ブログ

2019年3月の記事一覧

会議・研修 NPO法人「数学月間の会」ご挨拶

■NPO法人「数学月間の会(SGK)」(理事長岡本和夫)が設立されました.
詳細は新ウエブサイト http://sgk2005.saloon.jp/ をご覧ください.
数学月間の会の会員募集中です.ご支援のほどよろしくお願いします.
問い合わせや会員登録は sgktani@gmail.com 

■数学月間の会とは
数学はあらゆる文化・学術の基盤で,科学,工学,産業,芸術,医学,経済など,社会のあらゆる分野を数学が支えています.しかしながら,一般市民,特に,生徒・学生とその両親は,数学学習を敬遠する風潮にあり,これが数学力の低下をもたらしています.

米国では,1986年4月17日のレーガン宣言により国家的な行事として「数学月間」MAMが開始され,今日に至ります.米国MAMは,数学系の学協会が参加するJPBM(Joint Policy Boad for Maths)が,毎年,社会を反映した数学テーマを選定し,毎年4月に種々の数学イベントを展開し,国民からの事後評価も受けます.皆が知りたい時局の数学を,種々のレベルで学習できるウエブサイトができ,そこにエッセイや論文が集積され,そのテーマの数学を基礎から最先端まで,学生が独習できる優れたガイドになります.MAM期間には,一般から専門家まで,小学生から大学生まで,いろいろなレベルのイベントが全国で展開されます.米国が国家的行事のMAMを決断した背景には,国民の数学力が低下し,米国の産業力も低下するとの焦りがありました.日本も同様な状況にあるものの,国家的行事の数学月間は実施されておりません.

近年,日本でもSTEM(科学・技術芸術・工学・数学)教育が叫ばれていますが,これも2003年に始まった米国のSTEM教育に源を発します.これらの科目の中で統合的に数学を教える試みは良いことですがまだ成功していません.数学月間の視点はSTEM教育へも貢献できるものと思います.

数学を学ぶ同好会,塾,講習会,講演会などは種々あります.これらも重要であるのは言うまでもありませんが,我々の目指す「数学月間」活動は,このような数学同好者の内部にとどまる活動ではありません.数学がかかわるあらゆる分野を横断して数学を紹介する数学外の一般市民に向けた活動です.

一般市民,学生,生徒に対し,数学が社会を支えている事例を,わかり易く啓蒙する事業を行い,数学への社会的共感を獲得し,社会に数学文化を普及させ,社会の発展に寄与することを目的とする市民の活動です.どうぞ活動にご協力ください.

日本の数学月間は,2005年に日本数学協会が7/22-8/22を数学月間と定めたことに始まります.任意団体「数学月間の会(代表;故片瀬豊)」は,2005年の発足以来,ボランティア・ベースながら,毎年,数学月間の初日7/22に,数学月間懇話会を開催し,計37件の啓蒙的な講演を一般市民に対し実施することで,数学啓蒙活動をこの時期に集中し,数学の重要性を社会にアピールしてきました.このような数学月間活動は,米国MAMのように国家的行事として行うべき性質のもので,個人寄付金とボランティア・ベースで行う現状には限界があります.数学同好会ではなく,活動を社会に波及させるためには,NPO法人格を得た「数学月間の会」が,数学の内部にとどまらず社会の諸分野に横断的に呼びかけ活動し,「社会と数学の架け橋」になることが必要でした.

4月から新しい「数学月間の会」の会員になり,一緒に活動しませんか.

0

美術・図工 伝統文様の練習問題

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2019.03.26] No.260
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
周期的な2次元平面の互いに独立な並進ベクトルは2方向とれます.
これら2本の並進ベクトルが挟む平行4辺形を単位胞といいます.
並進ベクトルの組み(単位胞の形)を対称性で分類したものがブラベー格子です.
2次元のブラベー格子には,図に示す5種類があります.
そして,それぞれに対応する格子の図も掲載しておきました.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

さて,以下に伝統文様を10種挙げました
図の中に赤色ベクトルで,並進の周期を書き込んだ図もあります.
1.書き込んでない図にも赤色ベクトルを書き込んでみましょう.
赤色ベクトルの選び方はいろいろ可能ですが,
単位胞の形(赤色ベクトルで囲まれた平行4辺形)が
A正方形,B長方形,C120°の菱形,D任意角度の菱形, 
の4種類のどれかにあてはめるようにとれます.
2次元のブラベー格子の5種類のうち,一般形の平行4辺形に属する伝統文様は,
ここの例には挙げていません.
2.それぞれの伝統文様は,A,B,C,Dのどのタイプに属するでしょうか.
3.伝統文様のいくつかを,どこかで見たことがあるでしょうか.
私は立涌を壁紙で見かけます.

0

直線定規とコンパスを繰り返し用いた作図

■ 円に点Bを通る2直線が交差しているときに,方冪の定理が成り立ちます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■2つの長さの加法,減法は簡単です.以下の図をご覧ください:

 

 

 

 

 

 

■結局,直線定規とコンパスだけを有限回繰り返し用いて作図できる長さは
加法,減法,乗法,除法,開平です.
開平を繰り返せは,2のべき乗根(4乗根,8乗根,...)は作図できますが,
例えば,立方根は作図できません(この証明は難かしいのでスキップ).

 

 

 

 

 

 

 

 

0

万華鏡のクイズ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.11.06] No.240
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
私は色々な万華鏡を作っています.
今日は万華鏡のクイズを2つ載せますので,お考え下さい.
(1)2枚鏡(ブリュースタ)の万華鏡
Q:
下の2つの映像は,2枚鏡のある万華鏡を観察したものです.
ワンドの中のガラスくずの流れとともに,映像はいろいろに変化しますが,映像の対称性はいつも同じです.
そのわけは,生じる映像にはいつも万華鏡の鏡室の対称性が反映されるからです.
それでは,この万華鏡の2枚鏡の交差角度は何度でしょうか?

 

 

 

 

 

 

 

 

  (2)正多面体の見える万華鏡
Q:
次の写真は万華鏡の映像です.正8面体(緑)と正6面体(青),正4面体(赤)が同時に見えています.
これは,3枚鏡の万華鏡ですが,どのような鏡の組合せでしょうか?

 

 

 

 

 

 

 

 

 

ーーーーーーーーーーーーーーーーー

  A 

(1)

 

 

 

 

 

 

 

(2)
正8面体(緑)と正6面体(青)の対称性は同じなので,空間中の非対称領域(3枚の鏡が囲む空間=鏡室)は同じですが,
正4面体(赤)の非対称領域はこの2倍の大きさです.
したって,これらの3つの正多面体が同時に生じているということは,
正4面体の非対称領域がこの万華鏡の鏡室であることが必要です.
万華鏡の3枚の鏡は,それぞれ,青,黄緑,赤紫で示した平面で,この3平面はO点で交わっています.
左図は正4面体の鏡室,右図は正8面体と正6面体の鏡室です.

 

 

 

 

 

この万華鏡は,正4面体の鏡室の場に,一番右の図に示すように物体(緑)を置いたり,
光の線分(赤,青)ができるようにしてあります.

0

美術・図工 小梁(OSA工房)のパズル★

この透明な立方体の箱(単位胞)が周期的に並ぶと,ページ65の空間の充填ができます.結晶はこのように単位胞が並んだ周期的構造です.
小梁(OSA工房)のパズルは,単位胞だけ取り出して充填させるパズルです.

   図1                   図2                  図3
図1は,透明な単位胞の底面中央に正8面体の上半分が見える様子です.この正8面体の残りの下半分は,見えませんが立方体の底面を突き抜けて存在します.
周期的な空間ですから,透明な箱(単位胞)の天井と床は同じもので,天井から箱内に向かって存在とイメージすると良いです.
単位胞内の底面の4隅には正8面体の1/8が見えます.この正8面体の残りの部分は,周期的な空間なので,図2のように立方体の壁を突き抜けて存在します.
図1のように並んだ正8面体の間隙には正4面体が4つ入ります(図3).

   図4                   図5                 図6

透明な単位胞の6つの面に,半割の正8面体を図4のように貼りつけました.単位胞内に6つの半割正8面体が入っています.単位胞の中心で,これら6つの半割正8面体の頂点が出会い,正8面体は稜を共有してつながります.
単位胞の中に含まれる正8面体の数は,半割正8面体6個と単位胞の8つの隅に1/8の正8面体がある(6×1/2+8×1/8)ので4個です.
図4をよく見ると,単位胞の内部にあるこの多面体(注)には8個の正4面体の間隙があることがわかります.従って,このような単位胞が繰り返される空間は,充填される正8面体と正4面体の個数比は1:2です.
注)半割の正8面体6つと,正4面体8つでできる多面体は,半正多面体{3,4,3,4}です.

0

会議・研修 物理から数学を作る

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2019.03.05] No.257
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
皆様いかがお過ごしでしょうか.ひな祭りも過ぎ春がもうすぐです.
ご存知の方も多いと思いますが,yahooブログが今年で閉鎖されることになりました.
私は,数学と社会の架け橋<数学月間>を,yahooブログに書き続けていますが,
現時点で延べ47,917人の訪問者があるし,お友達もできて,この縁を続けたいと
対策を考えています.数学月間の会は,https://sgk2005.org/にホームページがあります.
加えて,新しいサイトhttp://sgk2005.saloon.jp/ を準備中で,そこにはブログのコーナーも設け
yahooブログもここに集積するつもりです.
しかし,現在,要の役割をしているyahooブログの地位は捨てがたいので,これに代わる
新しいブログサイトも何処かに開設しお知らせしますので,皆様との縁が続きますよう願います.
そのようなわけで,要のyahooブログが今移動準備状態で,
メルマガで使う図はyahooブログからのリンクで入れていましたので
本号のメルマガ257号は,文章だけとなります.

■液体のジュースの缶と凍らせたジュースの缶があり,斜面を転がしたらどちらが速いでしょうか?
質量は同じで,直径の大きい缶と直径の小さい缶があり,斜面を転がしたらどちらが速いでしょうか?
このトッピックスは,中西達夫著の微積とラグランジアン(工学社)に載っています.
ネットを検索してみると,これらの話題は各所に見受けられます.
中西氏の本では,このような物理(運動)の実験から,問題を解くための微積などの
数学概念手法を説明します.その数学理論が生まれた場に立ち戻り数学を作ろうというのが
数学月間流の数学理解の仕方です.大変読みやすく興味深い本なのでお勧めします.

表題の物理の問題は,缶が斜面を転がる運動は,重心の移動と重心の周りの回転の
両者の重ね合わせと考えます.斜面の上端で静止状態の持つ位置エネルギーが
重心移動の運動エネルギーと重心周りの回転運動のエネルギーに変わります.
すなわち,回転運動のエネルギーに費やされる分だけ,
重心移動の運動エネルギー(1/2)mv^2は小さくなります.
回転させにくい程,回転に多くのエネルギーを使います.
缶の中が凍っている方が回転させにくいし,半径の大きい方が回転させにくいので,
液体の入った缶の方が速く転がり,直径の小さい缶の方が速く転がります.

0

会議・研修 雷に打たれた少女の誤算

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2019.03.12] No.258
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
数学への興味を喚起するさまざまな活動が米国では行われてきました.
教授法の優れた教師の表彰や数学啓蒙の優れた記事を書いたジャーナリスト表彰も行われています.
このたび,Math + Literature = 2019 Mathical Book Prize Winners!の発表がありました.
数学科学研究所(MSRI)は,2-18歳の若者向けの優れた数学文学書(フィクションとノンフィクション)
の2019年の受賞者を発表しました.今年で5年目だそうです.
数学+文学=the Mathical.対象学年別グレード分けがあります.

■3-5学年用の受賞作品
The Miscalculations of Lightning Girl by Stacy McAnulty(Random House Children’s Books)
「雷に打たれた少女の誤算」を紹介します:

12歳のルーシー・キャラハンは4年前に雷に打たれて気を失い心臓が止まったのですが,
アパート管理人が除細動器を使い心臓が再び動き出し救われました.
手をやけどしただけで,変わりないようでしたが,実は数学の天才になっていたのです.
突然,難しい計算をすることができました.医師は後天性サバント症候群と診断しました.
ルーシーの脳は落雷によって損傷を受け,彼女の左脳の一部が閉鎖され,右脳が余計に働くようになった.
ルーシーは高度な数学的計算,暦の数学,数学的パターンの認識を行うことができ,
あらゆる数字が色や形を持つものと認識するようになったといいます.
その他,おかしな習慣がルーシーにできました.細菌を恐れ、触れるあらゆる表面を消毒するようになり,
座る前に3回座る立つを繰り返す儀式が必要になった.
また,何でも読む前に,そのすべての単語を数えることが必須になりました.
彼女の奇妙な習慣のために,ルーシーはホームスクールで学びます.
そして今12歳で高校レベルを通過しました.彼女は大学に進学したいのですが,
彼女の母は大学に行くには若すぎると思っています.
ルーシーの伯父さんも,公立学校に通わせるという母に賛成し,ルーシーは7年生に入学します.
ルーシーは中学校に行きたくはなく大学に行きたい.彼女は自分がオンラインですべてを行えると信じています.

ルーシーは中学で2人の友人を作ります.
ミュージカルが大好きでルーシーの奇妙さに興味をそそられるウィンディ・シットンと,
写真が大好きな男の子リーバイ・ボイドです.ルーシーはからかわれて,「クリーニングレディー」とあだ名されます.
彼女は自分の数学の天才を隠すために,テストでわざと間違えるべき質問の数を計算したりもしす.
ルーシーは自分の数学の能力を使って,ウィンディとリーバイのグループをクラスプロジェクトで支援し,
2人のクラスメートとの友情が深まりますが,ルーシーは自分が数学の天才である秘密は守れると思っています.
しかし、ルーシーは数が特定の事を予測するのを助けることができるが,
人生のすべてが数学方程式で決定されているわけではないことを認識し始めます.
ルーシーは彼女が信頼と友情の意味について多くの誤算をしていることを発見します.

■6-8年生用には,「アポロ8号の宇宙飛行士と先駆的な女性数学者の感動的な実話」が受賞しました.

0

理科・実験 パイレックスガラス★

シリカガラスSiO2の軟化点は1700°Cと高温です.ガラスには明確な融点はありません.初めから乱れた構造ですから液体状態の個体ともいわれます.固体での変形が起こるのは軟化点~1900°Cあたりまでで,それ以上の温度では液体になります.シリカの正4面体ネットワーク中の所々にCaイオンやNaイオンが入ったものが,ソーダーライムガラス(青板ガラスとも呼ばれる)で,ガラスの融点も軟化点も下がり成型が容易になります.しかし,Naの熱振動振幅は大きく,ガラスの熱膨張率は大きくなります.ホウケイ酸ガラスは,ホウ素Bを添加したガラスで,ナトリウムNaの量を減らせるので,熱膨張率を小さくできます.これがpyrexパイレックスガラス(Corningの商標)で軟化点は820℃位で,Nonexという非膨張ガラスの処方も開発されました.パイレックスガラスは,キッチンのベーキング皿にも,温度計にも,ビーカーなど理化学機器にも,1949年に完成したパロマーのヘール望遠鏡の巨大鏡(回転放物面)にも使われています.この巨大鏡はパイレックスガラスの直径5mのガラスのキャストディスクで20トンもあります.この巨大なガラスのキャストディスクの製造では,アニーリング・オーブンに入れて10か月もかけて徐冷したそうです.これを現場に運び凹面(回転放物面)に研磨しました.
しかし,2008年3月14日に パイレックス・ロール板が生産中止をコーニング社は決めました.パイレックスと言えば耐熱ガラスの代名詞で,理化学機器にも使われていますが,望遠鏡用の 大きなガラスも作らなくなりました.どうなることか心配です.コーニング社の製品は,スマートフォン用のGorillaGlassというカバーガラスやエレクトロニクス用の薄い強化ガラスにシフトしたようです.

コーニングガラス博物館は面白そうです.

0