ブログ

2017年10月の記事一覧

ベルヌーイ家の遺した数学

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.10.31] No.191
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
台風が来たり急に寒くなったりですが皆さまお変わりありませんか
私は風邪をひきそうでちょっと疲れが出てきました.皆様お気を付けください.
今日は,「数学文化」28号(2017.8)に掲載した私が書いた書評から一部抜粋し転載します.
ベルヌーイ家の遺した数学,松原望(東京図書)についてです.
この本は,数学も物理も一緒だった興味深い時代のベルヌーイ家が舞台です.場所はスイス,バーゼル.
今日は,物理学と数学は分離し,数学は高度に抽象化してしまったが,ベルヌーイ家の時代はそうでなかった.
物理の研究に必要な数学が,自分の手で次々に開発されていく時代でした.

■数学と物理の歴史で,血沸き肉躍るエポックメーキングな時代が2つある(私にはそう思える).
一つは,この本のテーマの「ベルヌーイ家の時代」17c~18c.
もう一つは「量子力学の誕生前夜」20c初頭~中葉である.
その時代の当該分野の研究者たちは,実に楽しかったろう.うらやましい限りだ.
後者の「量子力学の誕生前夜」,すなわち,前期量子論の幕開けは,
光電効果(アインシュタイン)や,原子のスペトルなどの現象が,
当時の物理のパラダイムでは説明できないことから始まった.
X線の発見(レントゲン)は20cの夜明に相応しく,
有名なラウエの実験やブラッグ父子による結晶の原子的内部構造の解明へと発展し,
「原子・量子」のパラダイムが出来上がった.この「原子・量子」の時代の到来は,
本書に登場するダニエル・ベルヌーイが先駆となる統計力学,気体運動論の後に続くものである.
「原子・量子」の幕開(20c)けに必要となる数学は,17c~19cに,すっかり準備されていたことは興味深い.
その中心が「ベルヌーイ家の遺した数学」である.

結晶空間群の数え上げは19c後期だが,17cにはアウイなどによる結晶面の有理指数の法則が知られ,
これは,結晶内部が単位胞の積み重なったデジタル空間であることに他ならない証拠である.
固有値問題を解くための行列論は19c中葉だが,18世紀初頭には,ヨハン・ベルヌーイとダニエル・ベルヌーイ,
ダランベールおよびオイラーらが,弦の運動で固有値問題を研究している.
量子力学で使われる波動方程式の一般解は,18cにダランベールにより研究されたが,
18c末に境界条件下の波動方程式の解法にダニエル・ベルヌーイがFourier級数を用いたことが本書に紹介されている.
Fourier解析は19c初頭にはフーリエが発明している(厳密な証明は後の時代を待つ).
ニュートン力学を一般化し,どんな問題にも容易に適用できるようにした解析力学の誕生は,
ベルヌーイ家の大きな遺産と言えるだろう.
モーペルテュイは,始状態から終状態への運動経路には,作用と呼ばれる積分量が定義でき,
作用が最小となる経路が実現される.「これが物理学のみならず,万物の運命を決める原理である」
という着想ー”最小作用の原理”ーを得た.
正確には,「作用が停留値をとる経路が実現する」というのが正しいことが後に分かるのだが.
オイラーは,モーペルテュイの作用量の定義を積分に拡張し,さまざまな力学課題に適用できるようにし,
これを解く変分法を発明したのは若いラグランジュであった.
変分法で導かれる運動方程式が,オイラー&ラグランジュ方程式という所以である.
変分法は,最速降下曲線を求めるというベルヌーイ家からでた問題に端を発したもので,
解析力学を生みその形式が量子力学にもつながることになる.
変分法は,ベルヌーイ家の最大の数学遺産といっても過言ではないと思う.

脱線ついでに,数学の歴史でエポックメーキングな時代は,私の好みでは,
「非ユークリッド幾何」の発見の時代(ガウス,ボヤイ,ロバチェフスキ,リーマン,ポアンカレ),
もう一つは,マンデルブロが開拓した「フラクタルの時代」だと思う.
カントール,コッホ,ペアノ,シェルピンスキーなどのフラクタル曲線は至る所ギザギザで微分できない.
これは,ヨハン・ベルヌーイ時代に,盛んに研究された曲線とは全く異なる範疇のものである.

■お知らせ
数学月間勉強会(第3回)
結晶空間群で数学と物理を学ぼう
12月12日,14:30-17:00
東大出版会,会議室(駒場留学生会館の敷地内の奥.東大構内ではありません)
詳細は,数学月間ブログなどに掲載しています.
問い合わせ先:sgktani@gmail.com

0

万華鏡の不思議

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.10.24] No.190
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
10月21日,10:10-12:00,数教研の合同研究会(産業会館,新宿)で,
「万華鏡の不思議」という話をしました.万華鏡も作りました.
衆院選挙の前日,大型台風21号の上陸前日で,一日中冷たい雨が降っておりました.
意地悪なことに,まるでこの日に照準を合わせたようです.
私は,期日前投票を済ませて参加しました.忙しい時期にご参加いただいた皆様に感謝です.
改憲がちらつく選挙前日のことでもあり,雑談から入りました.
私の名前は,父が南方の戦地に行く前に準備し,もし男の子だっら**と「勝」が入ったものでしたが,
届出のときに母が「克」に変えたのです.この名前,最近は流行りませんね.
「勝」は戦争中に流行った名前です.戦後の新宿の焼け跡や傷痍軍人の話,
小学校の2部授業,戦争の悲惨さを見,平和憲法を心から理解し,指導要領にしばられない授業がありました.
私が毎日書く日記に,毎日赤ペンでたくさん感想を書いてくれた先生のことなど思い出し話題にしました.
本題の「万華鏡の不思議」の内容は,ブログの別項目をご覧ください.
■鏡像の世界というのは不思議なものです.紙に書いた線対称の2つの図形(互いに鏡像)は,
紙面の上でどのように動かしても重ね合わせることはできません.
しかし,線対称の線で折り返せば2つの図形を重ね合わせることができます.
紙を折るという操作は,3次元の世界で出来ること.2次元(紙面)の世界に住むものには,想像できません.
同様に,右手と左手は3次元の世界で互いに鏡像ですが,
3次元の世界の中でどのように動かしても重ね合わせることはできません.
これらを重ね合わせることができるのは4次元の世界です.
大きな鏡が前にあるとします.鏡の前にある私たちの世界は,そっくり鏡像となって鏡の後ろにあります.
一方,その場所は,私たちの3次元の世界も実在します.不思議ですね.
太古の時代は,鏡の世界と私たちの世界は行き来ができる混沌としたものだったが,
黄帝が鏡の世界のものがこちらの世界に出てこられないように閉じ込めたという神話めいた話も信じたくなる気がします.
■(H29.4)全国学力テスト中学3年生.数学Bの1に万華鏡の問題が出題されています.正答率は低いとのことです.

https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/83/18267783/img_0_m?1508769250
★図4は正3角形の鏡室の万華鏡ですが,観察される映像はどれでしょうか.
★図5は2つの菱形がありますが,どのような運動により重ね合わせることができますか.
この問題は,3回回転軸が図の中にどのように配置しているか書き込むとよいのです.
するとB点には3回回転軸があることがわかります.2つの菱形は,この3回回転軸により移ります.
★図6の映像を作る万華鏡はどれでしょうか.
この問題の解き方は,映像に鏡映対称面(線対称)を書き込むと自然にわかります.
赤い線で書き込んだものが鏡映対称面です.万華鏡は鏡で囲まれた部屋(鏡室)で出来ています.
どの鏡室の図が正しいでしょうか.

0

ばくうこま

00014
東京おもちゃまつりで入手したバクウ・コマの動画をとりました.観察すればするほど大変興味深い.

 

おばんです^^/

中央の円のセンターがずれているので^^その振動で外側の駒が回るんですね!面白いです^^v

動画を見せて下さって<(_ _)>ありがとうございます。 

[ 愛ニャンコマリアと家庭菜園 ]

2017/10/18(水) 午後 5:32

返信する

> 愛ニャンコマリアと家庭菜園さん
そうですね.動画を見ないとわかりにくいですね.振動により両側のコマに回転が起こります(互いに反対まわり).振動を回転に変えるには軸受け穴に多少ガタがあるのがミソです. 

[ sgktani ]

2017/10/18(水) 午後 6:44

返信する

0

東京おもちゃまつり

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.10.17] No.189
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
<東京おもちゃまつり>が,東京おもちゃ美術館にて,10月14,15日に開催されました.
両日とも冷たい雨の降るあいにくの天気でしたが盛況でした.
私は10月15日に出かけ,バクウ研究所の富川義朗先生と佐藤芳弘先生にお会いしました.
いろいろな面白い「ばくうコマ」の展示があります.原理はなかなか奥が深い.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/73/18258773/img_0_m?1508164222

■振動で廻す
富川先生たちは,振動を回転運動に変える超音波モータの発明者です.おもちゃのトントン・コマはその応用です.
ミラクル・ツインという「ばくうコマ」は,中央の偏心した回転子が発生する振動を,
左右に置いた円板の軸受け穴に伝え,軸芯に回転モーメントを発生させるのです.このとき左右円板の回転方向は反対になります.
これはジャイロ・モーメント・モータの原理と同じとのことです.
■錯視を起こさせる(4回対称模様が3回対称に見えたり,5回対称に見えたり)のは,
軸芯自身の回転(=自転)に,軸芯が沿って転がる回転(=公転)が,加算/減算されることが原因でしょうが,
1回転の内に回転速度が3回/あるいは5回遅くなるというようなことが起こるのでしょう
(もし均一に回転しているなら像が流れてしまい何角形かはっきり認識できないでしょう).
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/73/18258773/img_2_m?1508164222
-------------------
お知らせ
10月21,22日に数教研の合同研究会が新宿であります.21日10:00-12:00は講演「万華鏡の不思議」で参加します.万華鏡も作ります.
詳細は以下をご覧ください. http://www.sukyoken.jp/…/the…/wp-sukyoken/img/notice_sep.pdf
お近くの方どうぞご参加ください.

0

最近思うこと

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.10.10] No.188
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
前号で9月26日に実施した数学月間勉強会(第2回)の様子をご報告しました.第3回は12月12日の予定です.
次回の第3回は,このシリーズ「結晶空間群で数学と物理を学ぼう」のクライマックスです.
多くの方のご参加をお勧めします.
その後の9月末から,公私にわたり色々なことが起こりました.今日は衆院選の公示の日ですね.
私事の方からご報告します.9月29日(金)に入院・手術をし,予定通り,月曜日に退院しました.
土日を含む3泊です.用事が一段落するこの時期まで2年越しで延期していた前立腺肥大の手術です.
お陰様で予定通り順調に終わりました.この手術は,従来の電気メスでは2週間の入院が必要で躊躇していましたが,
ホルミウム・ヤグ・レーザーでは3日の入院で治りも早いのです.
ホルミウム・ヤグというのはレーザー光を発振させる結晶の名前です.
ホルミウム・ヤグ・レーザー光の波長は2.1μmの長波長赤外線で,水に吸収され組織到達深度は0.4mm.
出血もほとんどない素晴しい医学技術です.
手術時間は長時間かかりましたが,患者は頑張りません.お医者さんが頑張りました.
病院食は美味しく11食全部完食.看護師さんはきれいだし,天国の様.でも本当に天国に行かなくてよかった.

さて,私がインターネットもTVも見なかった3日間に,政局好きなマスコミの興味は政権交代ばかり煽っていました.
細川新党のときも2大政党とか言って小選挙区制を煽ったのはマスコミでした.
私たちは,安倍政権は当然総辞職くすべきと思いますが,希望の党に政権交代すればよいと思っていません.
その後,希望が出した踏み絵で皮肉にも民進党が分解してたいへんわかり易くなりました.
福袋のような政党では投票することができませんから良いことです.
この選挙の争点は,憲法を改正するか守るかです.雑音に惑わされないようにしましょう.

0

数学月間勉強会(第2回)の報告

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.10.03] No.187
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
9月26日,14:30から,数学月間勉強会(第2回)を開催しました.様子をご報告します.
第1回は,空間の周期でしたが,今回,第2回のテーマは,有限図形の対称性(点群)でした.
次回,第3回は,周期的な空間に点群を配置して,繰り返し模様の対称性(結晶空間群)を構築することになります.
鏡映面だけから生まれる対称性の例として色々な万華鏡と,
その万華鏡の映像が群を生成する場合としない場合の説明をしました.
参加者の三野さんは,ゾムツールで作った格子を展示しました.
■さて,今回考察する有限の対称図形の例は,皆さまの馴染み深いプラトンの正多面体5種類から始めました.
すなわち,正4面体{3,3},正6面体{4,3},正8面体{3,4},正12面体{5,3},正20面体です{3,5}.
ここで用いた{p,q}の記号は,シュレーフリの記号といい「正p角形が頂点でq個集まっている正多面体」を記述しています.
p,qを入れ替えた{q,p}の図形は,{p,q}と互いに双対と言います.p,qを入れ替えるというのは図形で言うと,
頂点を面に/面を頂点に替えた図形ということです.すなわち,{4,3}と{3,4}は双対,{5,3}と{3,5}は双対です.
互いに双対な図形の対称性(点群)はもちろん同一です.
ある正多面体や,互いに双対な正多面体を組み合わせて(混合して),
頂点を切る(切頂)操作で色々な半正多面体が得られますが,
生まれた半正多面体は,もとになった始めのプラトンの正多面体と対称性(点群)は変わりません.素性は隠せないのです.
周期的空間=結晶空間で,可能な点群の回転対称には制限があります.
許される回転対称は,2回軸,3回軸,4回軸,6回軸だけです.
何故かというと,正5角形や正7角形のタイルでは隙間なく平面が張れないからです.
従って,正12面体(正20面体)の点群は結晶点群ではありません.3次元の結晶点群は32種類あります.
■今回の主題は,点群を2つの群の積に分解して,その群の構成を見る群論手法を説明です.
群Gの中に正規部分群Hを見つけると,「商群G/Hが作れて,G/Hはより小さい群(Gの部分群)G’に同型である」
という準同型定理を応用しています.群Gの要素で注目したある性質が同じとする基準で要素を束ねたものを考えると,
群Gはより小さな群G’に写像できるというわけです.記号で書くと,G/H=G’
これは,群Gの正規部分群をH,部分群をG'として,これらの積で群Gが作れるということです.正確に言うと,
G=H(x)G',G=H(s)G',G=H(・)G'(modH)のどれかのタイプの積で作られます.
(x)は直積,(s)は半直積,(・)は条件積と言います.[数学記号(環境依存文字)は,〇の中にxやsや・が入ったもの]
条件積が現れる最後の群では,G'(modH)は,Hの要素だけ異なるものは同値と思えという条件で群が成り立つという意味.
modは法としてと読みます(時計で13時と1時が同じなのは,mod12で数えるから).
文章での説明は,ここまでにしますが,詳しくは私のブログをご覧ください.
勉強会では,ここで必要になる:正規部分群,準同型定理,直積,半直積の説明をしました.
条件積の具体的な例として,4回対称群4の分解結果を掲載しておきます;4=2(・)4(mod2)
■次回第3回は,11月末あたりを予定していますが,まだ確定していません.
決まりましたらお知らせをします.

0