数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
デザルグの定理とは
「⊿ABCと⊿A'B'C'があり,AA',BB',CC'を通る直線が1点Oで交わるなら.
直線ABとA'B'の交点P,直線BCとB'C'の交点Q,直線CAとC'A'の交点Rは,同一直線上にある」
このデザルグの定理の証明は,実はとても難しいのです.3角形を直線が過る図形で生じる長さの比率に関するメネラウスの定理などを使う必要があります.
ところが,下図のように,この図形を平面(2次元)と見ずに,立体(3次元)にあると見ると,ごく当たり前のことを言っていることに気づきます.
2つの平面Ω(薄緑)とΩ’(薄青)が交差しており,△ABCは平面Ω上に,△A'B'C'は平面Ω'上にあります.
光源Oから出る光が,△ABCの影を△A'B'C'に作っています(辺ABの影が辺A'B').
従って,O,A,B,A',B' は,同一平面上にあり,この平面をΣ(薄燈)と名付けます.A,Bを通る直線も,A',B'を通る直線もこの平面Σ上にあり,P点で交差します.
一方,A,B,Pは平面Ω上に,A',B',Pは平面Ω’上にあります.
結局,P点は平面Ωと平面Ω’の交線上にあることになります.
同様にして,QもRも,平面Ωと平面Ω’の交線上にあり,デザルグの定理が証明できました.
■デザルグの定理は,2次元で証明するのは難しいが,3次元では証明が要らないほど自明なのは何故でしょうか.
3次元でこの図のような模型があったとして,これを2次元に射影する(高さ方向をぺちゃんこ)と,直線が交差する状況は変わらないのですが,長さや角度の情報が失われてしまいます.△ABCと△A'B'C'は,それぞれ別の2次元平面にあったものですが,ぺちゃんこにされて1つの平面(紙面)に入ってしまいました.
私たちは,高い次元(2次元の世界から3次元の世界)を想像するのは困難です.デザルグの定理でこれを思い知らされます.
■デザルグは,17世紀初頭のフランスの数学者,建築家.透視図法を発展させた射影幾何学の祖です.ダビンチなどの画家たちは,遠近法や透視図法を古くから用いていましたが,その数学を固め射影幾何学の本を出したのはデザルグが最初です.
その後,射影幾何学が本格的に研究されるのは,200年後の19世紀中葉,ポンスレー(フランスの数学者.ナポレオンのロシア遠征に従軍し,ロシアで捕虜のときに射影幾何学を研究した)を待たねばなりませんでした.
射影幾何学自体,作図など重要な応用がありますが,やはり,19世紀中葉に現れた非ユークリッド幾何学のモデルを作るための重要なツールとなりました.
デザルグの定理とは
「⊿ABCと⊿A'B'C'があり,AA',BB',CC'を通る直線が1点Oで交わるなら.
直線ABとA'B'の交点P,直線BCとB'C'の交点Q,直線CAとC'A'の交点Rは,同一直線上にある」
このデザルグの定理の証明は,実はとても難しいのです.3角形を直線が過る図形で生じる長さの比率に関するメネラウスの定理などを使う必要があります.
ところが,下図のように,この図形を平面(2次元)と見ずに,立体(3次元)にあると見ると,ごく当たり前のことを言っていることに気づきます.
イメージ 2
2つの平面Ω(薄緑)とΩ’(薄青)が交差しており,△ABCは平面Ω上に,△A'B'C'は平面Ω'上にあります.
光源Oから出る光が,△ABCの影を△A'B'C'に作っています(辺ABの影が辺A'B').
従って,O,A,B,A',B' は,同一平面上にあり,この平面をΣ(薄燈)と名付けます.A,Bを通る直線も,A',B'を通る直線もこの平面Σ上にあり,P点で交差します.
一方,A,B,Pは平面Ω上に,A',B',Pは平面Ω’上にあります.
結局,P点は平面Ωと平面Ω’の交線上にあることになります.
同様にして,QもRも,平面Ωと平面Ω’の交線上にあり,デザルグの定理が証明できました.
■デザルグの定理は,2次元で証明するのは難しいが,3次元では証明が要らないほど自明なのは何故でしょうか.
3次元でこの図のような模型があったとして,これを2次元に射影する(高さ方向をぺちゃんこ)と,直線が交差する状況は変わらないのですが,長さや角度の情報が失われてしまいます.△ABCと△A'B'C'は,それぞれ別の2次元平面にあったものですが,ぺちゃんこにされて1つの平面(紙面)に入ってしまいました.
私たちは,高い次元(2次元の世界から3次元の世界)を想像するのは困難です.デザルグの定理でこれを思い知らされます.
■デザルグは,17世紀初頭のフランスの数学者,建築家.透視図法を発展させた射影幾何学の祖です.ダビンチなどの画家たちは,遠近法や透視図法を古くから用いていましたが,その数学を固め射影幾何学の本を出したのはデザルグが最初です.
その後,射影幾何学が本格的に研究されるのは,200年後の19世紀中葉,ポンスレー(フランスの数学者.ナポレオンのロシア遠征に従軍し,ロシアで捕虜のときに射影幾何学を研究した)を待たねばなりませんでした.
射影幾何学自体,作図など重要な応用がありますが,やはり,19世紀中葉に現れた非ユークリッド幾何学のモデルを作るための重要なツールとなりました.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.02.21] No.155
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■ユニット折り紙で作ったダビンチの星型の続きです.これは,
芯に置いた正8面体の各面に正3角錘が乗っている形です.Fig.4
星型の頂点を結ぶと芯にある正8面体に双対な正6面体ができます.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/19/17902919/img_0_m?1486823996
このユニット折紙では,正3角錐の面は正3角形ではなく直角3角形です.
そして,各面はツートンカラーになっています.
対称性を調べると,芯の正8面体の頂点方向に(x,y,z軸)4回回転対称軸,
各正3角形の面に垂直に3回回転対称軸,2つの4回回転軸の中間(同じことだが,2つの3回回転軸の中間)に
2回回転対称軸があります.色の変化を調べると,
4回回転軸により4色の置換,3回回転軸により3色の置換と1色の保存,
2回回転軸により2色の置換と2色の保存が起こります.
この図形には4回軸があるので,色置換の操作も含めて完全な対称性にするには,
塗り分けには4色用いる必要があります.
3回軸の方向から見ると3色見え,見えないもう一色は,
3回軸で保存され,3回軸に垂直な面の大円上にあります.
3回軸の方向は4本あり,3回軸それぞれは,軸に垂直な大円上の色を保存するので,
結局,塗り分けには全部で4色使うという言い方もあります.
■写真(Fig.5)
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/566714/18/17913418/img_0_m?1487566646
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/566714/18/17913418/img_1_m?1487566646
この星型は,立方体の6つの面に,正3角形の面で出来ている正4角錐が乗っています.
芯になる立方体の1辺の長さを1とすると,星型の頂点の高さは√2/2,
もし,星型頂点の高さを立方体の辺の長さの1/2に短縮すると,
星型の凹入角がフラットになり体心格子のデリクレ胞(菱形12面体)になります.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/566714/18/17913418/img_4_m?1487566646
(Fig.6)左が星型正24面体,右が菱形12面体
展開図は色々なものができますが,作りやすいものにするのがよい設計です.
星型24面体と菱形12面体の展開図を比較して見て下さい.(Fig.7)
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/566714/18/17913418/img_6_m?1487566646
美しい形ですので作って見ると良いでしょう.
■正20面体を芯にして,正3角形の各面の上に正3角錘(正4面体)を乗せた星型が,星型正60面体です.
正3角形の面が10個集まっている点と3個集まっている点(頂点)が交互にある星型です.
1枚の連続した紙に展開図を描くことはできません.
写真の星型は,立方体の6つの面に,正3角形の面で出来ている正4角錐が乗っています.芯になる立方体の1辺の長さを1とすると,星型の頂点の高さは√2/2,もし,星型頂点の高さを立方体の辺の長さの1/2に短縮すると,星型の凹入角がフラットになり体心格子のデリクレ胞(菱形12面体)になります.
■星型の展開図です.
展開図はいろいろなものが考えられますが,作りやすいように設計するとよいと思います.
■星型正24面体と菱形12面体
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.02.14] No.154
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
星型を作って見ました.展開図を考えて組み立てました.展開図には色々な変形があり,
紙の使用量が小さくなるようにくふうするのも面白いです.糊代に立体内部から糊付けするのはちょっと面倒でした.
■この金平糖のような形(Fig.1)はダ・ビンチの星型の一つです.芯の部分に正12面体があり,
その正5角形の12個の面の上に,正5角錘が乗っています.だから星の頂点は12個で,
12個の頂点を結んでできるのは正12面体に双対な正20面体です.一つの頂点の真上から見ると,
五芒星と五芒星の中に正5角形が見えます.五芒星の腕の長さと中にある正5角形の辺の比は黄金比です.
この星型多面体の面(2等辺3角形)は,黄金比の三角形です.
もし,面の形を正3角形にすれば,星形正60面体が得られます.どちらもダ・ビンチの橋形と言います.
特にこの写真の黄金比が出て来る方は美しいですね.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/58/17899558/img_1_m?1486673391
■プラトンの正多面体は正多角形の面で出来ている凸の正多面体で5種類あります.
プラトンの正多面体を芯にして,正多角形の各面の上に正多角錘(面は正3角形)を乗せると,
ダ・ビンチの星型ができまので,ダ・ビンチの星型も5種類できます.その作り方から自明ですが,
それぞれのダ・ビンチの星型と対応するプラトンの多面体は互いに双対です.
■例えば,正4面体の4つの面のそれぞれに正4面体を貼り付けた形(Fig.2)を見ましょう.
この星型の頂点は4つで,頂点を結ぶと,また正4面体になります.
これは,正4面体の双対図形が正4っ面体であることからわかります.
正4面体が5つ(芯にあるのは見えません)で出来ています.
これを4次元の世界で組み立てると4次元の正5胞体(5つの3次元の正4面体を面に持つ4次元の立体のこと.
4次元多面体の面は3次元の多面体)ができます.その意味で,この星型は,4次元正5胞体の3次元の展開図といえます.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/65/17901765/img_1_m?1486690977
■もう一つ例をあげれば,正8面体を芯にして,
正8面体の8つの正3角形の面にそれぞれ正4面体が乗っている形の星型(Fig.3)です.
互いに点対称にある2つの大きな正4面体が噛み合った形です.星型の頂点を結んでできる図形は,
正8面体に双対な正6面体です.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/01/17905101/img_0_m?1486868408
■次に示すユニット折り紙も,ダビンチの星型です.正8面体の各面に正3角錘が乗っています.
この折紙では,正3角錐の面は正3角形ではなく直角3角形です.そして,各面はツートンカラーになっています.
この図形には4回回転対称軸や3回回転対称軸,2回回転対称軸などがあります.
これから先はこの図形の対称性と色置換の話ですが,長くなるので次号にします.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/19/17902919/img_0_m?1486823996
星型を作って見ました.展開図を考えて作り,それを組み立てました.展開図には色々な変形があり,紙の使用量を小さくするような工夫も面白いです.糊代に立体内部から糊付けするのはちょっと面倒でした.
■この金平糖のような形(Fig.1)はダ・ビンチの星型の一つです.芯の部分に正12面体があり,その正5角形の12個の面の上に,正5角錘が乗っています.だから星の頂点は12個で,12個の頂点を結んでできるのは正12面体に双対な正20面体です.一つの頂点の真上から見ると,五芒星と五芒星の中に正5角形が見えます.五芒星の腕の長さと中にある正5角形の辺の比は黄金比です.この星型多面体の面(2等辺3角形)は,黄金比の三角形です.
もし,面の形を正3角形にすれば,星型正60面体が得られます.どちらもダ・ビンチの星型と言います.特にこの写真の黄金比が出て来る方は美しいですね.
■プラトンの正多面体は正多角形の面で出来ている凸の正多面体で5種類あります.プラトンの正多面体を芯にして,正多角形の各面の上に正多角錘(面は正3角形)を乗せると,ダ・ビンチの星型ができまので,ダ・ビンチの星型も5種類できます.その作り方から自明ですが,それぞれのダ・ビンチの星型と対応するプラトンの多面体は互いに双対です.
■例えば,正4面体の4つの面のそれぞれに正4面体を貼り付けた形(Fig.2)を見ましょう.この星型の頂点は4つで,頂点を結ぶと,また正4面体になります.これは,正4面体の双対図形が正4っ面体であることからわかります.
正4面体が5つ(芯にあるのは見えません)で出来ています.これを4次元の世界で組み立てると4次元の正5胞体(5つの3次元の正4面体を面に持つ4次元の立体のこと.4次元多面体の面は3次元の多面体)ができます.その意味で,この星型は,4次元正5胞体の3次元の展開図といえます.
■もう一つ例をあげれば,正8面体を芯にして,正8面体の8つの正3角形の面にそれぞれ正4面体が乗っている形の星型(Fig.3)です.互いに点対称にある2つの大きな正4面体が噛み合った形です.星型の頂点を結んでできる図形は,正8面体に双対な正6面体です.
ーーーー
■次に示すユニット折り紙も,ダビンチの星型です.芯にある正8面体の各面に正3角錘が乗っています.この折紙では,正3角錐の面は正3角形ではなく直角3角形です.そして,各面はツートンカラーになっています.
対称性を調べると,芯の正8面体の頂点方向(x,y,z軸上にある)4回回転対称軸,体対角線の方向に3回回転対称軸,2つの4回回転軸の中間(同じことだが,2つの3回回転軸の中間)に2回回転対称軸があります.
4回回転軸により4色の置換,3回回転軸により3色の置換と1色の保存,2回回転軸により2色の置換と2色の保存が起こります.星型の頂点を結ぶと芯にある正8面体に双対な正6面体ができます.
(Fig.4)
この図形には4回軸があるので,色置換の操作も含めて完全な対称性にするには,塗り分けには4色用いる必要があります.3回軸の方向から見ると3色見えます.見えないもう一色は,3回軸で保存され,3回軸に垂直な面の大円上にあります.
立方体では,3回軸の方向が体対角線方向に4本あり,3回軸それぞれに,軸に垂直な大円が色を保存するので,結局,全部で4色使うという言い方もあります.
■写真(Fig.5)の星型は,立方体の6つの面に,正3角形の面で出来ている正4角錐が乗っています.芯になる立方体の1辺の長さを1とすると,星型の頂点の高さは√2/2,もし,星型頂点の高さを立方体の辺の長さの1/2に短縮すると,星型の凹入角がフラットになり体心格子のデリクレ胞(菱形12面体)になります.(Fig.6)
イメージ 1イメージ 2
Fig.5
■星型正24面体の展開図
イメージ 3イメージ 4
展開図はいろいろなものが考えられますが,作りやすいものを設計するとよいと思います.
■星型正24面体と菱形12面体
イメージ 5
Fig.6
星型正24面体 菱形12面体
以下に星型正24面体と菱形12面体の展開図の比較を示します.
イメージ 6
■正20面体を芯にして,正3角形の各面の上に正3角錘(正4面体)を乗せた星型が,
星型正60面体です.正3角形の面が10個集まっている点と3個集まっている点(頂点)が交互にある星型です.1枚の連続した紙に展開図を描くことはできません.
日刊ベリタ(2月3日)に掲載
■2月2日,17時からの東電会見で,福一2号機の格納容器内の映像についての報告がありました.この会見は定例で月・木に行われ,各社の記者にまじって,おしどりマコさんも必ず出席されています.私は,IWJのインタネット中継でこれを見ています.皆様もご覧になることをお勧めします.ただし,東電の説明はとても下手で,一般向けに説明しません.そこで,東電の発表事実を踏まえた上で,私の解説を加えてこの記事を書きました.
■2月2日に発表されたのは,1月30日に実施した挿入カメラによる画像を解析した結果です.この実験は24日,5:30-8:00,26日,5:45-9:10,にも実施されています.カメラは格納容器のX6ペネという導入窓に直径11cmの穴を穿孔(この穿孔も大変でした.詳細は私のブログにあります),物干し竿の先につけた固定焦点のカメラをレールに沿って移動させ挿入しました.2月に,「原子炉圧力容器」を下から支える,コンクリートの部屋(ペデスタル)の中に,自走式のサソリ型ロボットを投入して観察しようというのです.これはそのための偵察実験です.
■原子炉格納容器内で,「圧力容器(原子炉容器)」を支えているコンクリート製の構造物が「ペデスタル」.ペデスタル内に入り天井を見上げると,「圧力容器」の底から出ている多数の制御棒挿入機構や配管が配列しています(正常なら).
原子炉建屋で言うと,「原子炉圧力容器」は2,3階を占め,ペデスタルは地下から1階を占めます.「原子炉圧力容器」を包む格納容器は地階から4階を占めています.
「原子炉圧力容器」の直径は7mほど,高さは22mあり,格納容器はこれを内部に含む大きなフラスコの様な形をしています.
ペデスタルの入り口は,高さ1mほどで,屈まないと入れません.広さは直径7mほどの円形の空間で,天井には「原子炉圧力容器」の制御棒駆動機構に繋がるスタブチューブフランジが並んでいます.この配管に水圧をかけると,上にある制御棒が上昇し,燃料体に挿入される仕組みになっています.3.11の時も,制御棒の挿入まではうまく行ったということです.
■1号機,3号機は,事故当時,ウエットベントが出来ましたが,それぞれの建屋は水素爆発しました.1号機は白煙,3号機は黒煙をあげて爆発したことを記憶されていることでしょう.どちらも核燃料はメルトダウンして,ほぼすべてが溶け落ちた可能性が高いと東電も認めています(2014.8.6).続いて,2号機も2011.3.14日深夜に格納容器圧力が異常上昇するもベントに失敗,圧力抑制室が破損し,直接放射性物質をばらまきました.15日,6時10分に圧力抑制室の圧力が外気と同じ1気圧になったのです.
圧力抑制室というのは,建屋の地下にある直径33.5mのドーナツの様な形の水の入ったプールです.格納容器とはベント管というパイプ(直径2m,8本ある)で繋がっています.
■2号機では,メルトダウンした核燃料の70%~100%が圧力容器の底にたまっているらしいことは,ミュー粒子(宇宙線)を用いた透視で判明しています(2015.3).同様の透視法で1号機のメルトダウンした核燃料は圧力容器にはとんどなく,圧力容器から抜け落ちたことがわかります(IRID資料,2016.10.4).
(注)装荷核燃料の量は,1機あたり約1トンです.
特に,3号機はプルサーマルで,我々の反対を押し切り,プルトニウムを含むMOX燃料が装荷されて運転を始めたところでした.
■1月30日までの2号機での偵察実験でわかったことは以下のようなものです.
サソリ型ロボットを走行させる床(グレーチング)の一部(1m^2)に脱落しかかった場所や脱落や障害物があり,可能であるかも含めて走行ルートの検討が必要である.X6ペネから格納容器内にカメラを挿入したとき,X6の内側で50Sv/h,原子炉直下のペデスタルに達する手前の2.3mの位置で530Sv/h,ペデスタルの入り口付近では20Sv/hの線量率が観測された.東電は明言を避けていますが,格納容器内のペデスタルの外が線量率が高いというのは予想外で,デブリがペデスタルの外に落ちているのではないか.おそらくデブリは水の外に出ていて遮蔽されていないし,事故の経緯を思い出すと,デブリの一部は,格納容器も破り地下の圧力抑制室に達した可能性も考えなければいけないと私は推測します.
核燃料デブリは,高い放射能を持ちます.原子炉に核燃料が入っているから,止めていても稼働しても同じことで,使わないのは損だというような暴論を言う経済評論家が居ります.とんでもない.新しい核燃料は人がそばにいても大丈夫ですが,使用済み核燃料には,核分裂で生じた放射性の高い核種がたくさん含まれます.さらに,核分裂が起きている核燃料からは中性子がたくさん出て,周りの物質を放射化(例えば,構造物のステンレスに当たると,普通の鉄やコバルトを放射性のある同位体に変える)し,これらを含むデブリは高い放射性を持ち人が扱えません.
■今回の放射線量率の算定は,画像のノイズから(誤差が30%と大きい)ということで,東電は確定的な判断は避けています.ちょっと説明不足なので,解説を加えると,画像のノイズは,カメラの中にあるCCD(半導体)に入るγ線のためで,画像に写っている場所から来ているのではない.カメラの通った場所の線量率であります.
今後,ロボット走行のルートが確保でき投入したとしも,サソリ型ロボットの眼となるCCDの累積寿命は1,000Svなので,高い線量率の場所があると短時間で壊れてしまう恐れがあります.また,デブリが地下の圧力抑制室に達しているなら,除去は無駄
ではないかと思います.作業者の被ばく量(現在3mSv/日で管理)はさらに増加するでしょう.