掲示板

note.com投稿記事

パンデミックの最中に大学に戻る

By Marianne Freiberger; plus magazineより 

 

 

 

 

 

 

 

 

今,学校の再開が注目されていますが,もう1つのパンデミックの課題にも直面しています.今月と来月,全国の大学が秋学期を開始します.

約200万人の大学生が全国から選択した教育機関に動きだします.フレッシャーズフルー*)[*注)フレッシャーズフルーとは,大学で最初の数週間に新入生が発症した一連の病気に付けられたイギリス英語.]の感染は大学のキャンパス全体に簡単に広がる可能性があります. COVID-19では,若者が無症候である可能性が高いということから,発生しても迅速に発見されない可能性があります.若者のCOVID-19は深刻な病気になる可能性は低くいのですが,学生より脆弱な可能性のあるスタッフや周囲のコミュニティと混ざり合うため,大学での流行は無視できないリスクとなります.

大学を可能な限り安全に保つのに,何ができるでしょうか? 7月に2つのオンラインブレーンストーミングセッションがありました.Isaac Newton Instituteによって実施された「パンデミックの感染症のダイナミクス:感染症のパンデミックのダイナミクスを理解する上での数学的および統計的課題」(IDP) https://www.newton.ac.uk/event/idp の一部で,数学者と教育省および高等教育機関の代表者が集まり,数学がいくつかの問題の敏速な解決にどのように役立つかを確認しました.

数学者が提供しなければならないのは,数学モデルを使用してさまざまな状況下で病気の広がりをシミュレートし,緩和策が感染拡大にどのように影響を与えるか確認することです.

「この問題の見方で,数学は学際的なタペストリーの一部になりたい」と講演者でサウザンプトン大学のレベッカ・ホイルは言いました.「すべての答えがあると感じているわけではありませんが,そのパッチワークの一部を提供します」

■ベースライン
病気が典型的な学生集団にどのように広がるか,IDPの会議で,Ellen Brooks Pollockはブリストル大学のチームの仕事について報告しました. チームは、2010年に実施された社会的接触調査のデータとブリストルの学生の家庭の状況に関する匿名の情報を使用して,学生の接触パターン(誰が、どのくらいの頻度で会うか)を把握しました. チームは,学期の初めに到着したときに学生が通常どこから来るのかを見て,COVID-19に感染して到着する学生の数も推定しました. 彼らは,この情報を確率的コンパートメントモデル*)https://plus.maths.org/content/how-can-maths-fight-pandemic に組み込みました.
このモデルによると,ブリストルの学生の約20%が最初の学期中に感染する可能性があり,大学生活が通常どおり継続する場合,約74%が学年末までに感染することを示唆しています.新入生は感染率が最も高く,発生の初期段階を促進します.ブリストル大学では,他の多くの大学と同様に,新しく到着した学生が好む宿泊施設であるホールは,さまざまな混合場所になるため,1年目の期待と社交への熱意を考慮すると驚くべきことではありません.

モデリングは,発症の症例と比較して,気づかれずに忍び込む無症候性の症例が,どれほどの感染性であるかに依存することも示しました.上記の結果は,無症候性が対症療法の約半分の感染性であるという仮定(入手可能なデータに照らして妥当な推定値)に基づいています.しかし,ブルックス・ポロックと彼女の同僚は,この相対的な感染率の他の値も試し,流行の最終的なサイズがその数に非常に敏感であることを発見しました.たとえば,無症候性の人が症状を示している人と同じくらい感染性があると仮定すると,学生の約96%が学年末までに感染します.

すべてのモデルと同様に,ブリストルのチームによって開発されたモデルは,仮定に基づいており限界があります.これについては,https://www.medrxiv.org/content/10.1101/2020.09.10.20189696v1.full.pdf この論文に書きます.大学の流行は,本当にリスクがあることを確認しています.これらの発生をよりよくシミュレートするために,無症候性の症例の感染性に関するより多くの研究が必要であることを示唆しています.

■テスト、テスト、テスト
今では誰もが知っているように,エピデミックを回避または少なくとも軽減するには,感染の連鎖を早期に断ち切ることです.したがって,大規模な大学が独自の学内テストおよびトレースシステムを導入することは理にかなっているでしょう? IDPセッションは,まさにそれを調査しているウォーリック大学のチームからも聞いた. チームは,接触パターンを反映するネットワークと組み合わせたコンパートメントモデルを使用して,ワーウィックキャンパスでの病気の蔓延をシミュレートしました.

IDPセッションで報告された最初の結果は,最も効果的にするために,テスト&トレースがスムーズに機能する必要があることを示唆しています.症状を発症する十分な数の人が実際に行ってテストを受け,症状がでるまでとテスト&トレースシステムの遅延を短くする. これらの問題の両方で,学内のテスト&トレースシステムが明らかに役立ちます.

潜在的に危険な無症候性の症例を見つける唯一の方法は,学生の体全体の定期的なテストを実行することです.問題は,そのようなプログラムが効果的であるために,学生はどのくらいの頻度でテストされる必要があるかということです.これはブリストルの研究が検討したもう1つの問題であり,モデルによるとその答えは少なくとも2週間ごとです.

すべての英国の大学にスケールアップすると,これは多くのテストを意味し,問題はそれらすべてのテストがどこから来るのかということです.一部の大学は独自のラボを使用してテスト能力を構築していますが,ほとんどの大学はこれを行うことができません.そのため,大学のテストでは,現在医療従事者や症状のある人々のために確保されている国の能力を利用する必要があります.

テストに関する現在の問題を考えると,より経済的なアプローチを検討することも理にかなっています. 「検討するかもしれないのはバッチテストです」とHoyle氏は説明します. 「アイデアは,サンプルを組み合わせて一度に複数の人をテストすることです.そのテストが陰性に戻った場合,個別のテストを行う必要はありません.陽性のバッチにあった人を個別にテストするだけで済みます.多くの人を定期的にテストできるかもしれません」

IDPセッションの参加者は,個々の機関がどのような種類のテスト体制が彼らに適しているかを見つけるために使用できる適応モデリングツールを作成することを目的として,テスト&トレースモデルに取り組んでいます.モデリングはまた,大学での流行が周囲のコミュニティにとってどれほど危険であるかについてのより多くの考えを私たちに与えるでしょう.危険性が高い場合は,国の政策でこれを考慮に入れる必要があります.国の試験能力の一部は,実際に大学のために確保する必要があるかもしれません.

その間,教育機関は,テストで陽性となった学生をどうするかについても考える必要があります.モデルでは,これらの人々は感染性がなくなるまで検疫に入ると常に想定されていますが,現実はそれほど単純ではありません. 20歳の子供に,家から遠く離れた小さな学生部屋で2週間自己隔離するように言うと,規則の違反やさらに悪いことに,深刻なメンタルヘルスの問題につながる可能性があります.誰もが家に帰ることを期待している学期の終わりにテストが行われる場合,これはさらに悪いことになります.モデラーだけでなく,学生の福祉や支援を担当する人たちにもやるべきことがあります.

もちろん,大学が実施できる手段はテストだけではありません.対面教育と学生間の接触を減らすことは,他の2つの明白なオプションです.これらについて詳しくは,
https://plus.maths.org/content/going-back-uni-during-pandemic-part-ii

コンピューターを使った証明

ブライアンデイビス,ロンドンキングスカレッジ
Notices of American Mathematical Society 52,No11(2005)12月
Элементы,数学は何処へ行くより抜粋翻訳(1): 
https://elementy.ru/nauchno-populyarnaya_biblioteka/164681/Dokazatelstva_s_ispolzovaniem_kompyutera

 

 

 

 

 

 

 

 

コンピューター支援で証明された主要な数学的定理の最初の例は,1976年にAppelとHakenによって証明された4色定理でした.これは2つの理由で,多くの数学者を大いに心配させました.第一に,機械が実行した計算のすべてを,手動で再チェックすることなしに証明の正しさを検証することは不可能であると主張されました.当時,「正しい」定理の証明は,ほとんどすべての数学者にとって,まだ完璧に見えました.証明の偶発的なエラーの可能性は認識されましたが,それらを修正するのは時間の問題であると考えられました.もう一つは,一部の数学者は,その定理が正しいかどうかではなく,なぜそれが正しいと見なされるのかについて考え始めたからです. 本質を理解していない証明は彼らに興味がありません.

4色定理は重要な応用がなく,長い間,面白い逸脱と見なされていました.おそらく,誇張された関心が高まったのは,この定理の単純な定式化のせいでしょう.しかし,時が経ち,コンピューターはますます利用可能になり,コンピューターの証明が広く受け入れられるようになりました.
最も新しい事例,ケプラー問題をここで取り上げます.

ケプラー問題は,最大平均密度となるように,同じ直径の球体を3次元空間に最も密に充填する方法を見つけることです.期待される解決策は昔から知られおます.1998年,トムヘイルズは,幾何学的分析と複雑なコンピュータ計算を組み合わせて,ケプラー問題に対する厳密な数学的解決策を見つけたと発表しました.ジャーナル"Annals of Mathematics"は,この論文を審査のために受け入れ,この分野の20人の主要な専門家からなる委員会を立ち上げ,専門家の委員会は,全体的な戦略を決めるためにプリンストン大学で会議を開始しました.数年が経過し,レフェリーは徐々に委員会を去りました.そして2004年の初めには,記事のレビューを続けられなくなりやめることが最終的に決定されました.ジャーナルの編集委員会は,論文の「理論的部分」を公開し,「コンピュータに基づく部分」をより適切なジャーナルに送るすることを決定しました.ジャーナルの編集委員会のメンバーであるロバート・マクファーソンは,このような論文に対するジャーナルの編集方針は破綻したことを認めた.

王立協会の会合では,コンピュータプログラムの操作の正しさを正式に証明し,それによってコンピュータを使用して証拠を調べる手順を明確にする可能性について活発な議論が行われました.マクファーソンによれば,コンピュータプログラムの正しさを証明するための実際の技術を提供できる人は学術評議会にいなかったので,問題を明確にすることはできませんでした.プログラムは,正式な数学的正しさの専門家による評価の必要性を念頭に置いて作成されたものではないので,これが大きな妨げとなりました.

証明の理論的部分に含まれるアイデアを完全に実装する完全に新しいプログラムを「ゼロから」作成することは可能です.しかし,この可能性は,専門家のレフェリーグループにとって耐え難いものとして却下されました.これは,他の科学分野のプロジェクト(土星へのカッシーニ宇宙探査機など)を完了させるために必要な労力の価値を認めている数学者はほとんどいないからです.

レフェリーの過程で,実行される計算は非常に具体的で特定の問題に特化しているため,引き出された結論を他の同様の問題に適用することはほとんどできないことが明らかになりました.

特に,ケプラーの問題は,互いにさまざまな相互作用を起こすランダムな形状とサイズの異なる物体の大規模なシステムの最小静止エネルギーを決定する問題と密接に関連しています.このような最小化の問題の例は非常に多く,個別の数値手法を開発してコンピューターで計算するので,1つづつが別物でこの分野の理解は不可能です.数学的モデリングを除いて,これらすべての問題を解決する他の方法がない場合,これらの問題のほとんどはそれほど興味深いものではありません.ただし,ケプラーの問題自体は,エラー修正コードの理論などの重要な他のいくつかの問題と関係があります.

コンピューター支援の良い面としては,コンピューターが純粋な数学者を面倒な日常的な計算から大幅に解放したことです.これは,いくつかのカテゴリに分類できます.数式処理は,絶望的に長い計算を変換することができ,さまざまな分野で広く使用されています.カオスの力学系の研究は,数値実験なしには進展しなかったでしょう.カオス現象の存在が19世紀の終わりにアンリポアンカレによって発見されたのは事実ですが,主題を理解と進歩は,コンピューターの開発を待たなければなりませんでした.自己結合行列と非自己結合行列のスペクトルの振る舞いの大きな違いは,数値実験の結果として明らかになり,現在、それ自体が厳密な数学の分野として研究されている疑似スペクトルの新しい分野を生み出しました.特に高次非線形微分方程式の分野では,コンピューター法のみが解の存在を証明することを可能にしました.

石積みとアーチ橋

写真の石垣は美しいですね.石積みの改修は番号をふって再現するのでパズルのようです.素晴らしい石工の技です.
ボロノイ分割のような網目で各所の釣り合いの条件を書いて計算できたとしても物づくりの役にたちません.石工の技術は直感と身に着けたバランス感覚そのものです.ガラス職人は熔けたガラスの粘性の手応えに反射的に反応し細工をします.機械の設計でも常識や力学感覚が身に着いていない技術者の計算まかせはとんでもなく危うい.
私たちは,幼児の頃に,積み木をしたり水遊びや泥団子などで遊び,物の柔らかさや脆さ,それを扱うバランス感覚,力学感覚を自然に身に着けました.物理や数学を学ぶよりもこの常識を身に着けることはとても大事なことだと思います.壊れやすいものを不器用に扱う若者が増えています.もっとも,理論と器用さは関係ないようで,教授でも子供より不器用な人はたくさんいます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■通潤橋のアーチと通潤橋のアーチの数学に関し,私はnoteに以下の2つの記事を書きましたがあまり目につかなかったようです.
https://note.com/sgk2005/n/n5eccdef5315a
https://note.com/sgk2005/n/n4356f184665d
リンク切れになっているウエブサイトやブログもあるので,再度,概要を紹介をしましょう.

表紙の写真は,石積みの美しい橋,通潤橋(熊本県,山都町)です.アーチの形は懸垂曲線,放水の軌跡は放物線です.逆さにした懸垂曲線のグラフをアーチに重ねてみました.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

鎖の両端を持ち水平に広げたときに,鎖が作る曲線が懸垂曲線です.鎖の各部分は重力で下向きに引かれ,鎖の一つ一つの繋ぎ目はどこも引張あって釣り合っています.この形の上下をひっくり返すとアーチができ,アーチの各部に働く力はすべて圧縮力になります.アーチには圧縮力しか働きません.石たちは自分の重量で互いに押し合い,圧縮され引き締め合います.接着されていない石積みは引張力ではバラバラになりますが,自分の重量で圧縮され良く締まります.石が割れると困りますが,石は圧縮力には強いのです.すべての荷重がかかるアーチの根元には,大きな水平反力が必要ですが,山に挟まれた峡谷などは建設するのに最適な立地条件です.


■私が通潤橋(熊本県上益城郡山都町)を訪れたのは,2007年10月のことでした.22日は,午前中に潤徳小学校3,4年生36人に万華鏡づくりの授業,午後は先生方と人形浄瑠璃を観劇しました.
最近の通潤橋の様子は,以下のウエブサイトにでています.2016年の熊本地震で被災し,修理工事中だった2019年5月にも豪雨で石垣の一部が崩落しましたが,2020年3月までに工事を終え,翌4月から4年ぶりに放水を再開しているそうです.
通潤橋の近況ですが,山都町のウエブサイトよりhttps://d38mttjwbmxw55.cloudfront.net/files/6c2868f8-675e-4dac-b6f3-079b3d5bf224_l.jpg?1585873042

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

阿蘇山の南側のこの付近の地形は,島のように台地があり,台地から台地への移動が大変で,平家の落人が隠れ住むのに好都合だったようです.
台地(白糸台地)に農業用水を引くのが大変です.
水は台地のがけ下に汲みに行かなければなりません.
時の惣庄屋「布田保之助(ふたやすのすけ)」は,白糸台地に水を引くための水路橋”通潤橋”を,肥後の石工たちの技術を用いて1854年に建設しました.通潤橋は,石造りアーチ水路橋で,長さ75.6m,高さ20.2m,幅6.5m.
橋の上部にサイフォンの原理を応用した3本の石の通水管が敷設されています.

◆通水管
長さ約127m.石をくりぬいた1尺(30cm)四方の函渠(圧力のかかる管水路).管と管の繋ぎ目には,振動吸収と漏水防止のための漆喰(しっくい)が塗られている.さらに,通水管には5~6ケ所に地震対策のための板(緩衝材)を挟んでいる.
通潤橋は両側台地より低いので,サイフォンの原理で出口で水を押し上げています.通潤橋の高さから流入側台地は7.5m高く,流出側台地は5.8m高い.
通潤橋は,今でも周辺の田畑を潤しています.
放水は,通水管に詰まった堆積物を取り除くために行うものです.
「通潤橋史料館」 に行くと,どのようにアーチ石橋を施工したかわかります.川の中に写真のような木枠を大工が組んで石工が石を置きました.
アーチ橋の高さを台地の高さまで上げられなかった理由は,
この木枠をこれ以上の高さにする木材がなかったためという事です.
石橋の木枠を外す最終段階は,橋の中央に白装束を纏った布田翁が鎮座し,
石工頭も切腹用の短刀を懐にして臨んだといいます.

写真に見えるアーチ曲線を型どっている石の並びについて話しましょう.
アーチの頂点にある石を”かなめ石”と言います.アーチ状に一列に並んだ石達は自分の重さで互いに締め付けあい安定になっておりセメントなど不要です.それでも下の木枠を外すときは,とても心配で責任者は命がけだったでしょう.布田翁も石工頭も命がけで臨んだのがよくわかります.
近年の熊本地震でも残ったのは,その堅牢さ(石の配管の修理をしたと聞きます)の証明です.
2007年当時の「通潤橋資料館」のウエブサイト資料がなくなりましたので,http://www.kumamotokokufu-h.ed.jp/kumamoto/isibasi/ab_sakus.html
のウエブサイトより以下の説明図を引用しました.

 

 

■人形浄瑠璃
http://seiwabunraku.hinokuni-net.jp/wp-content/uploads/img/about/s_06.jpg
人形浄瑠璃は,清和文楽館で観賞しました.山都町の人形浄瑠璃の始まりは,江戸時代の嘉永年間(1850年ごろ)で,山都町(旧・清和村)を訪れた淡路の人形芝居の一座から,浄瑠璃好きな村人が人形を買い求め,技術を習ったのが始まりといいます.
清和文楽は農家の人々が農業の合間を縫って練習や公演を行い伝承されてきました.良い話です.江戸時代の庶民の文化の高さに感激しました.三人で一体の人形を操ります.首(かしら)と右手を操る「主遣い(おもづかい)」,左手を操る「左遣い」,足を操る「足遣い」です.人形も触らしてもらいました.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■空き缶を積んで作ったアーチで実験

私は真剣に積んだのですが,どうしても缶5個のアーチまでしかできませんでした.5個の缶で缶同志の接点は4点.すべての接点で同時につり合っていなければなりませんから,作るのがとても難しい.もし,6個以上でアーチが出来た方は新記録です.ご一報ください.
缶の周りにラップを巻いていますが,摩擦力を増すためでアーチのつり合い条件を変えるものではありません.

 

5個の空き缶を積んで作ったアーチです.左右対称ですから,左半分だけ解析しましょう.缶の中心を①,②,③と名づけます.すると,缶同士の接点は,線分①-②の中点と,線分②-③の中点にあります.線分①-②,線分②-③には,それぞれ圧縮応力f_{1}, f_{2}があります.すべての缶は点で接触しており,モーメントは考える必要がありません(トラス構造).線分①-②,および線分②-③の水平となす角度をそれぞれα,βとしてつり合いの式を立てます.各缶には下向きに力gがかかっています.つり合いの式は,①点,②点,③点でx, y成分ごとに書きます.

 

$$ f_{1}, f_{2}, r_{x}, r_{y}, g $$が,ゼロででない解であるための必要十分条件は,行列式がゼロとなることでした.この行列式を計算すると,
$$ tanβ=3tanα $$ の関係が得られます.
この釣り合いの結果は,①から測った曲線に沿った距離$$ s $$と,その点の接線の傾きtanθが比例する $$ tanβ/3=tanα/1=tanθ/s $$の関係(懸垂曲線で導ける)と一致します(下図参照).

 

懸垂曲線のグラフ(赤)と放水軌跡のグラフ(緑)を表紙の写真の上に重ねました.ご鑑賞ください.アーチの形とアーチの屋根の左右の石の詰め物を見て,この橋の安定なバランスに感動するなら,あなたは常識の力学感覚が身に着いていると思われます.
 

オイラーの定理とトポロジー

■球面上のオイラーの定理
球表面の3角形メッシュに関して,オイラーの定理は T-E+V=2 です.
(ここで,3角形(面)の数 T,エッジの数 E,頂点の数 V)


球表面を3角形メッシュに分割したとき,すべての3角形のすべての角度の総和は,2πVになります(すべての頂点のまわりに2πがあるから).

球面3角形の面積(球面過剰)
球面3角形が半径1の球上にあり,例えば,頂点がx軸,y軸,z軸にあれば,各頂点の角度θ1,θ2,θ3は,それぞれ,π/2なので,内角の総和は,θ1+ θ2+ θ3=3π/2です.

 

 

 

 

 

 

 

 

 


もちろん,ユークリッド幾何学では,いつでも,θ1+ θ2+ θ3=πです.
一般に,内角がθ1,θ2,θ3の球面3角形の面積は,θ1+ θ2+ θ3-πで定義されます(この量は球面過剰とよばれます).


この例では,球面3角形の面積は球全表面の1/8で,球面3角形の球面過剰は3π/2-π=π/2ですので,全球表面は確かに4πになります.


■球面上のオイラーの定理のルジャンドルの証明
球面上の3角メッシュ全体で,次の面積の関係が成り立ちます.
(3角メッシュの角度総和)=(球面3角メッシュの面積総和)+πT
すなわち,2πV=4π+πT  → V=2+T/2

他方,3角メッシュ全体でエッジの数を2重に数えると,→ 3T=2E

ゆえに,T-E+V=T-3T/2+(2+T/2)=2 となりオイラーの定理が証明された.

3角メッシュではなく,多角形の面からなる多面体についてもオイラーの定理は成立します.多面体の面の数F,エッジの数E,頂点の数Vとして,球表面でのオイラーの定理は 
F-E+V=2

■多面体の不足角
多面体の頂点の不足角は,2πー(その頂点に集まる面の内角の和)
例えば,立方体の場合は,1つの頂点で,2πー3π/2=π/2ですから,立方体全体では4πとなります.これは,球と同じトポロジーの面上の任意の多面体で成り立ちます.
多面体全体の全不足角は,いつも4πであることの証明.

多角形F1,F2,・・・,Fkのk個の面で構成される多面体を考えましょう.これにオイラーの定理を適用し,エッジ数と頂点数を計算しましょう.
面FjはNj個のエッジとNjの頂点がある(Nj多角形)とします.
2E=N1+N2+・・・+Nk
V=E-F+2=(N1+N2+・・・+Nk)/2-k+2 → 2V=(n1+N2+・・・+Nk)-2k+4

多面体全体の全不足角Θは
Θ=2πV-[(N1-2)π+(N2-2)π+・・・・+(Nk-2)π]=
 =π(2V-(N1+N2+・・・・+Nk)+2k)=4π
定理  任意の多面体全体の全不足角は4πである.


(参考)
Nrich Article by Alan Beardon,Published December 2000,February 2011.

ライフゲーム

Kvantikの数学コンクールの問35(2012-07)に,次の問題を見つけました.

■問
1から始まる次の数列の規則がわかりますか?数列の規則を理解し,続く数字を書きなさい.
この素晴らしい数列は,有名な数学者ジョン・コンウェイによって発明されました.

1,
11,
21,
1211,
111221,
312211,
13112221,
1113213211,
31131211131221, …

(ヒント)各項は,数値というよりも記数法と見なした方が良いでしょう.
それは,この数列を作ったのがコンウェイだからでもあります.

■ジョン・ホートン・コンウェイ (John Horton Conway) はライフゲーム を1970年に考案したイギリスの数学者です.プリンストン大学.新型コロナウイルスで,2020年4月11日に死去(82歳)しました.
https://www.princeton.edu/news/2020/04/14/mathematician-john-horton-conway-magical-genius-known-inventing-game-life-dies-age


■生命の誕生,進化,淘汰などのプロセスを簡易なモデルで再現したシミュレーションゲームで有名です.コンウェイは,「セル・オートマトン」を実証するためのコンピュータを使った実験プログラムとして,生態系をシミュレートした「ライフゲーム」を開発しました.
「近辺が4つ以上のセルで埋まると,混みすぎて死亡」「近辺のセルが1つ以下になっても孤独で死亡」といった,簡易なモデルで生命現象や結晶成長などの過程を再現した研究です.


ライフゲームシミュレータ
https://algoful.com/Archive/Algorithm/LifeGame

数学と基礎科学-第4回数学月間懇話会より-

                                            谷 克彦 
科学の発展局面で,それが必要としている数学が用意されていたというのは,ドラマティクです.そのような脚色をした本も多いようです(分献1).しかし,必要な数学が手品のように出現したわけはなく,その数学の源泉にはやはり語るべき背景があります.
科学の発展と平行し,それに必要な数学が開拓されるのは興味深いものです.数学と基礎科学は,密接に牽引しあいながら発展してきました.R.クーラントは,”物理数学の方法”の序文(1924)で,次のように述べています.「...多くの数学者は物理学その他の分野との関連を見失い,一方,物理学者は数学者の関心と問題意識,その方法と語法が理解できなくなっている.これでは,科学の発展の流れは次第に細かく枝分かれし水量を失い,ついには干上がってしまうであろう...」(文献2)
数学月間の趣旨は,数学が種々の分野に影響を与え,「数学が社会を支えている」ことを,専門家でない一般の人に説明することです.数学嫌いの一般の人々が,数学は知的遊戯で自分の生活には関係ないと思っているとすれば,その誤解を解かねばなりません.
数学が基礎科学を支えているのですが,それにもまして,その数学は基礎科学を源泉にして生まれたことを,ここで述べたいと思います.
中谷宇吉郎は随筆”科学と文化”(昭和12年)のなかで,科学の普及に役立つ文章作法に4つのタイプを挙げ,そのうちでも,テーマを不思議と感じた所から,今までに知られた事実を列挙することを特に推奨しています(分献3).この手法に則りこの小論を進めようと思います.

1. 外界を知る手段としての数学 

我々は感覚(センサー)により,森羅万象を知ることができます.しかし,森羅万象を動かしている外界は,感覚では知り得ず数学の力により初めて知ることができます.始めに,外界についてのクラインの言葉を引用します.「感覚では知り得ない外界がある.数学の目標は,感覚では知り得ない外界を知ることである.そこから予想もしなかった知識,時には感覚と矛盾するような知識が引き出される.それは物質界の知識の精髄であり,感覚をはるかに凌駕している.」(文献4)
例えば,天体の運行を調べて,それを支配している外界の原理を知るには,数学が必要でした.これは,ニュートンにより完成されます.すなわち,運動方程式と万有引力の式から,2体問題ならすべての運動が説明できます.巨大な宇宙の星雲の運動から,分子の集合である気体の圧力などの巨視的性質まで,宇宙のあらゆる力学現象(粒子間の相互作用は無視)を説明し,ニュートン力学と電磁気学(マックスウェル方程式)の2つのパラダイムにより,森羅万象の外界が解明できたと思われ19世紀が終わりました.

2.ニュートンの解明した外界 

ニュートンの時代に遡ってみましょう.ニュートンがプリンキピアを刊行したのは,1687年,44歳のときです.若き日のニュートンは,1676年2月5日のフックへの書簡に,「私が,ほかの人たちよりわずかでも遠くを見たとすれば,それは巨人たちの肩の上に乗っているからです」と書いています(注1).巨人たちとは,ガリレオを始めとする先人の研究や数学の蓄積のことで,これらが彼の研究の基礎になったと言っているのです. 
しかし,ニュートンの力学に必要だった微積分が用意されていたわけではありません.自分自身で開拓せねばなりませんでした.ニュートンより少し早いと言われますが,独自にライプニッツも同等な業績を上げます.日本でも関孝和がおります.遅かれ早かれ,まさに微積分の扉が開かれる時代の流れではありました. 
ニュートンのプリンキピアは,「観測できる事物の因果関係を示す」という立場を堅持しています.引力がなぜ発生するかは言及せず,従って仮説は何もありません.これが,今日の科学的方法論の手本であります. 
ポアンカレは,「科学と仮説」で,「数学的理論は事物の本性を我々に解き示すことを目的とするものではない...そのただ一つの目的は実験が我々に知らせる物理法則に定まった場所を与えることである」(第12章,光学と電磁気)といっています(文献7). 
数学と自然科学の違いは,数学は観測事物にこだわらず,どのような仮定から数学的理論を構築してもかまわぬ所にあります.例えば,「引力が距離の逆3乗に比例する」として理論を構築することも価値があります.非ユークリッド幾何学は数学として構築されましたが,今日の宇宙論では実在性をおびております. 
------------------- 
(注1) 
この時代の科学者達は,たいへんまめに文通しています.その上,論文公開のシステムは不完全であったので,揉め事が起こりがちでした.特に,ニュートンは自分が得た結果の大部分を秘密にしており,誰かに督促されるか,他の人が同じことを見出したときになってから,公表に踏み切ったといいます.そして自分の先取権が認められなかったり,批判されたりすると逆上したそうです.(文献5)
フックは,ニュートンより7つ年長で,王立協会の実験主任,後ちに書記でした.協会の書記は,外国の科学会とつながりを保つ要職です.他の協会の書記に手紙を書き,関心のある人々に情報を伝えてもらうのです.
ニュートンは,1672年に,”光と色”の論文を王立協会の雑誌に発表します(文献6).この内容をフックが批判したことから,フックを嫌うようになります.
プリンキピア発表後,力の逆2乗法則は,ニュートンに文通で伝えたものであるとフックが主張し,因縁の論争が再度起こります.フックはバネの伸びと力が比例するというフックの法則で有名ですが,やはり大変多才な人です.1679年のフックからニュートンへの書簡には,惑星の運動を,接線方向と中心方向の運動の合成とする見方が示されています.しかしながら,これらの規則から生じる軌道の証明には,微積分が必要で,ニュートンの業績の偉大さは.そこにありましょう.フックは背中の曲がった背の低い人だったそうで,ニュートンの書簡にある巨人の肩に乗るとは,私は肩に乗れたが,フックには乗れないだろうとの皮肉が含まれているということです.ニュートンは,フックの死後の1703年に,12代目の王立協会会長に就任するや,フックの肖像や実験装置などの業績をすべて消し去ったと言われています.
なお,「巨人の肩に乗った小人は遠くを見ることが出来る」という名言自体は,12世紀のシャルトル(仏)のベルナールの言葉として,ニュートン時代の知識人には知られていたそうです(文献1).
--------------------- 

3.時間と空間の計測

さらに,ニュートンより前のガリレオ(イタリア,1564-1642年)の時代に遡りましょう.空間と時間の計測は最も基本的なものです.空間の測量は,紀元前に幾何学とともに発達しました.しかし,時間の計測は,地球の日周運動を利用した日時計,あるいは,水時計や砂時計でした.その後,ロウソク時計,線香時計などが生活に現れ,やがて,歯車やゼンマイを用いた機械時計が作られるようになります.しかし,正確な時計は,18世紀の振り子時計まで待たねばなりません.
ガリレオの”振子の等時性”の発見は,エポックメーキングです.正確な時計を持たなかったガリレオ以前の時代には,正確な観測に基づいた運動の研究は不可能だったわけです.振り子を時計に取り入れたのは,ホイヘンス(オランダ,1656年)で,1675年には,ホイヘンスは ヒゲゼンマイのついたテンプ時計も製作し,フランスで特許取得しました(フック(英)も考案した(1664年)と主張します).これが,「世界初の実用的な機械式時計」の始まりです.
ガリレオの発見した”振り子の等時性”は,振り子の周期が,振り子の長さ$$l$$の平方根にのみ比例し,振幅や重りの重さによらないというものです.周期は$$T=2\pi \sqrt{l/g}$$と表せ,現在では$$g$$は重力の加速度で地球の場所により,僅かに異なることがわかっています.正確には,”振り子の等時性”は,振幅が小さいときに成り立つ線形近似です.振幅が大きくなると振り子の周期は長くなります.
$$T=2\pi \sqrt{\displaystyle \frac{l}{g } }\left( 1+\displaystyle \frac{1}{4}sin^{2}\left( \displaystyle \frac{\theta _{0 } }{2} \right) + \cdots \right) $$,ここで$$\theta _{0}$$は振幅の半分の角度.
普通の振り子の軌道は,円弧ですが,サイクロイド曲線に沿って動く振り子は,振幅が大きくても小さくても周期は不変です.ホイヘンスは,これを利用したサイクロイド振り子時計も作りました(図1).ホイヘンスは,振り子時計の本と光の本を書き,微積分の先駆的研究もし,ニュートンと重なる時代を生きました.

 

 

 

 

 

 

 


その後の大航海時代には,海上で正確に経度を知る方法が必要になりました.船の経度は,船の時刻と経度のわかっている地点の時刻の差から求めます.地球は24時間で一回転するから,1時間で経線15度の差です.
1714 年,イギリス議会は「経度を精度良く決定できる方法」に2 万ポンドの懸賞を出しました.時計技師ジョン・ハリソン(イギリス)は,30年近くも試作を繰り返し,苦心の4号機H4はポーツマスからジャマイカへの81日間の航海を済ました(1762年1月19日)に,時計から求めた経度と現地の天文観測から求めた経度との誤差が5秒という議会の要求(2分)をはるかに上回る成績を収めました.
彼は,今日の懐中時計にも使われているグラスホッパー脱進機構を発明しています.(文献8)
-------------------------- 
(コラム) 現代の標準時計--クォーツ時計,原子時計(文献9)
切り出した水晶(クォーツ)の両側の面に電圧をかけると結晶は変形します.逆に両側から力をかけると両端に電圧(分極)を生じます.この性質を圧電効果といいます.圧電効果は,結晶構造に対称心がある場合には生じません.なぜなら,結晶中のいかなる方向に電圧(分極)ベクトルが生じても,対称心に矛盾するからです.
所定の方位で所定の厚さに切り出した水晶片の両面に交流を印加すれば,水晶片は振動します.水晶片の共振の起こる周波数で安定な発振器を作ることが出来ます.水晶振動子(通常,32.768kHz=$$2^{15}$$Hzの水晶音さ)を用い,精度の高いクオ-ツ時計が作られており,実際の標準時計もこれです.
現在の時間標準は,セシウム($$^{133}Cs$$)の原子時計と定められました.原子時計とは,水晶時計を含む複合システムで,水晶発振器の周波数の校正標準に原子の状態遷移の周波数を用います.
セシウム原子は,最外殻の電子が1つ(水素原子型)なので,解析的にエネルギー準位の計算が出来ます.磁場を印加して縮重している準位を分離させた状態で,基底状態から励起状態への遷移を起こさせると,マイクロ波領域の9.192631770GHzのエネルギーで遷移します.そこで,水晶発振器により,この近傍のマイクロ波を発生させ,セシウム原子による吸収が最大になったときの水晶発振器の周波数を,9.192631770GHzであると校正しています.
ちなみに,GPS衛星は,ルビジュウムの原子時計を積載しています.最近はMEMS(Micro Electro Mechanical Systems)技術により,ルビジュウムの腕時計の開発も進んでいるそうです. 
長さの標準は,地球の経線の1/4を$$10,000m$$と定めたのが始まりでした.しかし,1983年に,真空中の光速でこれを定義することになりました.1$$m$$の定義は「光が真空中を1/299,792,458秒間に進む長さ」です.長さの標準にも時間を基礎に置くこととなったのです. 
------------------ 

4. 最小作用(モーペルテュイ)の原理,あるいはオイラーの原理(注2)

モーペルテュイは,「始状態から終状態への運動経路には,作用と呼ばれる積分量が定義でき,作用が最小となる経路が実現される.これが物理学のみならず,万物の運命を決める外界の原理である」という着想-”最小作用の原理”(1744年)を得ました.たしかに,現実の運動では,しばしば作用が極小になりますが,正確には,「作用が停留値をとる経路が実現する」というのが正しいことが後にわかります.
オイラーは,モーペルテュイの作用量の定義を積分に拡張し,最小作用の原理をさまざまな力学課題に適用できるようにし,”最大,または最小の性質をもつ曲線を見出す方法”(1744)を発表しました.これを読んだ若きラグランジュは変分法を発明し,オイラーに手紙(1755)を送ります.オイラーは,ラグランジュの方法を採用し,”変分法の原理”(1766)を出版します.変分法で導かれる運動方程式が,オイラー=ラグランジュ方程式といわれる所以です.その後,ラグランジュは,”解析力学”(1788)を出版します.その序文に「本書には図は一つも出てこない....所定の手続きに従い進める代数計算だけだ....」と高らかに宣言します.こうして,複雑な力学問題も解ける一般化された手法が確立されます(注3).
変分法は,19世紀のハミルトン,ヤコービにより完成に至ります.ハミルトンは,系の状態を表示する空間に,座標と速度を座標軸とした相空間を導入し,「作用量は最小化や最大化するのではなく,停留化する」ことを示しました.
1つの物体は,座標$$x, y, z$$と速度$$\dot{x}, \dot{y}, \dot{z}$$を変数に持ち,その状態は6次元の空間の1点で表現できます.同様に,$$N$$個の物体よりなる系は,$$6N$$次元の空間の1点で表現できます.この空間を相空間といいます.系のエネルギーを$$H(x_{i}, y_{i}, z_{i}, \dot{x}_{i}, \dot{y}_{i}, \dot{z}_{i}, )$$とすると,エネルギーが保存される運動の軌跡は,相空間内の超平面$$H(x_{i}, y_{i}, z_{i}, \dot{x}_{i}, \dot{y}_{i}, \dot{z}_{i})=h$$に含まれます.超平面に描かれる閉曲線に沿った”作用”を停留化する曲線が軌道となるわけです.解けるかどうかは別として,周期解(軌道)が存在することは,証明(1986年)されています.(文献10)
最小作用の原理の理解には,ホイヘンスの光の波動説の説明が参考になります.ホイヘンスは,空間は見えない媒質で満たされており,光は波紋(球面波)が拡がるように伝わると考えました.波面上の各点はまた新たな波源となり,そこを中心として新たな波紋が広がって行きます.生じた無数の波紋は重なりあったり打ち消しあったりの結果,新しい波面ができます.これは多数の波面の包絡面で,この面に垂直な方向に光は進むと考えます.この様なプロセスで決定された方向は,作用を停留値にするものです.

量子力学の世界の運動には,軌道の概念がなく,電子などはランダムに動き回ります.しかし,我々の日常(マクロ世界)では,電子の運動でも軌道はあります.ここで,マクロ世界でも物体はランダムな経路をとれるとしてみましょう.あらゆる経路に実現可能性があるが,各経路の実現率は,それぞれの確率に従う.これらの確率は,波紋が伝播するときのように互いに干渉し合い,その結果として現実の経路が決まってくると言うわけです.最も確からしい経路は,近くからの干渉の最も少ない経路であって,これがちょうど作用積分を停留化するもののようです.「ファインマンの原理」(文献10)
運動方程式が解ける問題を”可積分な問題”といいますが,実際は,”非可積分の問題”がほとんどです.ニュートン力学は,可積分で安定な周期軌道が解になる特殊な範疇を扱っています.一方,非可積分の問題からは,カオスが生じます.1つの軌道は,1本の因果列の存在を意味しています.単純な世界は,今日の現象(原因)1が明日の結果1につながり,今日の現象(原因)2が明日の結果2につながる世界ですが,一般には,今日の現象のすべてが,明日のある結果1の原因になりうる複雑な世界です.バタフライ・エフェクトという映画(注4)があったようですが,今日,上空で蝶が羽ばたいたことが,遠い未来に竜巻きを起こす原因の一つになるかも知れません.「風が吹けば,桶屋が儲かる」世界です.この世界は,独立な因果列はないので,周期的な軌道にはなりません.コンピュータを用いて,すべてのステップを計算していけば,結果を予測できるのですが,遠い先の結果は予測もつかないものになります.「最小作用(停留値)の原理」は,ニュートン力学も含むが,このようなカオスも含む原理であります.
-------------------------------- 
(注2)
最小作用の原理の起源といえば,1696年のスイスの数学者ヨハン・ベルヌーイの”最速降下曲線”問題に言及せねばなりません.「決まった二点の間を,始点から終点まで玉が一番速く転がることが出来るような曲線を求めよ」という問題です.ライプニッツの提案により,ベルヌーイはこの問題を海外の数学者にも公開することにしました.ベルヌーイは,ライプニッツの友人で,ニュートンとライプニッツの微積分の先取権論争にも加わり,ライプニッツを応援しています.きっと,ニュートンを困らせてやろうと思ったのでしょう.ところがこの問題を受け取ったニュートンは,「当時,造幣局の仕事で忙しく疲れて帰宅したが,問題が解けるまでは寝なかった.とは言っても朝4時までには解けてしまった」と日記に書いています.そして,解答を匿名で返したということです(文献1,5).
 
最速降下曲線の答えは,円板の縁(1点)に目印をつけ,直線上を転がしたときに,目印が描く”サイクロイド曲線”です.ホイヘンスが振り子時計に用いたあの曲線です. 

 

 

 

 

 

 

 

 

 


(注3)解析力学の手順 
力学系を記述するラグランジュ関数 を求め,ラグランジュ関数の作用積分が停留値をとる条件を変分法で解くと,オイラー=ラグランジュ方程式が得られます.簡単な系のラグランジュ関数は,(運動エネルギー)-(位置エネルギー)の型になりますが,複雑な系では,位置エネルギーが速度に依存することもあります. 
ラグランジュ関数は,電磁場に置かれた荷電粒子にも定義され,光(電磁力学)も力学も統一して扱える原理であります.変分原理から,ニュートンの運動方程式は導出されます.その上,変分原理はニュートン力学よりさらに一般化された外界の原理です.(文献11)
20世紀に入り,量子力学が誕生するときにもこの原理が手がかりになりました.
光や物体の運動が,作用積分を停留化するような,手の混んだ経路を選択するというのは,何と不思議なことでしょう.

(注4)

過去に戻れる能力を持ったエヴァンは,過去に戻りやり直すことにする.しかし,過去に戻り選択肢を変えて始めた人生は,どれも,自分を含め自分が愛する誰かが,幸せではないものだった.
-------------------------------- 

5. 結晶の世界

結晶は,原子や分子が規則正しく並んでできています.水晶の結晶構造を図3(a)に示します.簡単のため$$c$$軸に沿って投影した平面図にしました.大きい丸は,シリコン原子,小さい丸は酸素原子です.図3(a)を見ると,基本タイルで,平面が隙間なく張り詰められているのがわかります.実際の結晶は,基本ブロック(平行6面体)を隙間なく積み重ねた3次元に周期を持つ構造です.結晶の基本ブロック(単位胞といいます)は,一辺のサイズが$$nm$$の程度なので,その実在を観測したのは,X線の発見(レントゲン,1895年)以降になります.発見まもないX線は,波長の短い($$nm$$オーダー)光らしいので,空間に周期を持つ結晶が回折格子になるだろうとラウエは考えました.これが有名なラウエの実験(1912年)です.結晶が持つ対称性は,その回折像の対称性に反映されるはずです(”因果律”図3).逆に,X線回折像から結晶構造を推定できるわけで,その手法は,ブラック親子により開発(1915年)されます.この時点で,結晶構造解析に必要な,空間群タイプ230種類の数え上げは,「さあ,お使い」とばかりに準備されていました.何とドラマティックでありましょう.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

しかしながら,ここで空間群を突然出現させるのは演出にすぎません.それが生まれるまでの背景を辿って見ましょう.結晶は単位胞が積み重なった「デジタル世界だ」という推論は,18世紀後半に遡ります.(文献12)
デンマークの鉱物学者ステノ(1669年)が,水晶で発見して以来,種々の鉱物結晶の外形の研究が積み重ねられ,「同一物質の結晶では,対応する面と面のなす角度は一定不変である」という法則(1772年)を,フランスのリスルが確立します. 
アウイ(1783年)は”有理指数の法則”を見出します.方解石は劈開が顕著で,どこまでも同じ形の平行6面体に割れます.これなどは,単位胞の存在や,結晶格子の存在を思わせます(図4).結晶が単位胞の積み重ねでできるデジタルの世界ならば,観測されるどの結晶面も,格子点を載せた平面だから,結晶面の座標軸上の切片の比は,必ず整数比になるはずです.これが有理指数の法則の心です.結晶面の記載に用いるミラー指数は(1839年)に考案されました.これらの観測事実から,結晶は単位胞が並んだデジタル世界でなければならないと推論されました.
基本タイルを点で表すと,結晶構造は点の配列になり,このような点の配列を格子といいます.つまり結晶はデジタル(離散量)の世界です.格子の対称性タイプの数え上げ14種(ブラベー,1848年)がなされます.また,結晶外形の対称性から,結晶点群の数え上げ32種(ヘッセル,1830年)がなされました.
結晶点群と格子(並進群)の組み合わせで,結晶空間群が生成されます.1890~1894年に,フェドロフ,シェンリース,バーローがそれぞれ独立に,3次元の空間群230種類を数え上げました.(文献13)(注5)
--------------------- 
(注5)
結晶空間群には,並進群が正規部分群として含まれています.
基本タイルを点にしてしまうような写像なら,空間群に含まれる格子があぶりだされます.格子の周期で並進した物は同値とみなすならば,空間に広がった結晶構造や平面にひろがった繰り返し模様は,1つの単位胞の中に集約され,空間群は結晶点群に準同型となります.(文献13,14)
--------------------- 

6.おわりに 
「科学者がその肩に乗ろうと懸命に探し求めた巨人は,とうの昔に死んだ数学者だった.しかし,数学者の側からみれば,自分が科学者の肩の上に乗っていた,などということはまずありそうにない」(文献1)という見方もあります.しかし,私は,新しい数学の誕生は,その背景に,科学の発展があったことに注目し,大きな過去の世界からこの小論への写像を試みました.論点を浮き彫りにするには,準同型写像です.同値と見做そうとする項目は束ねて,写像の核にすると,大きな世界にあった特徴の一つが浮き上がります.写像の核は,数学自体にしたので,数学と他の基礎科学の関係が見えたでしょうか.この先,”線形写像の世界”を訪れる予定でしたが,紙数が尽きました.これに関しては,拙著(文献14)をお読みいただけると幸甚です.
――――――――――― 
参考文献 

1.物理と数学の不思議な関係,マルコム・E・ラインズ(青木薫訳),ハヤカワ文庫, 2004 
2.数理物理学の方法,クーラン,ヒルベルト(斎藤利弥監訳),東京図書,1985 
3. 中谷宇吉郎随筆集,樋口敬二編,岩波文庫,1988 
4.何のための数学か,クライン(雨宮一郎訳),紀伊国屋書店, 1987 
5.古典物理学を創った人々,エミリオ・セグレ(久保亮五,矢崎裕二訳),みすず書房,1992 
6.http://trailblazing.royalsociety.org/ 
英国王立協会は,2010年11月30日で創立350周年になります.これを記念し,17世紀から協会が発行しているPhilosophical Transactions誌に掲載された論文の科学史的に重要ないくつかが,このwebsiteで公開されています. 
7. 科学と仮説, ポアンカレ(河野伊三郎訳),岩波文庫, 1966 
8. http://www.nmm.ac.uk/harrison 
9.尾上守夫,私信 \\
10.数学は最善世界の夢を見るか?,エクランド(南條郁子訳),みすず書房, 2009 
11.理論物理学,カンパニエーツ(山内恭彦,高見穎郎訳),岩波書店, 1964 
12.結晶の話,伊藤正時,斎藤喜彦,倍風館,1984 
13.結晶の幾何学,谷克彦,数学教育p.41-46,明治図書,2003.11 
14.物理と工学で使う行列と固有値,谷克彦,技術評論社, 2010 
----------------------------------- 

「数学文化」,NO.15(2010),p.79-87 より

 

大航海時代を支えた正確な時計

数学と基礎科学,谷,「数学文化」p.79-87,No15 (2010)より抜粋


以前の号に,現代の標準時計 を掲載しています.現代の標準時計は,水晶発振子と原子時計です.長さの標準は今日では「メートル原器」ではなく,真空中の光速で定義します.長さを光速で定義するには正確な時計が必要ですが,原子時計はそのような長さの定義に使用されています.GPSが位置を割り出すときにも正確な時計が活躍しています.


■今回の記事は,ガリレオの時代から始めます.
時間と空間の計測は最も基本的なものです.空間の測量は,紀元前に幾何学とともに発展しました.しかし,時間の計測は,地球の日周運動を利用した日時計,あるいは,水時計や砂時計から始まりました.その後,ロウソク時計,線香時計などが生活に現れ,やがて,歯車やゼンマイを用いた機械時計が作られるようになります.しかし,正確な時計は,18世紀の振り子時計まで待たねばなりませんでした.ガリレオ(イタリア,1564-1642)の”振り子の等時性”の発見は,エポックメーキングです.
正確な時計を持たなかったガリレオ以前の時代には,正確な観測に基づいた運動の研究は不可能だったわけです.
振り子を時計に取り入れたのは,ホイヘンス(オランダ,1656年)で,1675年には,ホイヘンスはヒゲゼンマイのついたテンプ時計も制作し,フランスで特許を取得しました[フック(英)も考案した(1664年)と主張します].これが,「世界初の実用的な機械式時計」の始まりです.
ガリレオの発見した”振り子の等時性”は,振り子の周期が,振り子の長さ$$l$$の平方根にのみ比例し,振幅や錘の重さにはよらないというものです.
周期は  $$T=2\pi \sqrt{l/g }$$ 

と表せ,現在では$$g$$は重力の加速度で地球の場所により,わずかに異なることがわかっています.正確には,”振り子の等時性”は,振幅が小さいときに成り立つ線形近似です.振幅が大きくなると振り子の周期は長くなります.

 $$T=2\pi \sqrt{\displaystyle \frac{l}{g } }\left( 1+\displaystyle \frac{1}{4}sin^{2}\left( \displaystyle \frac{\theta _{0 } }{2} \right) + \cdots \right) $$,ここで$$\theta _{0}$$は振幅の半分の角度.

普通の振り子の軌道は円弧ですが,サイクロイド曲線に沿って動く振り子は,振幅が大きくても小さくても周期は不変です.ホイヘンスは,これを利用したサイクロイド振り子時計も作りました(図1).

 

 

 

 

 

 

 

ホイヘンスは,振り子時計の本と光の本を書き,微積分の先駆的研究もし,ニュートンと重なる時代を生きました.

その後の大航海時代には,海上で正確に経度を知ることが必要になりました.船の現在地(経度*)は,船の時刻と経度のわかっている地点の時刻の差から求めます.地球は24時間で一回転するから,1時間で経線15度の差です.*注)緯度は太陽の高度や北極星の高度からわかります.
1714年,イギリス議会は「経度を精度よく決定できる方法」に2万ポンドの懸賞を出しました.時計技師ジョン・ハリソン(英)は,30年近くも試作を繰り返し,苦心の4号機H4はポーツマスからジャマイカへの81日間の航海をすませた1762年1月19日に,時計から求めた経度と現地の天文観測から求めた経度との誤差が5秒という議会の要求(2分)をはるかに上回る成績を収めました.彼は,今日の懐中時計にも使われているグラスホッパー脱進機構を発明しています.

参考文献
http://www.nmm.ac.uk/harrison

結晶の特性の対称性

■ディリクレ胞

結晶内部は周期的空間で,その繰り返しの単位を単位胞と言います.もし,単位胞を点で表現するなら,点が周期的に並んだ格子ができます.[慣用的な述語としての”単位胞”の用法は,格子点を複数含む単位胞(面心格子,体心格子など)もありますが,格子点をただ一つ含むもの”単純格子”だけを単位胞と呼ぶことにします].

1つの格子点を原点に置き,原点と隣接する格子点とを結ぶ線分の垂直2等分面を作ります.これらの垂直2等分面で囲まれた立体はディリクレ胞と呼ばれます.ディリクレ胞には,格子点がただ一つ含まれます.ディリクレ胞の形は平行多面体で,面と面をぴったり合わせて隙間なく空間の充填ができることは,ディリクレ胞の作図の仕方から明らかでしょう.ディリクレ胞の形は,その結晶格子の対称性を表現しています.結晶格子の対称性の分類(14種のブラベー格子)や7種の晶系はディリクレ胞の対称性に基づく分類です.

■結晶の物性量(スカラー,ベクトル

結晶のスカラー特性(温度・密度など)は,測定の方位によらず1つの数にで定義されます.しかし,結晶は異方性のある物質なので,単位胞が$$10^{20}$$以上も並ぶ巨視的には均一一様であると見なせるが,充分小さいとも言える程度の体積要素を点として定義できます.

例えば,誘電体結晶(焦電性pyroelectricや強誘電性ferroelectric)は,その構造に起因する自発分極(外部電場が存在しなくても分極している)を持つ.対称性$$1$$(対称性がない)の結晶中の分極ベクトル$$P$$は,3つの独立なパラメータ:$$P_{1}, P_{2}, P_{3}$$で記述される.対称性$$m$$の結晶では,生じるベクトル$$P$$は,2つの成分$$P_{1}, P_{2}$$で記述できる.鏡映対称があると,成分$$P_{3}=0$$となる訳は,平面$$m$$内にない斜めのベクトルには鏡映同価なベクトルが必ずあるので,互いに打ち消し合うからである.回転対称軸のある対称類$$2,3,4,6,mm2,3m,4mm$$の結晶では,生じるベクトル$$P$$は,1つのパラメータ$$P_{3}$$で記述される.対称心$$\bar{1}$$ がある結晶類では,ピロ焦電性はない;すなわち$$P=0$$である.

■分極ベクトル

極性ベクトルの変換則$$r'=[D|0]r=Dr$$ を思いだそう.この法則で,$$r$$ を分極ベクトル$$P$$ に置き換え:$$P_{i}'=D_{ij}P_{j}$$ と行列形式で書く.例えば群$$2$$で,$$X_{3 }$$軸回りの2回軸(180°回転)を,以前に得た行列$$D$$のあらわな形式を用い,対称操作の行列積を行うと,以下の結果を得る.
$$\left( \begin{array}{@{\,} c @{\, } }
P_{1}' \\[0mm]
P_{2}' \\[0mm]
P_{3}'
\end{array} \right) =\left( \begin{array}{@{\,} ccc @{\, } }
-1 & 0 & 0 \\[0mm]
0 & -1 & 0 \\[0mm]
0 & 0 & 1
\end{array} \right) \left( \begin{array}{@{\,} c @{\, } }
P_{1} \\[0mm]
P_{2} \\[0mm]
P_{3}
\end{array} \right) =\left( \begin{array}{@{\,} c @{\, } }
-P_{1} \\[0mm]
-P_{2} \\[0mm]
P_{3}
\end{array} \right) $$   (1)

軸対称のため,系の180°回転後,

$$\left( \begin{array}{@{\,} c @{\, } }
P_{1}' \\[0mm]
P_{2}' \\[0mm]
P_{3}'
\end{array} \right) =\left( \begin{array}{@{\,} c @{\, } }
P_{1} \\[0mm]
P_{2} \\[0mm]
P_{3}
\end{array} \right) $$,  すなわち,  $$\left\{ \begin{array}{@{\,} c @{\, } }
P_{1}'=-P_{1}=P_{1}=0 \\[0mm]
P_{2}'=-P_{2}=P_{2}=0 \\[0mm]
P_{3}'=P_{3}=\textrm{const}
\end{array} \right. $$

さらにもう1つ,2階の極性テンソルで記述される特性例:誘電体に誘起される分極現象(図220)を考察する.結晶中の変位ベクトルDは一般には印加される電場E方向と一致しない(等方媒質では一致する).これらの極性ベクトルの成分D_{i}とE_{j} との関係は,
D_{i}=?_{ij}E_{j}  または, { { {D_{1}=?_{11}E_{1}+?_{12}E_{2}+?_{13}E_{3 } },{D_{2}=?_{21}E_{1}+?_{22}E_{2}+?_{23}E_{3 } },{D_{3}=?_{31}E_{1}+?_{32}E_{2}+?_{33}E_{3 } } }
係数?_{ij}は,誘電率テンソルの形で,べクトルD と E を結び付ける.一般に,要素の対称性?_{ij}=?_{ji} があり,9つではなく6つの独立なパラメータをもつ.これから先は,テンソル?_{ij} の行列を,簡単化して,非ゼロの独立なパラメータのみの行か列の形式に書くことにする:
{ { ?_{11},?_{12},?_{13 } },{?_{12},?_{22},?_{23 } },{?_{13},?_{23},?_{33 } } }=(?_{11},?_{12},?_{13},?_{22},?_{23},?_{33})   
?_{ij}を係数とする2次の表面
?_{11}x_{1}^{2}+?_{22}x_{2}^{2}+?_{33}x_{3}^{2}+2?_{12}x_{1}x_{2}+2?_{13}x_{1}x_{3}+2?_{23}x_{2}x_{3}=1
は,対称テンソルに一意に関係づけられている;この表面は誘電率楕円体ellipsoid,あるいは一般に,観察される効果の特性を明確にする物理特性の屈折率楕円体indicatrixである.結晶の対称群G_{k} は,この表面の形(3軸あるいは1軸性の楕円体,球)と結晶物理軸 X_{1}, X_{2}, X_{3}に対する楕円体の主軸X_{1}', X_{2}', X_{3}' の方位を決定する。群G_{k} は,実験的に決定しなければならない?_{ij} の独立な数をも決定する。これを理解するために,テンソル成分?_{ij} の変換式を
?_{i'j'}=?(D)D_{i'i}D_{j'j}?_{ij}        i', j', i, j=1,2,3             (2)
と書く,ここで,D_{i',i}=cos(X_{i}', X_{i}) ,?(D) は極性テンソルでは+1,右辺の総和は繰り返されるi,j に対し,1から3で行われる。項の和を取り,6つの未知数を求めるのに9方程式の冗長系( 3つの方程式?_{i'j'}=?_{j'i'}は,この場合は成立しない;非対称テンソルの一般の場合には,成立しない)を得る.
   読者諸君にこの手順を実行するのを残しておく。上記の等式系の行列を導くのに他の手法を使う-3次元空間の座標変換の直交行列の(自分自身との)直積(p.241).行列Dの自分自身との直積は,
D^{2}={ { D_{11},D_{12},D_{13 } },{D_{21},D_{22},D_{23 } },{D_{31},D_{32},D_{33 } } }?{ { D_{11},D_{12},D_{13 } },{D_{21},D_{22},D_{23 } },{D_{31},D_{32},D_{33 } } }={ { D_{11}(D_{ij}),D_{12}(D_{ij}),D_{13}(D_{ij})},{D_{21}(D_{ij}),D_{22}(D_{ij}),D_{23}(D_{ij})},{D_{31}(D_{ij}),D_{32}(D_{ij}),D_{33}(D_{ij}) } }
ここで,(D_{ij})は3×3行列で,例えば
D_{23}(D_{ij})={ { D_{23}(D_{11}),D_{23}(D_{12}),D_{23}(D_{13})},{D_{23}(D_{21}),D_{23}(D_{22}),D_{23}(D_{23})},{D_{23}(D_{31}),D_{23}(D_{32}),D_{23}(D_{33}) } } ,等々.
例えば,2∥X_{3} 軸まわりの180°回転の行列D(D_{11}=D_{22}=-1, D_{33}=1,残りの行列要素はゼロ)を知れば,テンソル?_{ij} の空間でのこの回転を記述するD^{2}を見出せる。すなわち,対称群G_{k}=2 に対して,変換式?_{i'j'}=?(D)D^{2}?_{ij} は以下の形となる:

ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー

変換則と物理量の対称性(一様連続体の近似) \\
反対称と色対称の極限群 \\
\ \\
   結晶のスカラー特性は,測定の方位によらないので,1つの数により定義される。このように,均一一様な結晶での温度・密度は,巨視的なサンプルに比べて,十分小さい体積要素で,単位胞よりは遥かに大きいような全ての"点" で同一である. \\
   誘電体結晶(焦電性\textrm{pyroelectric},強誘電性\textrm{ferroelectric}と呼ばれる)は,その構造起因の自発分極(外部電場が存在しなくても分極している)を持つ.対称性\texttt{1}の結晶中の分極ベクトル\textrm{\textsl{P } }は,3つの独立なパラメータ:$P_{1}, P_{2}, P_{3}$で記述される(図219a).対称性\textrm{\textsl{m } }の結晶では,生じるベクトル\textrm{\textsl{P } }は,2つの成分$P_{1}, P_{2}$で完全に決定される(図219b).成分$P_{3}=0$となる訳は,平面\textrm{\textsl{m } }内にない斜めのベクトルには,鏡映同価なベクトルが必ずあるからである.軸対称類$2,3,4,6,mm2,3m,4mm$の結晶では,生じるベクトル\textrm{\textsl{P } }は,1つのパラメータ$P_{3}$で記述される(図219c).$\overline{1}$ のような残りの類の結晶では,ピロ焦電性はない;すなわち$P=0$である. \\
   極性ベクトルの変換則$$r'=\left[ D|0 \right] r=Dr$$ を思いだそう(P.204参照).この法則で,$$r$$ を$$P$$ で置き換え:$$P_{i}'=D_{ij}P_{j}$$ と行列形式で書く.例えば,軸性群$$2$$における軸$$2 /\!\!/ X_{3}$$の周りの180°回転を,行列$$\textrm{\textsl{D } }$$のあらわな形式を用い,対称操作の行列積を行うと,以下の結果を得る. \\
$$\left( \begin{array}{@{\,} c @{\, } }
P_{1}' \\[0mm]
P_{2}' \\[0mm]
P_{3}'
\end{array} \right) =\left( \begin{array}{@{\,} ccc @{\, } }
-1 & 0 & 0 \\[0mm]
0 & -1 & 0 \\[0mm]
0 & 0 & 1
\end{array} \right) \left( \begin{array}{@{\,} c @{\, } }
P_{1} \\[0mm]
P_{2} \\[0mm]
P_{3}
\end{array} \right) =\left( \begin{array}{@{\,} c @{\, } }
-P_{1} \\[0mm]
-P_{2} \\[0mm]
P_{3}
\end{array} \right) $$ \\
軸対称のため,系の180°回転後, \\
$\left( \begin{array}{@{\,} c @{\, } }
P_{1}' \\[0mm]
P_{2}' \\[0mm]
P_{3}'
\end{array} \right) =\left( \begin{array}{@{\,} c @{\, } }
P_{1} \\[0mm]
P_{2} \\[0mm]
P_{3}
\end{array} \right) $ ,すなわち,$ \left\{ \begin{array}{@{\,} c @{\, } }
P_{1}'=-P_{1}=P_{1}=0 \\[0mm]
P_{2}'=-P_{2}=P_{2}=0 \\[0mm]
P_{3}'=P_{3}=const
\end{array} \right. $ \\
\ \\
さらにもう1つ,2階の極性テンソルで記述される特性例:誘電体に誘起される分極現象(図220)を考察する.結晶中の変位ベクトル\textrm{\textsl{D } }は一般には印加される電場\textrm{\textsl{E } }方向と一致しない(等方媒質では一致する).これらの極性ベクトルの成分$D_{i}とE_{j} $との関係は, \\
$D_{i}=\varepsilon _{ij}E_{j}$  または,$ \left\{ \begin{array}{@{\,} c @{\, } }
D_{1}=\varepsilon _{11}E_{1}+\varepsilon _{12}E_{2}+\varepsilon _{13}E_{3} \\[0mm]
D_{2}=\varepsilon _{21}E_{1}+\varepsilon _{22}E_{2}+\varepsilon _{23}E_{3} \\[0mm]
D_{3}=\varepsilon _{31}E_{1}+\varepsilon _{32}E_{2}+\varepsilon _{33}E_{3}
\end{array} \right. $ (1) \\
係数$\varepsilon _{ij}$は,誘電率テンソルの形で,べクトル\textrm{\textsl{D } } と \textrm{\textsl{E } } を結び付ける.一般に,要素の対称性$\varepsilon _{ij}=\varepsilon _{ji}$ があり,9つではなく6つの独立なパラメータをもつ.これから先は,テンソル$\varepsilon _{ij}$ の行列を,簡単化して,非ゼロの独立なパラメータのみの行か列の形式に書くことにする: \\
$$\left( \begin{array}{@{\,} ccc @{\, } }
\varepsilon _{\texttt{\textsl{11 } } } & \varepsilon _{12} & \varepsilon _{13} \\[0mm]
\varepsilon _{12} & \varepsilon _{22} & \varepsilon _{23} \\[0mm]
\varepsilon _{13} & \varepsilon _{23} & \varepsilon _{33}
\end{array} \right) =\left( \varepsilon _{11},\varepsilon _{12},\varepsilon _{13},\varepsilon _{22},\varepsilon _{23},\varepsilon _{33} \right)     $$
$\varepsilon _{ij}$を係数とする2次の表面 \\
$\varepsilon _{11}x_{1}^{2}+\varepsilon _{22}x_{2}^{2}+\varepsilon _{33}x_{3}^{2}+2\varepsilon _{12}x_{1}x_{2}+2\varepsilon _{13}x_{1}x_{3}+2\varepsilon _{23}x_{2}x_{3}=1$ \\
は,対称テンソルに一意に関係づけられている;この表面は誘電率楕円体\textrm{ellipsoid},あるいは一般に,観察される効果の特性を明確にする物理特性の屈折率楕円体\textrm{indicatrix}である.結晶の対称群$G_{k}$ は,この表面の形(3軸あるいは1軸性の楕円体,あるいは,球)と結晶物理軸 $X_{1}, X_{2}, X_{3}$に対する楕円体の主軸$X_{1}', X_{2}', X_{3}'$ の方位を決定する.群$G_{k}$ は,実験的に決定しなければならない$\varepsilon _{ij}$ の独立な数をも決定する.これを理解するために,テンソル成分$\varepsilon _{ij}$ の変換式を \\
$\varepsilon _{i'j'}=\chi (D)D_{i'i}D_{j'j}\varepsilon _{ij}$        $i', j', i, j=1,2,3$             (2) \\
と書く,ここで,$D_{i',i}=\textrm{cos}(X_{i}', X_{i})$ ,$\chi (D)$ は極性テンソルでは+1,右辺の総和は繰り返される$i,j$ に対し,1から3で行われる。項の和を取り,6つの未知数を求めるのに9方程式の冗長系( 3つの方程式$\varepsilon _{i'j'}=\varepsilon _{j'i'}$は,この場合は成立しない;非対称テンソルの一般の場合には,成立しない)を得る. \\
   読者諸君にこの手順を実行するのを残しておく。上記の等式系の行列を導くのに他の手法を使う-3次元空間の座標変換の直交行列の(自分自身との)直積(p.241).行列Dの自分自身との直積は, \\
$$D^{2}=\left( \begin{array}{@{\,} ccc @{\, } }
D_{11} & D_{12} & D_{13} \\[0mm]
D_{21} & D_{22} & D_{23} \\[0mm]
D_{31} & D_{32} & D_{33}
\end{array} \right) \times \left( \begin{array}{@{\,} ccc @{\, } }
D_{11} & D_{12} & D_{13} \\[0mm]
D_{21} & D_{22} & D_{23} \\[0mm]
D_{31} & D_{32} & D_{33}
\end{array} \right) =\left( \begin{array}{@{\,} ccc @{\, } }
D_{11}(D_{ij}) & D_{12}(D_{ij}) & D_{13}(D_{ij}) \\[0mm]
D_{21}(D_{ij}) & D_{22}(D_{ij}) & D_{23}(D_{ij}) \\[0mm]
D_{31}(D_{ij}) & D_{32}(D_{ij}) & D_{33}(D_{ij})
\end{array} \right) $$ \\
ここで,$(D_{ij})$は$3 \times 3$行列で,例えば \\
$D_{23}(D_{ij})=\left( \begin{array}{@{\,} ccc @{\, } }
D_{23}(D_{11}) & D_{23}(D_{12}) & D_{23}(D_{13}) \\[0mm]
D_{23}(D_{21}) & D_{23}(D_{22}) & D_{23}(D_{23}) \\[0mm]
D_{23}(D_{31}) & D_{23}(D_{32}) & D_{23}(D_{33})
\end{array} \right) $ ,等々. \\
例えば,$2 /\!\!/ X_{3}$軸まわりの180°回転の行列$D$($D_{11}=D_{22}=-1, D_{33}=1$,残りの行列要素はゼロ)を知れば,テンソル$\varepsilon _{ij}$ の空間でのこの回転を記述する$D^{2}$を見出せる.すなわち,対称群$G_{k}=2$ に対して,変換式$\varepsilon _{i'j'}=\chi (D)D^{2}\varepsilon _{ij}$ は以下の形となる: \\
$\left[ \begin{array}{@{\,} c @{\, } }
\varepsilon _{1'1'} \\[0mm]
\varepsilon _{1'2'} \\[0mm]
\varepsilon _{1'3'} \\[0mm]
\varepsilon _{2'1'} \\[0mm]
\varepsilon _{2'2'} \\[0mm]
\varepsilon _{2'3'} \\[0mm]
\varepsilon _{3'1'} \\[0mm]
\varepsilon _{3'2'} \\[0mm]
\varepsilon _{3'3'}
\end{array} \right] =\left[ \begin{array}{@{\,} ccccccccc @{\, } }
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\[0mm]
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\[0mm]
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\[0mm]
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\[0mm]
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\[0mm]
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\[0mm]
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\[0mm]
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\[0mm]
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array} \right] \left[ \begin{array}{@{\,} c @{\, } }
\varepsilon _{11} \\[0mm]
\varepsilon _{12} \\[0mm]
\varepsilon _{13} \\[0mm]
\varepsilon _{21} \\[0mm]
\varepsilon _{22} \\[0mm]
\varepsilon _{23} \\[0mm]
\varepsilon _{31} \\[0mm]
\varepsilon _{32} \\[0mm]
\varepsilon _{33}
\end{array} \right] $ \\
\ \\
系の対称性を考慮して, \\
$\varepsilon _{1'1'}=\varepsilon _{11}$ \\
$\varepsilon _{1'2'}=\varepsilon _{12}$ \\
$\varepsilon _{1'3'}=-\varepsilon _{13}=\varepsilon _{13}=0$ \\
$\varepsilon _{2'1'}=\varepsilon _{21}$ \\
$\varepsilon _{2'2'}=\varepsilon _{22}$ \\
$$\varepsilon _{2'3'}=-\varepsilon _{23}=\varepsilon _{23}=0$$
$$\varepsilon _{3'1'}=-\varepsilon _{31}=\varepsilon _{31}=0$$
$\varepsilon _{3'2'}=-\varepsilon _{32}=\varepsilon _{32}=0$ \\
$$\varepsilon _{3'3'}=\varepsilon _{33}$$
\ \\
行列$D^{2}$の4,7,8行,4,7,8列を抜き取り,$9 \times 9$行列から,対称テンソルの変換則を完全に記述する$6 \times 6$行列に移行する.この行列を2つの行列の対称化積(あるいは対称化平方)と呼び$D^{(2)}$と標す. \\
   群$G=\left\{ g_{1},g_{2}, \ldots ,g_{j} \right\} $ の同形な行列群$\left\{ D_{1}(g_{1}),D_{2}(g_{2}), \ldots ,D_{j}(g_{j}) \right\} $ は,行列表現$G$ を作る.この表現は,$3 \times 3$行列$D_{j}$が点の配置の変換のみでなく3次元空間のベクトル成分を変換するので,ベクトル表現と呼ばれる. \\
   群G の群$\left\{ D_{1}^{2}(g_{1}),D_{2}^{2}(g_{2}), \ldots ,D_{j}^{2}(g_{j}) \right\} $ による表現は,ベクトル表現の平方あるいはテンソル表現と呼ばれる。この術語を用いれば,誘電率テンソル$\varepsilon _{ij}$はベクトル表現 $\left\{ D_{1}(g_{1}),D_{2}(g_{2}), \ldots ,D_{j}(g_{j}) \right\} $の対称化された平方により変換される.テンソル量の定義自体は,成分の変換を支配する法則を特化すること,すなわち対応するテンソル表現の特化に基づいている. \\
   各32の結晶群に対する表現$\left\{ D_{1}^{2}(g_{1}),D_{2}^{2}(g_{2}), \ldots ,D_{j}^{2}(g_{j}) \right\} $ から,これらの群のどれに対しても,群$G_{k}=2$ に対して行ったのと全く同様に,テンソル$\varepsilon _{ij}$ の形を決定できる.テンソル$\varepsilon _{ij}$ の行列は,成分$\varepsilon _{ij}$ が対応する座標 $x_{i}x_{j}$の積と同様に変換されることに注目すれば,もっと速く決定できる.この方法を用い,方位$m \bot X_{3} $の群$G_{k}=m $に対し,テンソル$\varepsilon _{ij}$の行列の形を見出すことにする.この平面での鏡映により,座標$x_{1}, x_{2}$ は保存され,座標$x_{3}$は符号を変える: $$x_{1} \to x_{1}, x_{2} \to x_{2}, x_{3} \to -x_{3} $$ \\
従って,座標の積は以下のように変化する: \\
$$x_{1}x_{1} \to x_{1}x_{1}, x_{1}x_{2} \to x_{1}x_{2}, x_{1}x_{3} \to -x_{1}x_{3}, x_{2}x_{1} \to x_{2}x_{1}, x_{2}x_{2} \to x_{2}x_{2} $$
$$x_{2}x_{3} \to -x_{2}x_{3}, x_{3}x_{1} \to -x_{3}x_{1}, x_{3}x_{2} \to -x_{3}x_{2}, x_{3}x_{3} \to x_{3}x_{3} $$
この変換は対称変換であるので,変換の前後で,成分$\varepsilon _{ij} \leftrightarrow x_{i}x_{j}$ は等しい.従って,群\textrm{\textsl{m } }の行列$\varepsilon _{ij}$ が,群2に対するものと同じ形となる:$(\varepsilon _{11}, \varepsilon _{12}, \varepsilon _{22}, \varepsilon _{33})$ \\
   以下のリストに,結晶学的な群に対する誘電率テンソルの一般形を与える: \\
$$三斜晶系G_{k}=1, \overline{1} :(\varepsilon _{11}, \varepsilon _{12}, \varepsilon _{13}, \varepsilon _{22}, \varepsilon _{23}, \varepsilon _{33})$$
$$単斜晶系 2, m, 2/m  :(\varepsilon _{11}, \varepsilon _{12}, \varepsilon _{22}, \varepsilon _{33})$$
$$斜方晶系 2, 222, mmm :(\varepsilon _{11}, \varepsilon _{22}, \varepsilon _{33})$$
$$三方-,正方-,六方-:(\varepsilon _{11}, \varepsilon _{22}=\varepsilon _{11}, \varepsilon _{33})$$
$$等軸晶系 23, m\overline{3}, 432, \overline{4}3m, m\overline{3}m :(\varepsilon _{11}, \varepsilon _{22}=\varepsilon _{11}, \varepsilon _{33}=\varepsilon _{11})$$
全く同様に,軸性ベクトルに対するテンソル不変量(対応する群の変換により変わらない行列)を見出すことが出来る.テンソル成分の変換則で,第1種の変換(回転,並進)に対しては,$\chi (D)=+1$ ,第2種の変換(鏡映,反転)に対しては$\chi (D)=-1$ とする所が異なる. \\
   テンソル本来の斜方晶対称-テンソル行列の一般形を保存する斜方晶[直交]変換の最も対称性の高い群により決定される-は,もとの結晶の対称性よりも高くなる可能性があることに注意しよう.例えば,立方晶系に対し,誘電率楕円体は対称性$ \infty \infty m$ の球に縮退する.3方晶系,正方晶系,6方結晶に対しては,1軸性誘電率楕円体は対称性$ \infty /mmm$である.残りの結晶に対しては,誘電率楕円体は,対称性 \textrm{\textsl{mmm } }の3軸性である.これは,楕円体(図220)をprincipal axes主軸$X_{1}', X_{2}', X_{3}'$に参照することにより理解出来る:群\textrm{\textsl{mmm } } のすべての変換は,テンソル行列$(\varepsilon '_{11}, \varepsilon '_{22}, \varepsilon '_{33})$を保存する.さらに低い対称性の結晶系では,結晶物理主軸$X_{1}, X_{2}, X_{3}$ に対する楕円体の方位を標示するために,パラメータが(これらの3つ以上に)増える. \\
\ \\
\ \\
   均一なテンソル場の対称群の中で,極限キューリーCurie群(図74)に加えて,反対称と色対称群のlimiting orthogonal極限斜方晶[直交]群に出会う. \\
   7つの中性と7つの2-色のlimiting antisymmetry極限反対称群が,拡大の理論により得られる: \\
$$ \infty 1', \infty 221', \infty mm1', \infty /m1', \infty /mmm1', \infty \infty 1', \infty \infty m1',$$
$$ \infty /m', \infty 2'2', \infty m'm', \infty /m'mm, \infty /mm'm', \infty /m'm'm', \infty \infty m' $$
これらの群の具体化としての物質図形は,キュリーCurie群に対するそれらと同じ形を持つ.中性群では,図形の全ての点は中性,2-色群では,2色である(2色は,各点ごとに,混合されたり塗り分けられたりする).反対称の磁気的解釈では,電気,磁気,Poyntingポインティングベクトルは,それぞれ,磁気対称の極限群$ \infty mm1', \infty /mm'm', \infty /m'mm$を持つ(図221).反対称の極限群の導出では,読者はShubunikov(1958,1959),Sirotin(1962),Koptsik(1966)による扱いを参照するとよい. \\
   この系列に,無限にcolored limiting groups色極限群が存在し: \\
$$ \infty 1^{(p)}, \infty 221^{(p)}, \infty mm1^{(p)}, \infty /m1^{(p)}, \infty /mmm1^{(p)},$$
$$ \infty \infty 1^{(\texttt{\textsl{p } })}, \infty \infty \texttt{\textsl{m } }1^{(\texttt{\textsl{p } })};$$
$$ \infty ^{( \infty )}, \infty ^{( \infty )}\texttt{\textsl{m } }^{(2)}\texttt{\textsl{m } }^{(2)}, \infty ^{( \infty )}/\texttt{\textsl{m } }, \infty ^{( \infty )}/\texttt{\textsl{mm } }^{(2)}\texttt{\textsl{m } }^{(2)},$$
$$ \infty ^{( \infty )}2^{(2)}2^{(2)}, \infty ^{( \infty )}/\texttt{\textsl{m } }^{(2)}, \infty ^{( \infty )}/\texttt{\textsl{m } }^{(2)}\texttt{\textsl{m } }^{(2)}\texttt{\textsl{m } }^{(2)} $$
$$ \infty ^{( \infty )} \infty ^{( \infty )}, \infty ^{( \infty )} \infty ^{( \infty )}\texttt{\textsl{m } }^{(2)} $$
色群の具体化となる典型的な図形は,Curieキューリー図形の周りに色調が連続的に変化(虹のように)する色紙を接着すると得られる. \\
例えば,単色光線がコーンの頂点からその底面へ通過すると,色は,コーンの回転にともない,自然のスペクトル順に変化する.コーンが回転するなら, \\
群の系列$ \infty ^{( \infty )}(1), \infty ^{( \infty )}(2), \ldots , \infty ^{( \infty )}(n)$,静止しているコーンには,系列$ \infty ^{( \infty )}m^{(2)}m^{(2)}(1), \infty ^{( \infty )}m^{(2)}m^{(2)}(2), \ldots , \infty ^{( \infty )}(n)$ を得る \\
[ここで,\texttt{(1)}\textrm{\textsl{, } }\texttt{(2)}\textrm{\textsl{, } }\texttt{(}\textrm{\textsl{n } }\texttt{)}は,古典的軸性部分群である;色コーンの群が,部分群\textrm{\textsl{n } }を含むなら,1回転でカラーサイクルは\textrm{\textsl{n } }回繰り返すことを意味する]. \\
底をシリンダーとし,その周りに色サイクルを一回貼りつけ,群$ \infty ^{( \infty )}/mm^{(2)}(1)$ (静止したシリンダー),$ \infty ^{( \infty )}/m(1)$ (回転シリンダー)を得る. \\
色が連続的に,シリンダーを1周(円周に沿い)するのみでなく,すべての生成元に沿い変化するなら,対称性$ \infty ^{( \infty )}/m^{(2)}m^{(2)}m^{(2)}(1)$(静止時),$ \infty ^{( \infty )}/m^{(2)}(1)$(回転シリンダー),$ \infty ^{( \infty )}2^{(2)}2^{(2)}(1)$(ねじれシリンダー)の2回の色シリンダーを得る. \\
これらの全てで,部分群$1$を$n$で置き換えると,オリジナルのものから群の無限系列が導びける.色シリンダーの群は,古典的部分群$mmm,n22$, あるいは,何らかの性質を保存する部分群の系列に形式化できる. \\
色極限群の最後の2つは,全点が$ \infty $-色で,かつ,中性でない球で具体化される:各点の色は,セクターに沿って分布するか,あるいは,混合されずに層をなして互いに重畳され,同様に群$ \infty ^{( \infty )}$ と$ \infty ^{( \infty )}m^{(2)}m^{(2)}$ ではコーンのチップに分布する.群$ \infty ^{( \infty )} \infty ^{( \infty )}$ では,球の直径は群 $ \infty ^{( \infty )}2^{(2)}2^{(2)}$でのように捩れている.一方,群$ \infty ^{( \infty )} \infty ^{( \infty )}m^{(2)}$では,捩れがない.極限群の別の解釈では,初期に見たすべての図形でのように,1つの固定色は,一般点のすべてに帰属せしめられる。捩れたシリンダーの対称性は,もっと完全には2回色反対称群により記述される. \\
$\displaystyle \frac{ \infty ^{( \infty ) } }{m'^{ \ast } }\displaystyle \frac{2^{(2) } }{m'^{ \ast } }\displaystyle \frac{2^{(2) } }{m'^{ \ast } }$ \\
ここで*星印はシリンダー低部の周囲の順序で,色を変え,′ダッシュは捩れの方向を変える. \\
   さらに,中性群では,色同一部分群$1^{( \infty )}$は冪によって異なることに注意する.具体化に加え,言及したように,古典的なCurieキューリ群,反対称の極限群,Waerden-Burckhardt群,Wittke-Garrido群,およびこれらの許容される積(p.248,256参照)により記述される色図形がある.すべての有限色群(結晶学的および非結晶学的の位数の)は,これらの極限群の部分群であり,非常に早く本書で与えてある。完全な構造対象の物理で,極限色群は通常の極限斜方晶群よりも役割が低いわけではない. \\

東京の感染収束と相互作用

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2020.08.25] No.335
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
実効再生産数が東京では,まだ1を少し超えているようですが,他の県では1未満になってきたようです.
以下のサイトに,都道府県別の実効再生産数の時系列の変化のグラフがあります.


Rt Covid-19 Japan都道府県別コロナウイルスの感染拡大・収束状況(実効再生産数Rt)をグラフ化したWebサイト
rt-live-japan.com

実効再生産数Rというのは,1人の感染者が新たな感染者を作る人数のことです.
Rが1未満なら感染流行は減少収束し,1より大きければ感染は拡大します.
しかしながら,各都道府県の実効再生産数がすべて1未満になっても,
感染拡大の起こる可能性を警告している論文を前号で紹介しました.その論文では,
全体をコミュニティと病院という2つのグループに分割したモデルで,
コミュニティ内の感染に関する実効再生産数と病院内の感染に関する実効再生産数がともに1未満であっても,
全体の実効再生産数が1を超す(感染拡大が起こる)可能性が指摘されました.
その原因は,コミュニティから病院に感染させる場合も,病院からコミュニティに感染させる場合もあるからです.

都道府県別の実効再生産数が,それぞれ1未満になっても,各県間の人の移動接触により各県間の感染が起こるので,
全体の実効再生産数が1より大きくなることは十分あり得ます.油断は危険です.

■数学の形式としては,次の行列を作ります:
対角要素には,各都道府県の実効再生産数を並べ.行列のその他の要素には,異なる県間の感染率を対応させます.
県間の感染率は,相当する県間の人の接触確率のようなものです.
このような行列を作るにはいろいろなデータが必要ですが,この行列ができたとすると,
この行列の固有値を求める数学の問題になります.最大の固有値が1を超していれば,
全体の実効再生産数は1を超し伝染の拡大が起こります.

私たちの社会は,都道府県がそれぞれ孤立して独立でいるわけではなく,
互いに相互作用(人の接触がある)しているので,
独立な個別地区の予測と,全体の予測は大変異なり,このような計算をしてみないとわかりません.

(注)実効再生産数の計算方法は,Anne RがCoriらによるものが,山中伸弥のホームページに紹介されています.

バクウこまの解析

<東京おもちゃまつり>は,東京おもちゃ美術館にて,毎年10月半ばに開催されています.今年は,新型コロナウイルスの感染拡大のために開催は困難でしょうね.

この記事の写真は,2017年10月14,15日に開催されたときのものです.
両日とも冷たい雨の降るあいにくの天気でしたが盛況でした.私は10月15日に出かけ,バクウ研究所の富川義朗先生と佐藤芳弘先生にお会いしました.

振動で廻すトントン・コマなど,いろいろな「ばくうコマ」の展示がありしたが,その原理はなかなか奥が深い.富川先生たちは,振動を回転運動に変える超音波モータの発明者です.

■私は,ミラクル・ツインという「ばくうコマ」に興味をもちました.左右の回転子の回転は互いに逆回転で,右の回転子は5回対称の模様が見え,左の回転子は3回対称の模様が見えます.

富川先生によるミラクル・ツインの解説はここにありますが,まだ,基本的仕組みの解明はされていないようです.私自身,考えるほど疑問が沸き上がりますので整理しました:

①なぜ,左右の回転子は逆回転するのか?
②なぜ,台座の回転モーメントを軸心は逆回転するのか?
③なぜ,4回対称の図形が,5回対称や3回対称に見えるのか?

納得のいかない現象ばかりですので,高速度撮影をして観察することにしました:

この観察をもとに,みんなで考えてみましょう.私が解明した仕組みについて解説しましょう.

 高速度撮影・解析1

右側の回転子の軸は回転子と接着していますが,左側の回転子の軸受け穴と軸心は接着されていません.さらに,回転子の軸受け穴径は,軸心径の1.5倍程度あり歳差運動を起こします.

回転の向きを観察すると,中央の偏芯回転子の回転方向に対して,左の回転子は逆回転,右の回転子は同方向に回転します.そして,右の回転子には5回対称の模様が見え,左の回転子には3回対称の模様が見えます.

高速度撮影・解析2

撮影の前に,左側の回転子の軸受けに細工をして,軸受けと軸心が固定されるようにしました.すると予想通り,左側の回転子の運動は右側と全く同じになりました.

■解析1の観察に基づく仕組みの考察

中央の偏心した回転子が生み出すのは単純な振動ではなく,台座全体の回転モーメントです.台座全体(台座の左右にある軸受け穴も)が公転と言われる軌道を描き平行移動します(決して,軸受け穴が回転するわけではありません.平行移動です).

左右の軸受け穴の中には,軸心が通っていますが,少しの”ガタ”があります[軸受け穴径は軸心径の1.2倍程度].軸心は公転の向きと逆向きに自転をします(これはコペルニックスの定理).軸心は歳差運動もしているはずで,

軸心の自転と歳差運動の位相との相互作用が,軸心に結合した回転子の上下波打ち運動を生み,5回対称模様が静止して見えるのではないかと推理します.

左側の回転子については,軸心と回転子は一体ではなく,回転子の軸受け穴径は軸心の1.5倍ほどあり,かなりの”ガタ”があります.軸心の歳差運動の位相は,軸心の回転と逆方向で,回転子への回転の伝達は,ちょうど皿回しと同じで,歳差運動により伝えられます.左側の回転子の軸受け穴の”ガタ”は大きいため,大きな上下波打ち運動になり,3回対称が現れるものと思います.