ブログ

2015年6月の記事一覧

統計数理研究所オープンハウスの話題

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.30] No.070
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
6月も末になりました.今年は梅雨らしい雨がありません.
皆様の方は如何でしょうか.いよいよ数学月間(7/22~8/22)
の月になりますね.
----------------
6月19日に統計数理研究所のオープンハウスがありました.
(統計数理研究所は立川にあります)
統計数理研究所には,
モデリング研究系,データ科学研究系,数理・推論研究系
の3つの系があり,各系にはそれぞれ3つのグループがあります.
オープンハウスでは,100件に近いポスター展示
(大学院生のポスター発表も27件含まれる)がありました.
午後は,「統計よろず相談室」や講演などがありこれも人気でした.
ポスターで興味深かったテーマを一つだけ紹介します.
--------------------------------------
電波干渉計の新たなイメージング法について,池田思朗准教授ほか

電波望遠鏡(アンテナ)を地球規模で複数個配置し,
各アンテナで受信する信号の相関処理をして,一つの仮想的な
巨大望遠鏡としたものを電波干渉計と呼ぶそうだ.
受光電波はcmオーダーのミリ波らしい.

(注)
* ALMA望遠鏡(チリ共和国北部にあるアタカマ砂漠の標高約5000メートル
の高原に建設される)は,66台以上の電波望遠鏡を並べ,
これらの受信データを組み合わせて一つの巨大な仮想望遠鏡とする.

* 赤外線に近い電波を「サブミリ波」波長=1~0.1mm,周波数=300GHz~3THz
少し波長が長い電波を「ミリ波」波長=10~1mm,周波数=30GHz~300GHz

ブラック・ホールからは光が来ないと思っていたが,
ブラック・ホールの口で生じるプラズマから光(電波)が来るそうだ.
この光を受光して,光源の像を得ると円環状で,
ブラック・ホールの穴の形が見えるらしい.

これは宇宙オーダーの話だが,物質からのX線散乱を観測して
物質の原子的構造(nmオーダー)を見る話と非常に似ている.
そこで,私になじみのある結晶の例で理解を試みようと思う.
結晶(物体)ρ(r)からでる散乱X線F(R)は,Fourier変換の関係にあり
F(R)=W・ρ(r), ここで,WはFourier変換の演算行列.
もし,F(R)がわかれば,逆変換ρ(r)=W^-1・F(R)で,
ρ(r)が求められる.しかし,実際に観測できるのは,
複素数F(R)の大きさ|F(R)|のみで,位相はわからない.
だから,位相の推定法が,結晶学の主要な課題になっている.
位相推定には,逆空間をNyquist周波数以上でサンプリングする
オーバーサンプリングの測定も最近やられるようになった.

(注)
* 我々のいる観測空間は,物体ρ(r)のFourier変換スペクトルF(R)
の観測をするので,逆空間(R-空間)と呼ばれる.
これに対し,物体のある空間を実空間(r-空間)と呼ぶ.

宇宙からの電波の受光では,位相は計測できるようだ.
問題は,受光アンテナを乗せている地球が,
観測空間(逆空間)内の限られた軌道上を動く(自転や公転)だけなので,
限られた逆空間のデータしか観測できないところにあるらしい.

位相はわかるにしても,圧倒的に狭い逆空間内の観測データだけから,
逆Fourier変換で光源の形を求める課題である.
つまり,F(R)を観測できずに,圧倒的にゼロの多い2次元行列Fo(R)
しか得られず,この2次元行列を逆Fourier変換し,
光源のイメージ(2次元画像)を得なければならない.
おそらく,観測スペクトルFo(R)とモデルイメージのFourier変換像W・ρ(r)
との差||Fo(R)-W・ρ(r)||が最小となるように最小2乗法でρ(r)を求める
と同時に,観測できなかった範囲の逆空間の推定値も決まるのだろう.
もしかして,このプロセスで,光源の中心対称性などの光源の形に関する
何らかの束縛条件を仮定して推定を進めるのかもしれない?

(注意)この解説は私の推測を補っています.
発表内容の詳細を全部把握したわけでないので
不正確な部分があることをお断りしておきます.

0