば、このプロジェクトのアーキテクトがいて、これらすべてをまとめて1つの証明にまとめる方法を大まかに想像していました。人々が急いで競争していたことは明らかです。その結果、彼らが行った作品は合計で約10,000の雑誌ページになり、それが出版されたものです。また、プレプリントまたはタイプライトされたコピーのいずれかの形式で存在した記事もあります。私自身、そのような記事をやがて読みました。この完全な証拠の注目すべき部分が含まれていますが、公開されることはありませんでした。そして、これらの10,000ページは、さまざまな人によって書かれたさまざまなジャーナルに散在しており、さまざまな程度の理解力があります。これに関係がなく、この理論の設計者ではない一般の数学者にとって、10,000ページすべてを読むことは不可能であるだけでなく、非常に困難です。証拠の構造そのものを理解します。そしてそれ以来、これらの建築家の何人かは単に死にました。

証明は誰も読めないテキストの形でしか存在しないが、分類が完了したことが発表され、次のトラブルにつながった。新しい数学者は、有限グループの理論に行く気がありませんでした。これを行う人はますます少なくなっています。そして、50年後には、この証拠で何かを理解できる人が地球上にまったくいないということが起こるかもしれません。伝説があります:私たちの偉大な祖先は、すべての有限の単純なグループがこのリストにリストされており、他にはないことを証明する方法を知っていましたが、今ではこの知識は失われています。かなり現実的な状況。しかし、幸いなことに、この状況が現実的だと思っているのは私だけではないので、彼らはそれに苦労しており、彼らは特別なプロジェクト「有限の単純なグループの分類の証明に関連する哲学的および数学的問題」を組織したとさえ聞いた。この証拠を読みやすい形にしようとしている人々がいます、そして多分いつかそれは本当にうまくいくでしょう。これらすべての困難をどうするかを考えようとしている人々がいます。人類はこの仕事を覚えているので、最終的にはそれに対処します。しかし、それにもかかわらず、他の同様に複雑な定理が現れる可能性があり、それは証明できますが、誰も読むことができず、誰も誰にも言うことができないという証拠です。

ソフィスト,ゴルジウスの第二定理

Дмитрий Германович Фон-Дер-Флаасс, «Квант» №5, 2010
Gorgiasの2番目の定理は次のようです-
何かが存在する場合、それは人にはわかりません。
ここで、このカテゴリに分類される文の例をいくつか示します。

集合理論に問題がありました。「選択の公理は本当ですか?」のような質問をする権利はあるのでしょうか?矛盾することなく数学をやりたいだけなら、原則として、選択公理を受け入れることも、それが真実ではないことを受け入れることもできます。どちらの場合でも、私たちは数学を開発することができ、ある場合にはいくつかの結果を、別の場合には他の結果を得ることができますが、矛盾は決してありません。

しかし、今は状況が異なります。明らかに、結果があり、その答えは明らかに存在し、明らかにそれは明確に決定されていますが、人類はおそらくそれを知ることは決してないでしょう。最も単純な例は、いわゆる(3 N + 1)問題です。これについては、これから説明します。自然数を選択しましょう。偶数の場合は、半分に分割します。そして、それが奇数の場合は、3を掛けて1を足します。結果の数値についても同じことを行います。たとえば、3から始めると、次のようになります。

 

7から始めると、プロセスに少し時間がかかります。いくつかの小さな数から始めて、このチェーンはかなり長いことが判明するかもしれませんが、常に1で終わります。どの自然数から始めても、そのようなチェーンを構築すると、常に1になるという仮説があります。これは(3 N + 1)-問題です-この仮説は本当ですか?

すべての現代の数学者はそれが正しいと信じているように私には思えます。そして、無謀にもそれを証明しようとさえします。しかし、誰も成功しませんでした。そして何十年も経過しています。したがって、これは魅力的な課題の1つです。もちろん、真面目な数学者はそれを軽蔑します-まるで楽しいパズルのようです。何がそこにあるのか、そこに何があるのか​​を知る必要が誰にあるか​は不明です。しかし、軽薄な数学者は、仮説が真実であるかどうかにまだ興味を持っています。それが証明されないうちは、ここで何でも起こり得る。まず、この質問には明確なyesまたはnoの答えがあることは明らかです。自然数から始めて、1に到達するというのは本当か、本当でないかのどちらかです。ここでの答えは、公理の選択や人間の意志に依存しないことは直感的に明らかです。人類はこの質問に対する答えを決して知らないという仮定があります。

 

ベルンハルト・リーマン
もちろん、誰かがこの仮説を証明すれば、私たちは答えを知るでしょう。証明するとはどういう意味ですか?これは、自然数が1に収束する理由を彼が説明することを意味し、理由を私たちに明らかにするです。

誰かが73桁の数字がまさにそのような特性を持っていることを証明するかもしれません。それからこのチェーンを実行することによって、私たちは間違いなく任意の大きな数字を得るでしょう。または、このチェーンが別の場所でループすることを証明します。繰り返しますが、これが仮説が間違っている理由になります。

しかし、たとえば、私にはひどい悪夢があります。この命題が真実であるが、理由がない場合はどうなるでしょうか。確かに、この命題には、ある人が別の人に理解して説明できる理由はまったくありません。そうすれば、私たちは答えを知ることは決してありません。残っているのは、すべての自然数を繰り返し、それぞれの仮説をテストすることだけだからです。そして、これは当然、私たちの力を超えています。エネルギー保存の法則は、有限の時間内に無限の数の操作を実行することを許可していません。または光の速度の有限性。一般に、物理的な法則では、有限の時間内に無限の数の操作を実行して結果を見つけることは許可されていません。

多くの未解決の問題は、この領域に正確に関連しています。つまり、原則として、彼らは本当にそれらを解決したいと考えています。それらのいくつかは決定する可能性が高いです。リーマン仮説という名前を聞いたことがあると思います。たぶんあなた方の何人かはこの仮説が何を言っているかを漠然と理解しているでしょう。個人的には漠然と理解しています。しかし、リーマンの仮説では、少なくともそれが真実であることは多かれ少なかれ明らかです。すべての数学者はそれを信じています、そして私は彼らが近い将来それを証明することを願っています。そして、まだ誰も証明も反証もできないという命題がいくつかあり、仮説においてさえ、2つの答えのどちらが正しいかは定かではありません。人類は、原則として、これらの質問に対する回答を決して受け取ることはない可能性があります。

ソフィスト,ゴルジウスの第一定理の続き

Дмитрий Германович Фон-Дер-Флаасс (1962–2010)カバー写真より
数学者が、例えば複素関数を研究するとき、複素数が実数の対であること、実数が有理数の無限集合であること、有理数が整数の対であることなどをいちいち思い出すわけではありません。出来上がったいろいろな数学対象を使っています。しかし、非常に長い話になりますが、原理的にはすべてのものは基礎から組上がっています。

では、数学者は何をするのか?彼らは、これらの数学対象のいろいろな特性を証明します。何かを証明するためには、すでに何かを知っている必要があります。何よりも、一人の数学者が得た結果が他のすべての人に受け入れられるためには、どのような初期特性から議論を始めるかの完全な合意がなければなりません。


これらの初期特性のいくつかを書き出す(それらは公理と呼ばれる)ことから始め、多くの複雑な数学対象の他のいろいろな特性を証明します。しかし、自然数では困難があります。正しいと直感的に感じる公理から導くことができないが、それにもかかわらず真実と思える自然数に関する命題があることが判明しました。

すぐに疑問が湧いてきますが、この性質が自然数にも当てはまることをどのようにして知ることができるのでしょうか?困難な問題です。自然数の公理しか扱えないのであれば、多くのことを語ることは不可能です。例えば、自然数の任意の無限部分集合について語ることはできません。それにもかかわらず、人々はそれが何であるかを想像し、これらの部分集合がどの特性によって決定されるか直感的に理解します。したがって、公理から推論できない自然数のいくつかの特性について、人々はそれらが真実であることを知ることができました。自然数のある性質を明示的に示したのは、おそらく数学者のクルト・ゲーデルが最初で、それは直感的には真実である(つまり、数学者はそれが真実であることに異議を唱えない)が、当時受け入れられていた自然数の公理からは推論できないということになる。

部分的、実際には非常に大きな範囲(数学のほとんどの分野)で、この問題は、慎重にすべてを集合に持ちこんで、直感的に正しいと思える集合理論の公理のいくつかを書き出すことによって対処されました。

言ってみれば、連想の公理。もし、いくつかの集合の集合があれば、次のように言うことができます:この集合からこれらの集合のすべての要素を含む集合を形成しましょう。このような集合が存在することには、合理的な反論はありません。また、もう少しトリッキーな公理もあります。ここでは、集合理論の中で、原理的に疑問視される可能性のある3つのトリッキーな公理を考えてみます。

 

例えば、こんな公理があります。要素をたくさん有すると集合で、それぞれの要素上のある関数の値を曖昧なく決めることができるとします。この公理は、この集合の各要素にこの関数を適用すると、集まったものが再び集合を形成するというものです(図2)。最も単純な例:xをx^2に変換する関数なら、自然数の集合があれば、それをそれぞれの正方形に入れるイメージで、また自然数の集合に対応させます。 直感的に理解できる公理ではありませんか?もし、これらの関数が非常に複雑な方法で定義されると、集合が非常に大きくなる恐れがあります。また、私たちの関数が明確に定義されていないことは証明できるが、集合の各要素についてこの関数の具体的な意味を計算することは非常に難しい、あるいは無限に難しいという状況もあり得ます。何かしらの答えがあることは確かで、それは曖昧なものではありません。このような複雑な状況でも、この公理は適用可能と考えられており、集合論の問題の源泉の一つは、このような非常に一般的な形です。

 

図3
一方では自明、他方では問題をもたらす第二の公理は、この集合のすべての部分集合を抜き出せるという公理です。ある集合があれば、その集合のすべての部分集合からなる集合が存在するという。有限集合の場合は当然のことながら N個の要素の有限集合があれば、それは2^N個の部分集合しか持ち得ないことになります。基本的には、全部書き出すことも可能です。最も単純な無限集合でも問題はありません。1,2,3,4,5,6,7などの自然数の集合を取ってみましょう。自然数の集合のすべての部分集合の族が存在することは、なぜ明らかなのでしょうか?要素がわかっているからです。自然数の部分集合を想像するにはどうしたらいいのでしょうか?取り出す要素には1を、取らない要素には0を対応させる。この配列が無限に続く2進数であることを想像してみましょう(図3)。[訳注)いくつか抜き取った状態は0.1010・・・・など頭に0.をつけて無限に続く2進数で表現できる]これで、実数は自然数の部分集合とほぼ同じであることがわかります。 すべての実数が順に並ぶことを直感的に知っているので、それらは実線として明確に表すことができます。与えられた集合のすべての部分集合の集合に関する公理も成り立つのです。

さらに考えてると、ちょっと怖くなってきますが、数学者は、この公理は常に実行されると信じています:我々がある集合を持っている場合、それはまた、そのすべての部分集合が存在することを意味します。そうでなければ、何かを構築するのは非常に困難になります。

そしてもう一つ、最初は信じていなかった公理があります。その名を聞いたことがあるかもしれません。「選択の公理」です。様々な方法で定式化することができ、非常に複雑なものもあれば、非常にシンプルなものもあります。今から、選択公理の定式化の方法をお話ししますが、その中で、それが正しいことが本当に明白になります。いくつかの集合を用意しておきましょう。それらは実際には重なっているかもしれませんが、それは重要ではありません。 簡単に言えば、それらはまだ重なっていないかもしれません。そうすれば、これらのセットを全部まとめたものを作ることができます。これはどういうことかというと、その要素はこれらのものになる、つまり、それぞれの要素から1つの要素を取り出して、それらすべてで1つの集合を形成する(図4)。集合から一つの要素を選択するそれぞれの方法は、これらの集合から作られるものの要素を与えます。

 

もちろん、これらの集合の中に空集合があり、そこから選択するものがない場合、作られるすべてのものも空になります。そして、選択の公理は、そのような完全に明白な事実を主張します。これらの集合がすべて空でない場合、作られるものは空ではありません。これは明らかに、選択の公理が実際に正しいという事実を支持する最も強力な議論の1つです。他の定式化では、選択の公理はこれほど明白に聞こえません。

すべての数学を集合理論の言語に翻訳しようとして、数学者が命題をどのように証明するかを観察すると、多くの場所で、数学者はそれに気付かずにこの公理を使用していることがわかりました。これに気がつくと、別の命題に分ける必要があることが明らかになりました。私たちはそれを使用していたので、どこかからそれを取り出さなければなりませんでした。それを証明するか、これが基本的な明白な事実であり、それを公理として使用することを許可されていることを宣言する必要があります。これは本当に基本的な事実であり、他のすべての事実だけを使用して証明することは不可能であり、反論することも不可能であることが判明しました。したがって、それを受け入れる場合は、公理として受け入れます。そして、もちろん、受け入れる必要があります。


ここで大きな問題が起こりました。この事実が明確な形で定式化され、「使用できます」と宣言されるとすぐに、数学者はすぐにそれを使用し、直感的には全く非自明な命題を多数証明しました。直感的に間違っているように見える命題すら証明しました。

選択の公理を使用して証明された、そのような命題の最も衝撃的な例は以下です。ボールがあります。それをいくつかのピースに分割し、これらのピースから2つのまったく同じボールが作れます。ここで「いくつかの部分に分割する」とは、たとえば7とすると、各点ごとに、これらの7つの部分のどれに該当するかの話で、これはナイフでボールを切るようなものではありません。はるかに難しい場合があります。たとえば、これは想像するのは非常に難しいですが、ボールを2つにカットする方法なら、座標が有理数であるすべての点を1つのピースに取り、もう1つのピース(無理数の座標を持つすべての点)も作ります。各点について、どのピースに分類されたかがわかります。つまり、これはボールを2つのピースに合法的に分割したものです。しかし、これを視覚化することは非常に困難です。これらの各ピースは、遠くから見ると、まるでボールのように見えます。これらのピースの1つは実際には非常に小さく、もう1つは非常に大きくなりますが。そこで、選択した公理の助けを借りて、この方法でボールを7つのピースにカットできることを証明しました。次に、これらのピースを少し動かして(つまり、空間内で動かしたり、歪ませたり、曲げたりすることなく)、もう一度組み立てて、2つのボールを得ることができます。当初のものと同じです。この命題は証明されていますが、やや風変わりに聞こえます。しかし、それにもかかわらず、数学者は、選択の公理のそのような結果を完全に放棄するよりも我慢する方がよいことに気づきました。他に方法はありません。選択した公理を放棄すると、それをどこでも使用できなくなり、多くの重要で美しく直感的な数学的な結果が証明できないことが判明します。結果は安全に証明できるようになりますが、同時にそのような異常な結果もあります。しかし、人々は多くのことに慣れており、これらの異常にも慣れています。一般的に、現在選択されている公理には問題がないようです。

集合理論の一連の公理があり、数学があります。そして多かれ少なかれ、人間が数学でできることはすべて、集合理論の言語で表現できるようです。しかし、ここでは、ゲーデルが算術の時代に発見したのと同じ問題が発生します。私たちの集合の世界(すべての数学の世界)を説明するかなり豊富な公理のセットがある場合、それらが真実であるかどうかを知ることは決してできないという命題があります。これらの公理から証明することはできず、反論することもできません。集合理論は強力に発展しており、今ではこの問題に最も近いものです。いくつかの問が非常に自然に聞こえる状況に直面することがよくあります。それらに対する答えを得たいのですが、答えも未知で、公理から導き出すこともできないことが証明されています。

何をすべきか?集合理論では、彼らはどういうわけかこれに対処しようとします。つまり、彼らは新しい公理を考え出そうとします。人類にとって直感的に明らかなことはすべて、20世紀の初めに開発された集合理論の公理にすでに還元されているように思われますが、まだ何か他のものが欲しいことがわかりました。数学者は直感をさらに訓練して、いくつかの新しい命題が何らかの理由ですべての数学者に突然直感的に明白に見えるようにし、それらを使用できるようにするでしょう。


もちろん、これがどのように行われるのかはわかりません。非常に複雑な命題があります。まず、集合理論を深く掘り下げて、それらが主張する内容を理解し、次に理解する必要があります。 これらの命題は、実際に直感的に明白であると見なすことができ、公理と見なすことができます。 これは、数学の最も神秘的な分野の集合理論が現在行っていることです。

ソフィスト,ゴルジウスの第一定理

Dmitry Germanovich Fon-Der-Flaass "Kvant" No. 5、2010


https://elementy.ru/nauchno-populyarnaya_biblioteka/431269/Teoremy_sofista_Gorgiya_i_sovremennaya_matematika


Dmitry Germanovich Fon-Der-Flaass(1962–2010)が早すぎる死を遂げました。クバントの読者はこの名前に何度も会ったことがあります。クバント誌はしばしば彼の問題を発表しました。ドミトリー・ゲルマノビッチは大きな科学で成功を収めましたが、それは彼の活動の一部にすぎません。彼は、学童のための数学オリンピック、全連合および全ロシアのオリンピック、そして近年では国際審査員を務めました。彼はさまざまな数学キャンプや学校で講義を行い、国際数学オリンピックロシアチームのトレーナーの一人でした。この文は,2009年に全ロシア子供センター「Орленокオルリョノク(わし)」で、D.Fon-der-Flaassが行った講演に基づいています。

■古代のソフィスト、ゴルジウスは、三つの定理を立てたことで有名です。第一の定理は、世界には何も存在しないということです。第二の定理は、もし何かが存在するならば、それは人間にはわからないということです。第三の定理は、もし何かが認識可能であるならば、それは隣人には言い表せない。
言い換えれば、何もありませんし、何かがあれば、それについて何も知りませんし、何かを知っていても、誰にも言えません。
これらの三つの定理に四番目を追加します。何かを言うことができたとしても、誰も興味を持ちません。
これらの四つの定理は、実は、現代数学の主要な問題です。

ゴルジウスの第一定理
世界には何も存在しない。数学の言語に翻訳すると、数学は理解できないことをしています。ある意味、これは真実です。結局のところ、数学的なものは世界に存在しません。私たちは皆、自然数が何であるかを知っています。それらは1,2,3,4,などです。そして、私たち全員が「など」という言葉の意味を理解しているという事実は大いなる謎です。 「など」は「無限に多い」数を意味するからです。この世界には、無限に多くのものが存在する余地はない。しかし、私たち全員が自然数について考えるとき、私たちは皆同じことを考えていると信じています。私は7の次は8と思うが、あなたも7の次は8と思う。私が19を素数と思うが、あなたも19を素数と思う。この対象物は世に存在しないようですが、私たちはそれを知っており、私たち全員が同じことを知っています。もちろん、これは数学的な謎ではなく、哲学的な謎なので、議論は哲学者にさせます。幸いなことに、私たちは数学的対象の概念を持っているだけで十分で、それらについて考えるすべての人にとって同じです。だから数学が可能なのです。しかし、哲学的な大きな問題は残っています。

数学者が、これを厳密に考えようとすると、問題が発生します。それがこれからお話しすることです。それらが人類の記憶に出現したのはごく最近(過去100年間)のことです。

自然数に加えて、数学にはもっとたくさんのことがあります。ユークリッド平面があり、そこにあらゆる種類の三角形、角度を描き、それらについての定理を証明します。実数がある、複素数がある、関数がある、もっと恐ろしいものもある...。19-20世紀の変わり目(もちろん、それは少し前に始まった)で大きな転機がありました。人々は、多様な数学的対象の全体は、単一の概念 (集合の概念)に還元できることに気付きました。確かに、単純に「集合」とは何か、「など」とは何かということを直感的に理解していれば、基本的にはすべての数学を構築することができます。

問題は、集合で何ができるかということです。集合が存在する場合、それはどういう意味でしょうか?つまり、私たちの世界、数学的対象の世界のどの要素についても、それがこの集合に含まれているか否かを尋ねられたら、はっきりした答えを得られることを意味しています。答えは明確で、私たちの意志とは完全に独立しています。これは、集合を使ってできる最初の基本的なことで、要素が集合に属するかどうかを調べることです。

もちろん、集合自体は何らかの方法で構築する必要があります。そして、最終的には、すべての豊富な数学的対象がそれらから構築されます。それらはどのように構築されるでしょう?たとえば、空集合Øを作成できます。この集合に属しているかどうかに関係なく、どの要素について質問しても、答えは常に「no,属していません」となり、空集合はすでに一意に決定されています。空集合に関するすべての質問は即座に答えられます。

そして、空集合だけしか含まない集合{Ø}を作成できます。繰り返しますが、この集合があるとはどういう意味ですか?これは、どの要素についても、それがこの集合に属しているかどうかを判定できることを意味します。そして、この要素が空集合である場合、答えは「yes」、この要素が他の要素である場合、答えは「no」になります。したがって、この集合もできました。

ここからすべてが始まります。より直感的な操作をいくつか使います。 2つの集合がある場合は、それらを結合できます。これは、一方または他方の集合の要素を含む集合があると言えます。繰り返しますが、要素が結果集合に属するか否かという質問に対する明確な答えができます。だから私たちは結合を築くことができます。等々。

ある時点で、無限に多くの要素が存在する集合があることを宣言する必要があります。自然数があることを知っているので、無限の数が存在すると信じます。自然数の集合も利用できることを宣言します。無限の集合が現れると、整数を定義できます。整数は、ゼロまたはマイナス記号の有無にかかわらず自然数のいずれかです。これはすべて、集合理論の言語で行うことができます。

有理数を定義できます。有理数とは、分子と(ゼロ以外の)分母の2つの数値のペアです。それらの間に加法と乗法を定義する必要があるだけです。そして、そのようなペアが同じ有理数と見なされるときの条件は何でしょうか。

実数とは何か?これが興味深いステップです。たとえば、それは無限小数であると言うのも良い定義でしょう。無限小数とはどういう意味ですか?つまり、各自然数は実数に含まれます。


ところで、数学者は実数をこのように定義するわけではありません。我々がすでに押さえた有理数の集合を見れば、厳密には実数の集合よりも小さいものであることを宣言しておきましょう。これは非常に厄介な定義です。実は、以前の定義と非常に似ています。例えば実数3,1415926だとすると (無限の数の連鎖が続いている)例えば、それよりも小さい有理数は何でしょうか?小数点以下の端数を切ります。3.14という数字が出てきますが、考えた実数よりも小さいです。小数点以下第4位の端数を切ると3,1415個になり、これも考えている実数よりも小さい有理数が1つ増えます。自分の数よりも小さい有理数をすべて知っていれば、その数だけで決まることは明らかです。そのような絵を視覚的にイメージすることができます。直線はすべて実数で、その中でどこかに私たちの未知数があり、その左に私たちの未知数よりも小さい多くの有理数があります。他の側のすべての有理数は、それよりも大きくなるだろう。これら2つの有理数の間に1つのチップがあることは直感的に明らかで、このチップを実数と呼ぶことにします。集合の概念から始まって、数学全体が少しずつできていきます。

空気の清浄化:屋内をCOVID安全に

 
plus magazine(November 5, 2020)を要約した

11月18日の東京都のCOVID19新規陽性者数は493人となり,指数関数的な増加予測グラフに乗りました.予断を許さない状況になりました.
ここで紹介する(plusmagazine,Nov.5,2020)記事は,マスク着用の効果とエアロゾルを介しての伝染を予防するための換気について語っています.たぶん,皆様の常識になっている事実の確認で新規性はないので,この記事は圧縮して紹介します.

 

■ COVID-19を引き起こすウイルスは、主に大きな液滴と小さなエアロゾルを介して伝染する。これらは、呼吸、会話、咳、または笑いの際に排出され、「ウイルスを含む小さな呼吸エアロゾルは、呼吸によって生成された二酸化炭素と一緒に、換気の流れによって部屋の周りに運ばれる」とリンデンらは論文で言う[Paul Linden, Rajesh Bhagat, Stuart Dalziel, and Megan Davies Wykesによる]。「換気が不十分だと二酸化炭素濃度が高くなり、ウイルスにさらされるリスクが高まる可能性がある」

オフィス、病院、レストランなどの多くの近代的な屋内スペースの換気システムはさまざまです: 風と熱によって駆動される自然換気、または機械システムによります。混合換気は、空間内の空気を十分に混合して維持することを目的とし、置換換気は、部屋の上部から暖かい空気を抽出し、床近くの通気口から冷たい空気を供給することで、より涼しい下部ゾーンとより暖かい上部ゾーンを生成します。

COVID-19の感染に関しては、空気を混ぜることは望ましくない。「混合換気は、すべてを空中に浮遊させてかき混ぜることを目的としています」とリンデン氏は説明します。「置換換気ならば、私たちが吐き出す暖かく潜在的に危険な空気は天井に上がり、そこで抽出することができます」。

置換換気を使用しても問題が発生する可能性があります。部屋にさまざまな熱源がある場合、呼気は暖かい天井層の下に閉じ込められ、他の人によって再び吸い込まれる可能性があります。

人々の呼気の正確な挙動と病気の伝染におけるその役割を予測することは非常に難しいので、リンデンと彼の同僚は、流体力学研究所(ケンブリッジ大学の数学科学センター)で実験を行いました。

■ 呼吸、会話、笑い
人がじっと座って息を止めているときでさえ、彼らの体の熱は天井に上がる暖かい空気のプルームを生成します。人が呼吸を始めたり、口を開いて話したり、歌ったり、咳をしたり、笑ったりすると、吐き出された息が2番目のプルームを生成します。伝達に関しては、この2番目のプルームが本体のプルームに同伴されて天井に運ばれるのが最善です。

もちろん、空気は見えませんが、リンデンと彼のチームは、暖かい空気を追跡できる画像技術を使用しました。「誰かが暖かい空気を吐き出すと、温度と密度の変化を見ることができます。それは光を屈折させ、あなたはそれを測定することができます」とバガットは説明します。

チームが作成した画像を以下に示します。左側の画像では、人は静かに座って鼻から呼吸し、中央の画像では通常の音量で話し、右側の画像では笑っています。各画像では、体のプルームが穏やかに上昇していることもわかります。3つのケースのそれぞれで、吐き出されたプルームが体のプルームに吸収されていないことがわかります。

 

 

 

上段の写真はマスクなし.下段の写真はマスクありです.

 

 

 

 

 

 

 

 

 

■ 実験と数学

このような実験は非常に重要ですが、実験はリンデンと彼のチームの研究の一部に過ぎません。同様に重要なのは、ガスやその中の汚染物質の挙動を記述する数学モデルで、ウェルズ・ライリーの方程式があります。これは、空気感染性の病気にかかっている人と部屋を共有することで感染する人の予想される数I を推定しています。

 

 

ここで、Sは、部屋の中で病気にあらたに感染可能な人の数であり、Γは部屋の中の既に感染している者がウイルスを排出する率を記述し、qは一人当たりの平均呼吸率、tは人々が部屋を共有している時間幅を記述する。Qは部屋の換気率、つまり新鮮な空気が部屋に入る率です。

この式をよく見てみると、Qが大きいほど(部屋の換気が良いほど)感染する人の数Iが少ないことがわかります。ウェルズ-ライリー方程式は、換気 Q は空間全体で均一であることを前提としており、リンデンと彼のチームが示したように、これは通常、人や家電製品によって生じる空気の流れも問題になり現実にはそうではありません。しかし、ウェルズ-ライリー方程式(他の多くの関連する数式とともに)は、現実の生活をより正確に記述する、より複雑なモデルの一部を形成するでしょう。

■ 結論

置換換気システムは、適切に設定されている場合は、より良い選択である。
マスクは有益である。

この研究はまた、もう一つの興味深い可能性を示唆している。ウイルスを含んだエアロゾルは、私たちが息を吐くCO2と同じように振る舞うので、部屋のCO2レベルは警告システムに使える。CO2レベルは非常に簡単に測定することができ、それが高い場合は、空気感染のリスクも高くなるので、リンデンらは、信号機のような警報システムを考えている。