数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
No.527,528の「記数法と数体系」に続くのは,今回の「数が生み出される仕組み」[演算]です.
演算とは,4則演算,指数と対数,三角関数ほかの色々な関数,微積分などがあります.
素数を生み出す仕組みはまだ謎ですが,フィボナッチ数が生まれる仕組みは,
「前の2項の和が次の項を決める」という非常に簡単な再帰的規則で,
DNAにプログラムするのも容易です.これが自然界で色々な場面にフィボナッチ数が登場する所以でしょう.
今回の話は,歴史的には,ニュートン,ライプニッツの時代(1720年ごろ)までです.
・ゼロの役割
バビロニア,ギリシャ(ただし天文学者だけ!),マヤなどの古代人たちは,ゼロを数体系における位取りとして使用していた.現在の数体系が生まれたインドでも同様である.
628年にBrahmaguptaブラフマグプタが,ゼロを単なる位取りとしてではなく,数字として扱い,ゼロと負の数を使った算術規則の最初の書物を書いた.
820年にAl-Khwarizmiアル=フワーリズミーは,インドの数体系をイスラム世界に紹介した.
フィボナッチは1202年,『リベル・アバカ』(計算の書)の中でこれをヨーロッパに紹介し,ヨーロッパでのゼロの使用を広めた.
・無限
無限は水平線の彼方にある.勇敢な船乗りが,どんなに遠くまで旅をしたとしても,
少しでも無限に近づいたと言えるのだろうか?自然数が無限にあることは簡単にわかる.
どんな数でも最大であると宣言すれば,いつでも1つ増やすことができ終わりがない.
0と1の間に無限の数があることも真実だが,これは少し厄介だ.
ギリシャのストア学派Zenonゼノンは,一連のパラドックスを通してこの考え方を研究した.
彼の最も有名な説は,すべての運動は不可能であるというものだ.
A地点からB地点に行くには,無限の中間地点を通過しなければならず,それぞれの地点から次の地点に行くには正の時間がかかる.無限個の正の数を足すので無限の時間になり,有限時間ではどこにも移動できない.
この論理のどこが間違いか(無限個の正の数の和が有限である可能性がある!)わかっているが,この考えは多くの研究を引き起こした.微積分の中心的な考え方は無限に関わっている.どんどん小さくなっていく正の時間間隔(私たちは「限りなく小さい」と言う)の無限数列を使った平均変化率で,瞬間的な変化率(速度)を定義することができる.
エレアのゼノン c.490-c.430BCE,ゲオルグ・カントール 1845-1918
収束する無限級数の簡単な例は,1/2+1/4+1/8+1/16+...=1
無限級数の中には驚くべき結果をもたらすものがある.例えば,1-1/3+1/5-1/7+1/9-1/11+1/13-1/15...=π/4
ガリレオはある点集合を別の点集合に写像する公式を作り,デカルトは代数式で曲線を作る概念を導入した.
「関数」という用語は17世紀後半にライプニッツによって作られた.
関数のすべての入力集合は定義域(ドメイン)と呼ばれ,すべての出力集合は像(イメージ)または値域(レンジ)と呼ばれる.
曲線の勾配を計算する微積分の発明者は,ニュートン,ライプニッツとされている.
ニュートンは,「フェルマーの曲線と接線に関する先駆的な研究での近似概念の発展がなかったら微積分に到達できなかった」と公言している.
オスミツバチの先祖の木
オスのミツバチは未受精卵から生まれるので,オスのミツバチ( M)には母親はあるが,父親はいない.これに対して,メスのミツバチ( F)は,受精卵から生まれるので,両親がある.
図3.12は,7世代に遡るオスのミツバチの系図を示した.
[訳注:世代 nの数え方は,自分を1,親の世代を2のように,過去に遡る方向にn が増加する.図3.12には, 2世代(母親)~6世代が示されている.このようなネットワークは,グラフ理論の言葉で,木(ツリー)と呼ばれる.ネットワークにループ(閉路)がなく,あたかも,枝分かれ成長する木を思わせる.]
各レベルつまり各世代のミツバチの総数を数えよう.表3.3に示すように,これはフィボナッチ数になる.
$${a_{n} , b_{n} ,t_{n } }$$を,それぞれ,世代$${n , n \ge 1}$$のメスのミツバチの数,オスのミツバチの数,ミツバチの総数としよう.オスのミツバチから先祖に遡るので,明らかに,$${a_{1}=0}$$, $${b_{1}=1}$$から始まる.オスのミツバチは母親,メスのミツバチには母親と父親が確定するので,$${b_{n}=a_{n-1} , a_{n}=a_{n-1}+b_{n-1 } }$$, $${t_{n}=a_{n}+b_{n } }$$である.
$${a_{1}=0 , a_{2}=1 , a_{n}=a_{n-1}+a_{n-2 } }$$なので,$${a_{n}=F_{n-1 } }$$のフボナッチとなる.
これから,$${t_{n}=a_{n}+b_{n}=a_{n}+a_{n-1}=a_{n+1 } }$$が得られ,$${t_{1}=a_{2}=1, t_{2}=a_{3}=1}$$であるので; $${t_{n}=F_{n } }$$となる.
かくして,オスのミツバチの世代$${n}$$の先祖数は$${F_{n } }$$である.この魅力的な関係を最初に導いたのは,W. Hope-Jones, 1921年[322]であった.
本文:①より引用. 表紙図:②のp.25の図を編集.
SHAPE-[形]で解き明かす社会の難問
ジューダン・エレンバーグ著
宮崎興二編訳/パウロ・パトラシュク訳(丸善出版)
この本の紹介をします。数学書ではありませんが、数学の心意気が理解できる変わった面白い本です。いくつかをのトピックを選択して、コメントを述べようと思います。
■ 第一章は、リンカーンとユークリッド原論から始まります。
リンカーンと共に米国各州を巡回し生活した、弁護士ウイリアム・ハーンドンが1889年に出版したリンカーン伝からの回想が引用されています:
「田舎の狭いホテルに一緒に泊まったとき、二段ベッドの上から長い脚を垂らし、ローソクの光でユークリッドの原論を夢中になって読んでいるリンカーンの姿を見た。」
「リンカーンの事務所の机に、定規やコンパスや色々な図面や計算が書かれた紙が散らばっていた。」このときは、「円積問題を解こうとして二日間全力を尽くしていた。」とリンカーンが語った。
これらのエピソードから、リンカーンがユークリッド原論の愛読者だったと知って大変うれしい。
リンカーンが挑戦した円積問題[円を面積の等しい正方形にする]が、定規とコンパスだけでは作図不可能であることは、今日、誰でも知識として知っており、多分、わざわざ挑戦しようとは思わないだろう。しかし、リンカーンのように自分で図を描きやってみることが最も大切なことである。
1.円を正方形に
2.立方体のデロスの祭壇を2倍の体積の立方体に
3.任意角度を3等分する
これらは、定規とコンパスを使って作図できない問題だ。これは後の時代(リンカーンの頃は既知であったが)にわかったことだが、これらの作図の解は3次方程式の根であり、3次方程式の根は、定規とコンパスで作図できる数(+、ー、x、÷、√で表現される数)ではない(3乗根がでてくる)。
ユークリッドの幾何学から、リンカーンが身に着けた一番大切なものは、誰もが認める公理系の基礎の上に、誰も否定できない世界を演繹で組み立てるという考え方だった。
アメリカの独立宣言の中に言及されている『自明な真実』というのは公理に当たるし、ゲティスバーグ演説で、「人間はすべて平等に創られている、という『信条』に捧げられた新しい国家、それがアメリカである」という歴史的な名言中の『信条』は、”proposition”という単語【普通は『命題』と訳す】で、この言葉遣い自体が原論の公理の書き方を思わせる。
トーマス・ジェファーソンもリンカーンに先立、同様にユークリッドの原論に民主主義を支える原理を見つけ出そうとしている。ジェファーソンはウイリアム・アンド・メアリー大学時代にユークリッド幾何学も学習し、それ以降幾何学を大事にしている。リンカーンは独学であったが、両者とも、原論の論理の組み立て「みんなが認める公理から演繹で理論を組み立てていく」を実践しようとしている。
得られた結果た定理を暗記するのではなく、どのように論理が組み立てられたのかを実践し考え方を身に着けるような数学教育がなされるべきである。
リンカーンのように自力で考えることが大切だ。
日本国憲法は、互いに矛盾のないよく考えられた公理系の上に論理的に組み立てた体系であり、言葉は定義通りに忠実に解釈すべきで、解釈変更や拡大解釈などに詭弁の原因がある。『義務』とはすべて同等な義務であるべきなのに、恣意的に努力義務と解釈するなど、論理の焦点をわざと逸脱させたり本質を隠したりして制定時の精神を損なっている。憲法を読むにも解釈するにも、数学的な論理的態度が必要だ。これらについては、秋葉忠利「数学書として憲法を読む」、2019年数学月間講演(⇓)を参照ください。
https://sgk2005.org/bbses/bbs_articles/index/page:3?frame_id=346&page_id=97
色々な課題を解くと,フィボナッチやリュカの数列が現れることが多い.これらの数を生み出す仕組みは「再帰的」で非常に効率が良い.
ちなみに, フィボナッチ数列の再帰関係は:$${F_n=F_{n-1}+F_{n-2 } }$$
$${F_2=F_1=1}$$とすると,$${F_3=2}$$などと続き,フィボナッチ数列 1,1,2,3,5,8,13,21,34,...…が得られる.
つまり,DNAに記録された簡単な設計図の指示で成長する植物などに,これらの数列が現れるのはごく自然なことである.
フィボナッチ数列で数を生み出す仕組みは,数の本質に迫るものがあるようで,見かけは異なる課題が、フィボナッチ数列に帰着することが多い.
いくつかの代表的な課題を取り上げて,再帰関係の導出過程を「ひながた」として示しておきたいと思う.
こここで選んだ課題と解法は,①Fibonacci and Lucas Numbers with Applications, by Kosbyから引用した.
■フィボナッチについて
フィボナッチ数列1,1,2,3,5,8,13,21,34,55,89,144,233......は,各項は前の二つの項の和である.この数列は,数論において特別な役割を果たすが,多くの不思議な数値的性質を持っている.
例えば,$${1+1+2+3+5+8}$$はフィボナッチ数21より1小さい.
これらの数の2乗の和は,2つのフィボナッチ数の積になる: $${1 +1+4+ 9+ 25+ 64=8\times13}$$.
次の項との比$${1:1,2:1,3:2,5:3,8:5,...}$$は,黄金比$${Φ\approx1.618}$$に近づく.
幾何学的には,辺の長さがフィボナッチ数である正方形は,黄金の螺旋を形成するようにうまく組み合わされる.
人間がこのようなパターンに魅了されるずっと以前から,植物はフィボナッチ数の経済効率を発見していた.パイナップル,ヒマワリ,アーティチョークなど,螺旋構造を持つ多くの植物の葉や蕾には,連続したフィボナッチ数の組が見られる.パイナップルを調べると,一方向に8列,もう一方向に13列が螺旋状に並んでいるのがわかる.動物界では,ミツバチは各世代にフィボナッチ数の祖先を持つ.
ーーー以上 ②30-second Maths, Richard Brown, p.24より引用.
1202年,フィボナッチとしても知られるレオナルド・ピサーノは,著書『Liber Abaci』(計算の書)の中で,ウサギの繁殖に関する謎かけを行った.
おそらく非現実的であろうが,1ヶ月ごとに1組の成ウサギが1組の子ウサギを生み,子ウサギが成ウサギになるまで1ヶ月かかると仮定して,
1月に1組の子ウサギから始めると,12月までに144組の子ウサギが生まれる! もちろん,これはフィボナッチ数列である.-----
フィボナッチは,1202年にLiber Abaci (リベル・アバカ) 「計算の書」を出版し,アラビア数字と数学をユーロッパに導入した功績が大きい.イタリア人の商人である父と北アフリカに滞在したときに,アラビア人と共に学んだ.
■ フィボナッチ数列は簡単な再帰関係に基づき,数を生み出す仕組みだが,数学の色々な概念と結びつきがあり,いろいろな数学の分野に現れるので,良い数学分野の紹介に利用できる.
石庭の作り方
石庭を作る人は多分いないと思いますが,工事中の石庭を見て今回は石庭の話題です.地面に石を置けばできると思っていましたが,そんなに簡単ではなく工法はとても手が込んでいます.
地面を1mも堀下げ基礎をしっかり固めます.その後で,地表まで戻して,写真のような岩の配置を作ります.岩の下にあるのは花崗岩のピンコロでカマセ石と呼ばれます.
この先は,砂利を敷き砂紋を描くことになるのでしょう.
この景色が意味しているものは何でしょうか.まだ置く岩が多数あり未完成です.
龍安寺の石庭
有名な石庭に,臨済宗. 妙心寺派,龍安寺があります.私は高校2年生の修学旅行の自由時間に,ここを見に行く計画を作り実行しました.そのころ私は岩波新書の『日本列島』などを読み岩石に興味を持っていたからです.
ちょっと遠くて時間がかかったような記憶があります.私の案に賛成して同行グループになってくれた友人が何人かいました.
龍安寺の石庭の全部で15個ある石は,どの場所に立ってどの角度から見てもすべての石が見えないように造られているそうです.世界は「不完全」だと言いたげで,ゲーデルの「不完全性定理」を思わせます.
その後知ったことですが,龍安寺の石庭の15の石は,虎の子渡し[母虎1匹と子虎3匹(1匹の豹の子を含む)が川を渡る方法]の謎の答えが隠されているという説もあります.