掲示板

note.com投稿記事

御殿まり

今年(2020年)のとっとりサイエンスワールドは,新型コロナウイルスのために残念ながら中止になりました.
2017年のとっとりサイエンスワールドin倉吉は,8月27日に開催されました.1,250人の来訪者があり,例年のように盛況でした.万華鏡ワークショップは30人クラスを4回実施し120人が作りました.2016年は,鳥取サイエンスワールドの終わった直後,翌々日に倉吉地震がありびっくりしました.多くの方が避難生活をし,サイエンスワールドの会場だった梨っこ館もガラス天井が落ちたそうです.隣のプールは2017年7月20日になってやっと利用開始にこぎつけました.白壁土蔵群,赤瓦館でも地震の被害がありました.

2017年に,その赤瓦二号館を訪れたとき見つけた御殿まりの写真です.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

これらはみんな一人のご婦人が作ったものだそうです.お会いしたいものでしたが,残念ながら不在でした.
どれも美しく良いできですね.
正4面体群:正6面体群(正8面体群):正12面体群(正20面体群)のどれがあるでしょうか?

 

 

 

 

 

 

 

 

 

 

 

 

 

Q1:さて私は,正6面体群(正8面体群)と正12面体群(正20面体群)のうちのどちらを選んだでしょう?

私が選んだのは,前者の方でした.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

参考に,これと同じ対称性の図形を掲載しましょう.

 

 

 

 

 

 

 

 

 

 

 

これらはともに,半正多面体[4,6.6]ですが,立方体のx,y,zの方向に,4回軸があり,体対角線の方向に3回軸があります.2回軸のある方向も確認してください.(注)シュレーフリの記号[4,6,6]は,頂点の周りに正4角形,正6角形,正6角形が集まっていることを示しています.
結局,これらは皆,球面正6面体{4,3}や正8面体{3,4}と同じ対称性(点群)になります.(注){4,3}もシュレーフリの記号と呼ばれますが,正4角形が頂点に3つ集まっていることを示しています.

Q2: 球面正12面体{5,3}や菱形30面体の御殿まりを見つけましょう.このなかにありますか?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

これらの対称性(点群)は,正12面体やその双対の正20面体と同じです.

一番下の立体の形は,菱形30面体です.菱形30面体は,12・20面体(半正多面体[3,5,3,5])と双対な多面体なので,対称性としては,上の3つの立体はすべて同じです.
別項目・サッカーボール(フラーレン)に関連記事があります.

 

Q3: この他に,半正多面体[6,3,6,3]があります.探してみましょう.

ーーーーーーーーーー

美しい幾何学,p21,p46,p48 が関連します.ご参照ください

 

空間を隙間なく埋める多面体★

◆立方面心格子→菱形12面体
面心格子のディリクレ(ウイグナー&ザイツ)胞を作図すると「菱形12面体」が得られます.

 

 

 

 

 

 

 

 

◆立方体心格子→半正多面体[4,6,6](ケルビン立体とも呼ばれる「切頂正8面体」の一つ)
体心格子のディリクレ(ウイグナー&ザイツ)胞を作図すると,この立体が得られます.

 

 

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

■格子というのは,無限に続く周期的構造の<幾何学的表現>です.格子点に置くのは繰り返される単位モチーフです.格子点に本当に点を置くのは一番単純な構造です.面心格子の格子点に本当に原子を配置した構造は,銅やアルミニウムなどの金属結晶で知られています.体心格子の格子点に本当に原子を配置した構造は,鉄,タングステン,セシウムなどの金属結晶で知られています.

■格子からディリクレ胞を作る手順を見ると,ディリクレ胞とは格子点1つが占有する多面体の形なのがわかります.
従って,格子点にディリクレ胞を配置すれば,空間が隙間なく充填されるのは明らかです.
そして,ディリクレ胞の対称性(点群)に格子の対称性が現れています.

図は省略しましたが立方体(角砂糖)を積み上げた形,菱形12面体や,ケルビン立体,は周期的空間を隙間なく埋め尽くすことができます.これら3つの対称性は同じです.

◆純粋に数学的に空間充填構造を導くのはとても大変なことですが,結晶学者は昔から知っていました.
自然科学の分野に数学への源泉がいろいろありました.結晶点群や空間群なども化学や鉱物学で発展し数学に貢献した例です.

多面体の見える万華鏡

多面体の見える万華鏡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reciprocalという言葉があります.経済などでは,互恵的とか対等とかいう意味で使われます.
結晶学では,結晶格子crystal latticeに対して,逆格子のことをreciprocal latticeといいます.
両者の関係は,多面体でいうと,面を頂点に,頂点を面に変換した多面体
(これを双対dualな多面体という)の関係と同じです.

 

例えば,シリコンの結晶格子は面心格子で,ディリクレ胞を描くと菱形12面体(左図)です.シリコンの逆格子は体心格子で,ディリクレ胞を描くと[6,6,4]半正多面体[いわゆるケルビン立体](右図)です.

結晶格子中のデリクレ胞と逆格子中のデリクレ胞は,このように互いに双対です.格子latticeに対して逆格子reciprocal latticeとはうまく名付けたものです.
もちろん,対称性はどちらも同じ,正6面体(角砂糖)と同じ対称性です.菱形12面体と[6,6,4]半正多面体(ケルビン立体)の形が見える万華鏡を作りました.この万華鏡は,左から覗くと菱形12面体が,右から覗くとケルビン立体が観察され,両者の対称性は同じであることを理解するのに役立ちます.

ーーーー

(注)用語(ディリクレ胞,格子,逆格子,面心格子,体心格子,半正多面体)は,説明なしに用いたので,別の機会に補足説明をいたします.


参考 「美しい幾何学」  今,試し読みができるようです.
p.44~ 45 万華鏡で作る多面体
p.60~ 62 ディリクレ胞,格子

「美しい幾何学」

オーボールと菱形30面体

これはオーボールという赤ちゃんのおもちゃです.球の表面は互いに接する大きい円20個と小さい円12個でできています.円を正多角形にすれば,いわゆるサッカーボールの形です.つまり,小さい円は正5角形,大きい円は正6角形に対応します.

(問)大きい円と小さい円の半径の比は?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

球面多面体の正多角形の辺は球の大円でできていますが,多面体の正多角形の辺は直線でできています.この多面体の1つの頂点の周りには,正5角形,正6角形,正6角形が集まっています.このような多面体は[5,6,6](シュレーフリの表記法)と記述します.正3角形の面だけが頂点で5つ集まっているのは正20面体で{3,5}と記述します.正20面体の頂点を切って(切り口は図の白い面),残りの面が正6角形になるようにすると,多面体[5,6,6]が得られます.

 

これは,上図のC60[フラーレン(60個の炭素原子からなる)分子.青球は炭素原子C]と同じ形です.

■さて,問の答えですが,オーボールの大きい円と小さい円は,フラーレンの正6角形と正5角形に対応することがわかります.
下図を見てください.


辺の長さの等しい正5角形と正6角形の外接円(内接円)半径比が答えです.計算すると 1:1/2sin36°≒1.176:1

 

 

 

 

 

 

 ■次の図に示す「組み合わさった立体」は,正20面体(水色)と正12面体(黄色)が組み合わさっています.それぞれの多面体のサイズは,辺の中央でちょうど重なるようにしました.入り組んで組み合わされている多面体は,正20面体{3,5}と正12面体{5,3}です.これらの正多面体は互いに双対です.
(注){3,5}←→{5,3}のように,面の形と頂点に集まる数を入れ替えると,”互いに双対”な多面体が得られます.
サッカーボールもオーボールも,正20面体由来の正6角形(正3角形)の面と正12面体由来の正5角形の面からできています.サッカーボールの面に対応する頂点をもつ双対な多面体を作ると菱形30面体が得られます.
(注)正5角形の面に対応する頂点間と正6角形の面に対応する頂点間が,それぞれ菱形面の対角線になります.
下図の「組み合わさった多面体」で,黄色い頂点と水色の頂点を結ぶと菱形30面体が得られます.
菱形面の1つを赤い線で図に記入しました.この菱形面の対角線比は黄金比です.

 

Do★Math

■数学まつり
多くの人々が数学に関心をもつようになるイベントを数学月間では応援しています.講演会,講習会,数学カフェ,ワークショップ,様々な活動形態がありますが,子供たちが楽しめて数学感覚が身に着く”数学まつり(フェスティバル)”というのがあり,英国のMMPでも米国のMAMでも大変人気があります.

国立数学博物館MoMath(National Museum of Maths)は,米国唯一の数学博物館で,ニューヨークのマディソン・スクエアに,2012年12月15日オープンしました.ここには30以上の対話型の展示があります.
東京でもMoMathのような常設の数学展示のあるものは,科学技術館,リスーピア,東京理科大「数学体験館」(2013年オープン)などがあります.一度見学されると良いでしょう.

Do Math 同志社中学校数学博物館www.facebook.com


■同志社中学校数学博物館 Do★Math


同志社中学校数学博物館 Do★Mathは,2016年6月にオープンしました.Do★Mathは,生徒以外にも,一般市民にも公開されています.
一つの学校の教育の場で実現した,米国のMoMath(数学フェスティバル)や,米国の地域の数学サークル活動を思わせる意欲的な活動です.今年の数学月間懇話会(ZOOMによるリモート開催の計画.詳細が決まり次第http://sgk2005.saloon.jpに掲載します)のテーマの一つとして,Do★Mathを園田毅先生(同志社中)にご案内いただく予定です.