掲示板

No.539 記数法

投稿日時: 15:12 システム管理者

◆数学には多くの大きな発見がありますが,他の人が理解できるものだけが進歩につながります.数学的概念の理解の容易さや使用の普及は,その表記法が便利かどうかに依存します.たとえば,ローマ数字で2つの数を掛け算をするのは大変です:
MLXXXIV と MMLLLXIX を掛け合わせなさい.全然できません.
加算の場合は別で,この場合はローマ数字の作り方そのもので,容易にできます.ですから,ほとんどの計算を数字の加算で行っていた商人は,ローマ数字の使用をあきらめようとなかなかしませんでした.
注●
ローマ数字は,各アルファベットが表す数を足せばそのまま数になるようになっている.例えば,①1を表すアルファベットは‘I’,‘II’なら1が2つ並ぶので2,‘III’なら3を表す.②同じ文字が4つ並ぶのは禁止で,4は「5の1つ前」と考えて‘IV’と表す.③‘V’は5に対応するアルファベット,10は’X’に,50は’L’に,’C’,’D’,’M’は,それぞれ,100,500,1000に対応させる.
MLXXXIVは,1000+50+30-1+5=1084;
MMLLLXIXは,2000+150+10-1+10=2169 です.
和はMMMCCXLXIIIになります.

数学を発展させるには,このローマ数字の表記法では無理です.
和算も同様で,優れた数学がありましたが,表記法では不利な立場に置かれ理解が広がりません.結局,数学の発展についていけませんでした.

◆微分でのニュートンの記法は関数名の上に”ドット”をつけるもので,
x(t) の1階微分はx˙(t),2階微分はx¨(t)などとするものです.

これは速度や,加速度の表記には便利ですが,高階の微分の表示には向かないし,微分する変数が1変数なら良いが多変数になると使えません.ライプニッツの表記法なら,微積分学の概念を容易に拡張できました.
イギリスの数学者たちは,愛国心からニュートンの記法を用いていたが,ライプニッツに倣った大陸の数学者たちと比べて不利な立場になりました.
関数の微分では,このほかに,ラグランジュの表記法f′(t)なども使われます.