数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
科学者であるストークスは、数学から美的快楽と実用的満足感を得た。半収束級数の指摘、完全収束または限定的収束の無限級数の研究、整数列と級数の一様収束の概念の導入、ベクトル解析に取り組んだ。彼が提案した最も重要な公式の一つは、彼の名が冠されたストークスの公式です。
[訳注]
ベクトル場の回転を閉曲面上で面積分したものは、ベクトル場を閉曲面の縁で周回線積分したものに一致するというものです。
ベクトル場A(x,y,z)とは、平面あるいは空間の各点でベクトルが定義されているものです。例えば、天気予報で風の向きと強さが矢印で描き込まれたマップをよく目にすることがあるでしょう。
ベクトルの回転は,上の式でrotAと書かれているものですが,ベクトル解析は別の稿にまわします。話をもとに戻します。
1849年には友人のトムソンがストークスからこの公式を入手しています。ストークス自身は、1849年から1882年まで毎年行っていた数学の試験にこれを含めることが有用であると考えていました。 1910年には、ドイツの理論物理学者A.I.W. Sommerfeldがストークスの結論を4次元空間に一般化しました。J.C.マクスウェルは、彼の論文 "On Faraday Force Lines" (1885-1886)で、ストークスの結論をベクトル解析の重要な定理として、C.F.ガウス、J.グリーン、M.W.オストログラドスキ、W.トムソン、そしてもちろん、J.G.ストークスの名を冠した。
当初、科学者たちは、液体や気体の力学と固体の力学には共通点がないと考えていました。しかし、1845年、ストークスは固体と粘性液体の共通の性質を発見しました。固体物質の可塑性が高まると弾性が低下し、固体は液体状態になっていくという結論です。ストークスの考えは価値あるものであることが証明され、その後の一連の科学的研究を刺激しました。
フランスの科学者L.M.A. ナビエ, O.L. コーシー, S.D. ポアソンなどが粘性流体の研究に成功しました。ストークスは1849年に彼の論文「移動する流体の内部摩擦の理論と弾性固体の平衡と運動について」で、粘性流体と気体の微分方程式を導出することによって、ナヴエの理論を補完しました(分子の概念とは無関係です)。これらは今日ではナビエ・ストークス方程式として知られています。この科学者に敬意を表して、CGS単位系で動粘度の単位は、後にストークス(ロシア語表記:St、国際St)と呼ばれるようになりました。国際単位系では、粘度のSI単位はm^2/sです。
ストークスは層状境界層の理論も構築しました。彼は乱流における層流の遷移の事実を確立した - 最初は液体の流れる水道管や物体に対して(研究は抵抗の値に境界層の剥離の影響を研究するために実施された)。時を経て、船、航空機、タービン、蒸気機関の高速化に起因する乱流の理論が大きく発展しました。
科学史家 I.B. Pogrebyskii が定義したような、物理的側面への注目、実験結果の考察、運動の明確な運動学的描写、オリジナルの動的原理の網羅的な定式化、これらすべてが、理論の成功した応用と組み合わされて、ストークスの研究は粘性流体の理論に関する更なる研究の主要な出発点となりました [3, p.127]。
分子間の距離や分子間の相互作用による液体速度の不規則な成分を無視して、ストークスは液体粒子の近傍での液体の平均的な規則速度のみで計算しました。彼が粘性流体の運動方程式を導出することを可能にしたのは、流体粒子のひずみ速度の6つの成分に対する応力の6つの成分の線形依存性に基づくと仮定したからです。
流体を連続的な媒体として考えたストークスは、「内部摩擦」の概念を採り入れ、その計算に基づいて、円柱内の粘性流体の回転に関して、ニュートンの解析を修正した。ストークスが示したように、ニュートンの間違いは、液体中の隔離された各層の外部表面と内部表面に作用する摩擦力のモーメントの代わりに、力そのものを考慮したことである。ニュートンは、流体粒子の1回転の時間が円筒状の層の半径に線形に依存することを発見し、ストークスの結果から、時間は半径の2乗に比例することがわかりました。その結果、円筒管内の定常流における粘性非圧縮性流体の流量についても、ハーゲン-ポワズイユ式を理論的に説明できるようになった。やがてストークス自身も、速度の時間変化の法則を記述した微分方程式を得ました。
1851年、科学者は、束縛されていない粘性流体の中で、そのゆっくりとした均一な運動の間に小さな固体球に作用する抗力Fの公式を導出しました。ストークスの公式はF=6πRηu形です。ここでRとuは球の半径と速度、ηは流体の動的粘性係数で、この法則は非常に小さな半径でも真であることが判明し、A.アインシュタインは後に糖分子の半径を測定するためにこれを使用しました。
ストークスの法則は、新しい研究で広く使われました。私は、A.アインシュタインによるブラウン運動の計算、J.J.トムソンによるイオンの電荷の決定、R.ミリカンによる電子電荷の決定を思い出します。ミリカンの実験と自身の実験を分析した結果、ミリカンがストークスの公式で誤って空気粘度の値を使ったので、素電荷を正確に決定することができなかったことがわかりました。このチェックの結果は、ストークスの法則の正しさの確認になりました。
論文 "移動する流体の内部摩擦の理論について" (1845) で、ストークスは物体が等時性振動を起こすのは、小さな変形範囲では、物体に生じる応力が変形量に比例するという事実によることを示し [4, p. 116]、橋梁のたわみについても研究しました。ウェールズの鉄道橋の崩壊を知り、変形したときの鋳鉄の脆さが原因であると解明しました。ストークスの橋梁の動的たわみに関する研究は、工学的な応用研究に近いものです。
弾性の理論を扱い、弾性体と塑性体を考察し、自然界では弾性と塑性は切り離せないものであり、実際には両者の間には急激な変化はないと考えました。
ストークスはまた、液体の中での音の吸収についても研究した。しかし、彼は粘性を散逸(散逸)メカニズムと考えながらも、熱伝導率を考慮に入れていなかったため、彼の分析は不完全なものでした。しかし、J. R. von マイヤー、J. P. ジュール、H. L. F. von ヘルムホルツがエネルギー保存法則を発見(当初は不信感を持って科学界に受け入れられていた)をするまでは、これを解決できませんでした。
ストークスは科学活動の初期の頃から、主要な力学者、流体力学者としての地位を確立していました。F. E. ノイマン、J.A.ポアンカレ、P.M.M. デュエム、T.レヴィ=チヴィタ、M.V.オストログラドスキー、P.L.チェビシェフのように、彼は力学の理論的基礎の開発に貢献しました。同時に、弾性理論は、彼によって開発されました。 1860年代までに。若いジョージ・ストークスは、ケンブリッジの科学界で、理論力学、数理物理学、水力学の熟練した研究者として、光学の専門家として、同時に新世代の科学者たちの辛抱強く親しみやすい教育者としても知られるようになりました。
ジョージ・ガブリエル・ストークスの生誕200周年の節目に
«ПРИРОДА» №1, 2020,ロバート・シュチェルバコフより,
教育学博士(エストニア,タリン)
https://elementy.ru/nauchno-populyarnaya_biblioteka/435633/Dzhordzh_Gabriel_Stoks_klassik_matematicheskoy_fiziki_KhIKh_veka
J.G.ストークス(1819-1903)は、アイルランド出身の英国の数学者、機械工学者、物理学者:理論力学、流体力学、弾性理論、振動理論、光学、数理物理学、数理解析。彼はロンドン王立協会の会員であり、その秘書兼会長を務め正確な科学を推進した。
19世紀のイギリスでは、数学的分野とともに物理学的分野も発展しました。伝統的な自然哲学(当時は自然科学と呼ばれていた)から、独自のアプローチと方法を持つ独立した科学、物理学が誕生し、最初の物理研究所が誕生しました。
彼の同胞の多くと同様に、J.G.ストークスは、19世紀の自然科学の中心地であったケンブリッジの伝統を大切に守り発展させました。理論的な力学と光学の問題を解くために、まず第一に数学的方法を用いることです。研究に実験を適用することはごくまれでした。
科学者としてのストークスの形成
プロテスタント福音司祭ガブリエル・ストークスの6人の子供の末息子であるジョージは、1819年8月13日にアイルランドの村で生まれました。
家族は宗教的であり、彼の兄の3人は後に司祭になりました。そして彼自身、科学に専念し、生涯を通じて世界に対する彼の宗教的な世界観を保持しました。
1835年には 16歳のジョージはイギリスに渡り、ブリストルカレッジに入学しました。2年間の見習い生活は、彼の数学的能力の開発に重要な瞬間であり、ケンブリッジでの彼の研究のために自分を準備するのに役立ちました。1841年、ストークは大学で教育を受け、ケンブリッジでは教職にも就き、1849年には数学のルーカス・チェア(世界で最も権威のある学術的地位であるルーカス数学教授を、記録的な54年間務めた)を受けました。当時はJ.ニュートンが会長を務めていました。
ストークスは66年間の科学的活動において、機械工学と光学の古典的な研究から、地球の重力場、仮想エーテル、スペクトル分析の応用まで、彼の世紀の物理学のほぼすべての分野をカバーしました。ただし、電磁気学だけは彼の興味の外になりました。これらの科学分野では、ストークスは、数学的方法のエキスパートだったので非常な成功を収めました。
F.クラインが強調したように、イギリスの数理物理学は、ストークスとウィリアム・トムソン[訳注)やはりアイルランド出身で同時代の物理学者]がケンブリッジの若い才能に現れて以来、途切れることなく華麗な上昇を続けました。ストークスは1837年から死までの66年間、最初は研究者として、次に教育者および管理者として、ケンブリッジに住みました。優しい個性で、彼の広範で継続的な非常に有益な活動を行いました [1, p. 259]。
ストークスは、ケンブリッジのペンブローク大学の部屋で数学を応用して実験を開始しました。1871年から1872年にかけて、イギリスの科学者たちがオックスフォード研究所や(J.C.Maxwellの努力により)ケンブリッジ大学のキャベンディッシュ研究所などの物理学研究所を設立したのは、正確な体積測定の必要性が高まってきたからに他なりません。52歳のストークスにとっては残念ながら、少し遅かった。
開所当時、J.K.マクスウェルの研究室を訪れたA.G.ストレトフによると、当時、物理学の研究は長い間、数学のコースに含まれており、物理学のための特別な学科の存在は、その用語自体と同様に新しいものでした。1871 年までケンブリッジでは数学の一部としての光学と化学の一部としての熱の章だけが教えられていました。電気と磁気の広範な科学は全く教えられていませんでした [2, p. 342]。
おそらく、このことが、数学、理論力学、光学、仮想エーテルなどの科学活動の方向性と、そのような英国の科学者(ストークスを含む)の選択ができたのでしょう。ストークスは時折、今日の基準では最も単純な実験的調査を用いて、彼が既に行った理論的な結論を徹底的にチェックしました。
ストークスの研究における力学と流体力学
J.G.ストークスは、J.グリーン、W.トムソン(ケルビン卿)、W.J.M.ランキン、O.レイノルズ、J.W.ストラット(レイリー卿)らとともに、数学的手法の開発に成功した。- 数学的方法の開発に成功し、古典的な数学物理学の発展に貢献し、当時の物理学や工学の問題に数学を適用した。その世代の科学者のおかげで、熱伝導、拡散、弾性と運動の安定性の理論、振動と波動の過程、光学、電位理論と電気力学の多くの問題を解決するために数理物理学の方法が開発されました。これらの方法は、現代の物理学、工学、産業界に関連しています。
J.G.ストークスの親しい同僚、教え子、友人たち。
左から、J.C.マックスウェル、J.W.ストラット(レイリー公)、W.トムソン(ケルビン公)。
ストークスの光の波動理論の研究
ちょうどこの頃の科学の世界では、物理学の機械化や弾性理論の基礎とともに、光の波動説が生まれ、O.J.フレネルの「準固体エーテルは動く物体に部分的に付随する」という仮説が出て、エーテルの数学的な理論も登場してきました。このような展開の中で、ストークスは重要な役割を担い、特に光学の発展に大きく貢献しました。ストークスは生涯にわたって光の波動理論の支持者であり続け、適切な数学的装置を使用し、実験はニュートンとほぼ同じ条件で行われました。[訳注)ニュートンは光の粒子説でした]
上図は,ストークスシフトの概念図.これは、吸収スペクトルと放出蛍光スペクトルのずれを示しています.横軸は波長です.蛍光スペクトルは吸収スペクトルより波長が長い.
ストークス(彼の多くの同時代人と同様に)は光の収差、ニュートンリング、光の干渉と偏光、および媒質を通過する波動、スペクトルなど光学現象を研究しました。ストークスの波動理論への貢献は非常に大きい。彼の学生であるストレットは論文「波動光学理論」で、J.G.ストークスを(O. J.フレネルに次ぐ)引用数2位としました。 [ 4、p.206]
1852年、ストークスは電磁波の偏光ベクトルを表す量を提案しました。彼によって導入されたパラメータは、列ベクトルであり、光強度の次元を持つています。詳細なパラメータは、総強度、偏光度、および楕円偏光度を使って、インコヒーレント光や部分偏光を記述できます。
ストークスは、蛍石(フルオライト)の観察中に発見した発光も扱っています。同じ1852年に、ストークスは、フルオライトによって放出された光線は吸収された光線よりも屈折が少ないという結論に達しました(後にE.K.J. vonロンメルとS.I.バビロフによって一般化された)。蛍光の波長は励起光の波長より長い。ストークスにちなんで名付けられたこの規則は、蛍光(フォトルミネッセンス)の量子性を示すものだったのです。
1879年、ロンメルは、スペクトルの一部で放射周波数が励起光の周波数よりも高いことを発見しました。ストークスの法則と矛盾するスペクトルのそのような部分は、反ストークス線と呼ばれていました。ストークスは、ニュートンが提案したクロスプリズムの方法に続き、クロスフィルターの方法による発光の観測を導入し、発光を利用した近紫外領域の検出・研究方法を提案しました。
1905年、アインシュタインは彼の記事「光の出現と変換に関する発見的観点について」で次のように述べています [ 5、p.103]。光が量子で構成されている場合、ストークス規則からの逸脱は2つの理由で可能です。1つは、単位体積あたりの量子の数が多い場合(励起された光の量子は多くの励起された量子からエネルギーを受け取ることができます)。第二に、発光中に放出された量子のエネルギーが励起量子のエネルギーよりも大きい場合。
ストークスの時代には、発光に関する研究は偶然の性格を持つものでした。バビロフはその基礎研究に人生の30年を捧げました。ストークスの法則の限界を決定し、熱力学の第二法則の始まりとストークスの法則を関連付け、発光の絶対収量を定式化し、その種類を分類し、放射体の性質に関連づけたのは彼でした。そして1950年には「光の微細構造」にまとめている。その少し後にバビロフは、主にストークスのルールを含むいくつかの一般的な法則を発見したにもかかわらず、発光は物理学の人里離れた島のままであると書いた。アインシュタインがストークスの法則の意味を説明できたのは、1905年の量子論に基づいてのことです。1913年にはボーアの原子構造の量子論によって、発光の全分野、そのすべてのセクションの主要な特徴が明らかになりました[6, p.335, 338]。
エーテル理論のどれが正しいと考えられていますか?
ストークスは長寿だったので、エーテルのいくつかの理論の変遷を見ました-エーテルとは、その振動が可視光を含む電磁波として現れるような一種の万能媒体です。O. J.フレネル、O.L.コーシー、W.トムソン、H.A.ローレンツ、J.A.ポアンカレ、M.C.E. L. プランク、等がエーテルの解釈を提案しました。ストークスも関心がありました。
異なる科学者の考えにおけるエーテルは、均質性、圧縮性などの程度、および軌道上を移動するときに地球によって運び去られる程度が異なっていました。エーテルの特性についての理解に応じて、科学者はマクスウェルの方程式をさまざまな方法で解釈しました。ご存知のように、ストークスとトムソンはそれを抑制して扱いました。エーテルの否定は、アインシュタインによる相対性の理論の後です。
特に、フレネルはエーテルが非圧縮性であるという仮説を提唱しましたが、それは物質中を透過するのが困難である横方向のせん断を可能にします。ストークスは、樹脂のように、エーテルは急速な変形の間は剛体のように振る舞い、惑星が動くときはプラスチックのように振る舞うという事実によってこの困難を説明しました。1839年、コーシーは収縮するエーテルの理論を作りこのモデルを改善、これは後にトムソンによって洗練されました。
1845年に収差の理論(ある基準座標系から別の基準座標系に移るときの光の伝播方向の変化)を作りました。ストークスは、地球が移動するときに周囲のエーテルも運び去ると仮定して、その結果、地球表面のエーテルの速度は惑星の速度に等しくなります。科学者は、いっしょに運ばれるエーテルの動きが、惑星を取り巻く空間とそれが静止している領域の両方で渦なしの特徴を持っていることを認めました。ストークスによれば、エーテルは硬くも柔らかくもあり、通常は液体媒体のような振る舞いをします。
銀河のエーテル風の流れによる地球表面の流れの架空図(左)(1- エーテル圧力が上昇したゾーン; 2- エーテル圧力が低いゾーン; 3- 海からの水分捕捉のゾーン; 4- エーテルのトロイダル渦が冬に大気を捕捉する)、および、科学者が自然界にエーテルを探せなかったことの風刺画。
ストークスは、収差効果について次のような説明を提案しました。地球の表面から一定の距離になると、エーテルの巻き込み部分とエーテル全体の速度差が現れるはずで、この差により、光学素子に当たる光波の前面が回転してしまう。これが収差を惹き起こします。ストークスは、エーテルの運動が渦なしの速度ポテンシャルの形であることを証明する計算で説明を補足しました。その後、プランクはストークスの理論を肯定的に捉え、それを救おうとしたが、役に立たちませんでした。
ストークスは、エーテルの巻込み程度が、その密度の違いだけに依存するのではないことも指摘しました。エーテルは物質の中に入ると圧縮され、離れると希薄化して物質の粒子に引き寄せられることが予想されます。弾力性のあるエーテル論は、非常に長い間、科学界に根付いていました。実際、ストークスをはじめとする当時の著名な物理学者たちは皆、その性質や本質を一般的に解明することに取り組んでいました。
1846年、ストークスは次のように書いています:我々は、よほどの理由がないと、エーテルが地球の固体質量の中を完全に妨げられずに移動するのを信じることができません。しかし、それを正しいと考える理論をチェックする決定的実験は非常に有用であろう[7, p.235]。1881年、A.A.マイケルソンは、J.G.ストークスが仮定したように、エーテル風が地球によって運び去られることを実験で確立したように見えた。しかし、エーテル否定の結論はまじかに迫っていました。
ストーク自身も、エーテルの概念に固執した彼の同僚も、その本格的な理論を作ることができません。I.フィゾーの発言によると、1851年に提示されたエーテル仮説の中には多かれ少なかれ可能性はあるが、どれも証明されたとは考えられません[6, c.214]。10年後のストークスは、仮説の長所と短所について議論を続けたが、彼自身はこれが成功するとは期待していませんでした。
ストークの死後、1905年には、アインシュタインは、相対性理論と光速不変を提唱しました。その結論によると、これらの前提条件は単純で矛盾のない移動体の電磁気学を構築できる。光を運ぶエーテル」の導入は、余計なものに見えます[7, с. 8]。この瞬間から、ストークスの理論だけでなくエーテルに関する数多くの理論がその価値を失うことになりました。
■今回の節では,ストークスの研究のうち,光の波動論とエーテル仮定を扱います.前者は成功しましたが,後者は無意味でした.
偏光状態を表示するストークス・パラメータ,反ストークス線については,
訳者が別稿で解説する予定です.
[訳者注]19世紀には,数学がその源泉として物理学と一体でした.ニュートンは自分の力学の研究のために新しい数学(微分や積分)が必要で,自分で開発しました.ニュートンは物理学者兼数学者です.ストークスの数学も現実の物理現場に対応する中から誕生し実験現場に適用されました.今日,高度に分化し抽象化した数学を数学の中で扱うことだけに興味をもつ数学者を,私は嫌いです.数学者が現場に足を入れることを願います.このエッセイを私が好んで読んだ理由はここにあります.
**********************
科学者の研究に対する評価
J.ニュートンによって始められた光のスペクトルの研究は、W.H.ウォラストン、J.フラウンホーファー、J.F.W.ハーシェル、C.ホイートストン、J.H.ストークスの研究によって発展しました。黒体放射のH.R.キルヒホフの研究も有名です。化学者R.W.ブンゼンと彼の実験的研究は、スペクトル線の反転効果の発見、フラウンホーファー線の説明、物理学、化学、天文学のための重要なスペクトル分析法の創出につながりました。
同時代のW.トムソンは、J.G.ストークスの物理学のこの分野への貢献について書いています。彼は、ストークスの太陽化学と恒星化学の原理が、ここ8、9年の間、公開講座で概説されていたことを思い出しました。ブンゼンとキルヒホフ(ストークスとは独立して理論を発見した)の研究は応用されて、太陽には鉄、マグネシウム、その他の既知の金属が存在することが示されました。すでに何年も前に会話の中でストークスは、太陽スペクトルの暗い線によって、太陽大気の化学的性質について結論を出すことができるという考えを表明していました[8, p.114]。
同時にストークスは、地球の基準表面[訳注)ジオイド面を近似した回転楕円体]、質量、軸を中心とした自転の角速度によって地球の外部重力場を決定するという問題も解決しました。この問題の解答可能性を証明し、ポテンシャル理論の最初の境界問題として、圧縮されたスフェロイドの収縮の二乗のオーダーの相対誤差を持つ近似解を与えた。楕円体のストークス問題のかなり正確な解は、1945年にイタリアのP.ピツェッティとロシアのM.M.モロデンスキーによって与えられた。
ケンブリッジでは、自然科学や技術科学における数学的手法の使用が奨励され、ストークスもまた、それらを広く活用していました。これは、ヴァイルが指摘したように、ベクトル解析とテンソル解析のすべての積分定理が、座標 x_i で囲まれた空間にある r 次元(方向性のある)多様体上の次数 r の微分形に対するストークスの一般定理の特別な場合であるという事実に現れていた [9, p. 192]。
実際、ストークスは数学の発展に重要な貢献をしました。ベクトル解析の主要な公式の一つであるストークスの定理は、ベクトル場の回転を、閉曲線を境界とする有向曲面上で面積分したものが、元のベクトル場を有向曲面の境界の閉曲線上で線積分したものに等しいという彼の名を冠した定理で、1849年にW.トムソンによって得られました。J.G.ストークスは、半収束無限級数の指摘をし、無限級数の完全収束(絶対収束?)や限定収束(条件収束?)を研究しました。
[訳注)収束する無限級数には、絶対収束級数と条件収束級数(半収束級数)があります]
1848年、J.G.ストークスはドイツの数学者F.L.vonザイデルとともに、級数と級数の一様収束の概念を科学的に導入しました。彼は純粋な数学だけでなく、物理学の様々な分野(力学や光学)、天文学や工学への応用にも興味を持っていました。漸近解析におけるストークス現象、流体力学におけるストークスパラメータとベクトル、微分幾何学における彼の定理、光学におけるストークス線、結合、せん断、Navier-Stokes方程式、ストークスドリフト、ストークス電流と波動関数、流体力学におけるストークス境界層などが科学の歴史に登場しています。
彼の研究結果の修正は、ストークスの科学におけるメリットを損なうものではありませんでした。P.N. レベデフ と彼の教え子である N.P. ネクレパエビム は、音響ストークス波とキルヒホッフ波の公式の係数の正確性に疑問を持ち [10, p.349]、W.G.ブラッグは、ストークスのインパルス理論(加速された電子がエーテル中でインパルスを発す)では、X線と電子の交換性を説明できないと指摘し、R.E.ミリカンは、液滴の運動法則がストークスの法則と一致するのは、連続的な媒体の場合だけであることを強調しました。その他にもストークスの研究結果に対する多くの議論が起きました。
ストークは晩年も研究を続けていましたが、レントゲンの発見を乗り越えることができませんでした。1898年には「X線の性質について」という論文の中で、陰極ビーム粒子の制動の結果として反陰極(陽極)上での短時間の電磁的インパルスを理論的に扱おうとしました。ドイツの物理学者J.E.ウィーチェルトと同様に、J.G.ストークスは、X線が非常に短い波長の発光であることは、X線の発生モードから明らかであるという結論に達しました。
科学のオーガナイザー、教育者としてのストークス
生前、ストークスはM.ファラデーからE.ファラデーに至るまで、イギリスの著名な科学者たちに囲まれていました。まだまだスターダムの瞬間を待っていたラザフォードら。
ストークスは最後の日が来るまで、科学的な出来事に関心を持ち、批判的に(いつも評価が正しかったわけではないが)評価していました。例えば、W.トムソンのように、J.K.マクスウェルの 論文に対しては寡黙でしたが、W.レントゲンによるX線による発見はすぐに認め急いで手紙で知らせました。
ストークスとその仲間たちは、精密科学と応用科学の発展、物理現象の解明方法の解明、自然哲学と科学的知識の区別、経験的活動と科学的活動の区別に多大な貢献をしました。彼や彼のような人たちのおかげで、大学教育の質が将来の研究者のニーズに沿ったものになリ、ストークは何十年も講義をしました。マクスウェルも彼の意見に耳を傾け、やがてストークの親友となりました。
ストレットの回想によると、ストークの講義や実験は彼に感銘を与え、教えることについて多くの有益なことを教えられたという。ストークスのコースの学生が、自分たちが理解していない光学現象の解明を彼に訴えたとき、彼は大抵の場合、親身になって対応してくれました。
19世紀後半と20世紀初頭の英語教育の伝統では、まず、生徒に説明する際には、自分自身がその質問を理解しているかどうかを確認することが大切だと指摘しています。第二に、クリアーの形を探すときに... プレゼンの... 新しいアイデアが浮かんできます。第三に、学生の質問は思考を刺激し、私たちがいつも標準的な方法でアプローチしている現象を新しい視点から見させてくれるので、創造的な思考にも役立ちます[11, p.261]。かつてストークがやっていたことです。
彼のコレクションから、ストークスは、学生が物理学や数学の問題に関連する1つまたは別の問題を解くことを勧めます。そのうちの一人は、等高線上の積分が、等高線を通過する流れの大きさに関係していることを証明することを提案した。今日では、このためにはストークスの定理を証明する必要があると言われていますが、ストークス自身はその証明を発表したことはありませんでした。1854年、トライポサス(ケンブリッジ大学の優等学士号取得のための公開試験)に合格したとき、ストークスの大学院生だったマクスウェルは、気体中の速度による分子の分布の問題を解きました。
1887年から1892年まで、ストークスはケンブリッジ大学の国会議員の一人であった。そのような責任ある立場にもかかわらず、合理的な心と冷静な性格のためか、下院での発言はほとんどせず、注意深く聞き役に徹していました。
強い宗教的信条を持つ家庭で育ったストークは、保守的な価値観と人生の信念を堅持していました。1886年にはヴィクトリア・インスティテュートの会長に就任しました。ダーウィンの進化論からキリスト教の原則を守るために設立されました(ストークスもダーウィンの進化論を批判していた)。また、イギリスと外国の聖書協会の副会長を務め、その宣教活動を支援していました。
1851年、ストークスはロンドン王立協会の会員となり、その後その幹事となり、1885年~1890年にはロンドン王立協会の会員-社長となりました。1849年から1903年までケンブリッジ大学のルーカス教授。1852年に光の研究で王立協会からラムフォード・メダル、1893年にはコプリー・メダルを受賞。ストレットのおかげで、1889年には男爵に昇格し、フランス学士院からアラゴ勲章を授与され、ロシア帝国軍医学校のメンバーとなりました。
ストークスのスタイルを評価し、彼についての本を書いたJ.ラーモアは、次のように述べています:ストークスの極端に慎重な研究発表の特徴は 質量で捉えた物質の性質と規則性に言及した定義の一般的なトーンで、正確さ、厳格な定式化は、分子という概念を使用することも必要としないようです [12, p.329]。
ストークスの仕事は、当時の科学文化の有機的な一部となりました。19世紀や20世紀の科学者たちがストークスの仕事を数多く紹介していますが、彼らの研究でストークスの研究結果に磨きがかけられ、発展したことは、彼の努力が無駄ではなかったことを証明しており、現代の科学のさらなる進歩を刺激する肥沃な材料となっています。
科学の古典の遺産
ストークスの発見-まず、ストークスの法則、ストークスの定理、ストークス・シフト、ストークスの方程式とそのパラメータ-は、科学技術の世界に入り込み、外国とロシアの科学者の開発活動を活性化させた。1909年にN. ボーアがレイリー理論を指定してストークス法にも言及していることを思い出していただければ十分です。
J.G.ストークスの存命中、彼の科学研究はM.ファラデー、J.C.マックスウェル、D.P.ジュール、H.R.ヘルツ(彼らはそれぞれ1867年、1879年、1889年、1894年に他界)、W.トムソン、W.ラムジー、J.W.ストラット、そして他の同僚たちによって続けられました。彼らとの会話や議論の中で、彼は新しいアイデアを得て、豊かになり、インスピレーションを得て、創作活動の中でさらなる発見をするきっかけを得ました。
彼の発見は、ストークがいなくなった後も科学者たちの想像力をかきたて、新たな成果へと導きましたが、今度は量子論と相対性理論の観点からです。H.A.ローレンツ、M.K.E.L.プランク、A.アインシュタイン、N.ボーア、A.A.マイケルソン、R.E.ミリカン、A.H.コンプトン、A.F.ヨッフェ、Y.I.フレンケル、S.I.バビロフなどの20世紀の科学者たちが、J.G.ストークスの思想の発展に貢献してきました。
ストークスは研究に関する本を書かなかったが、王立協会、英国科学振興協会(1869年に会長に就任)、ヴィクトリア研究所などの科学団体の論文発表数では、最も多作であった。彼の研究の成果は論文に反映され、各国の同僚との文通の対象となった。
ストークスの著作は、『数学・物理学論文』(1880-1905)の5巻に集められて出版されたが、そのうちの最初の3巻は彼自身が編集したものである。最後の2巻は1905年に彼の死後に出版されたもので、ストレットが書いた死亡記事が掲載されています。
1907年には、ストークスの簡単な伝記と、J.ラーモアが作成した彼の科学的な書簡が2巻で出版されました。また、若い才能を奨励するためにストークス財団(英語や外国人科学者による講演講座)も設立されました。
ジョージ・ガブリエル・ストークスは1903年2月1日、ケンブリッジで83歳で死去した。ミルロード墓地に埋葬されている。残念なことに、彼の墓は妻と二人の子供の墓とは違って保存されていません。ストークスの名誉を冠して命名されたのは:CGS単位系の粘度単位、月と火星のクレーター、鉱物ストークサイトです。
Литература
1. Клейн Ф. Лекции о развитии математики в XIX столетии. Т. 1. М., 1989.
2. Столетов А. Г. Собрание сочинений. Т. 1. М.; Л., 1939.
3. Погребысский И. Б. От Лагранжа к Эйнштейну. М., 1996.
4. Стрэтт Дж. В. (лорд Рэлей). Волновая теория света. М., 2015.
5. Эйнштейн А. Собрание научных трудов. Т. III. М., 1966.
6. Творцы физической оптики: Сборник статей. М., 1973.
7. Эйнштейн А. Собрание научных трудов. Т. I. М., 1965.
8. Кирхгоф Г. Избранные труды. М., 1988.
9. Вейль Г. Математическое мышление. М., 1989.
10. Лебедев П. Н. Собрание сочинений. М., 1963.
11. Капица П. Л. Эксперимент. Теория. Практика. М., 1981.
12. Тимошенко С. П. История науки о сопротивлении материалов. М., 1957.
1 Ротор векторного поля показывает, насколько и в каком направлении закручено поле в каждой точке.
2 Луи Мари Анри Навье (1785–1836) — французский математик и механик, один из основоположников теории упругости, с 1824 г. член Парижской академии наук.
3 Кинематическая вязкость — отношение динамической вязкости плотности среды к жидкости, дает понятие о ее вязкости под действием силы тяжести (измеряется вискозиметром по времени вытекания из калиброванной емкости).
4 Аберрация света — изменение видимого положения светила в небесной сфере, обусловленное конечностью скорости света и движением наблюдателя вследствие вращения Земли.
5 Михаил Сергеевич Молоденский (1909–1991) — советский геофизик, гравиметрист и геодезист. Разработал теорию использования измерений гравитационного поля Земли для целей геодезии. Предложил метод астрономо-гравиметрического нивелирования, новый метод определения.
6 Николай Павлович Неклепаев (1886–1942), ученик П. Н. Лебедева, исследовал вместе с ним поглощение акустических волн, преподавал в Московском университете, затем был ассистентом при кафедре физики Саратовского университета.
7 Институт Виктории (или Философское общество Великобритании) был основан в 1865 г. как ответ на публикацию книги Ч. Дарвина «О происхождении видов...». Институт Виктории пользовался значительным успехом в конце XIX в., когда Дж. Г. Стокс был его президентом (с 1886 г. до своей смерти). Максимальное число членов — 1246 человек — было в 1897 г., но быстро упало до менее чем трети от этого количества в первые два десятилетия XX в. Дж. К. Максвелл неоднократно приглашался для вступления в институт, но, хотя он и был набожным евангелистом-христианином, он отказался от приглашений из-за узости тематики и консерватизма института.
Академик Георгий Сергеевич Голицын ゴリツィン
«Природа» No6, 2007
https://elementy.ru/nauchno-populyarnaya_biblioteka/430479/Portret_neizvestnogo_K_300_letiyu_Leonarda_Eylera
レオナルド・オイラーは18世紀の偉大な科学者です。その前世紀の偉大な科学者はアイザック・ニュートン、そして、次の世紀はオイラー(1707–1783)であったことは確かです。オイラーは、現代の数学の主要な分野を提唱開発しました:変分法、複素変数の関数理論、解析的整数論、特種関数の理論。彼は、天体力学理論、流体力学、弾性の理論などに関する数多くの研究を残しました。A.S.プーシキンによる「テーブルトーク」では ,オイラーについてのセクションがあります。
1730年から1740年に統治したアンナ・イオアナブナの甥であり、将来の皇帝ジョン6世となるイワン・アントノビッチの誕生時に、宮廷はオイラーに王位継承者のための星占いを命じました。オイラーは占星術を信じていなかったので、最初は拒否したが、宮廷の要請を受けました。ホロスコープを作成するためのルールを知っていたオイラーは、イワン・アントノビッチのためにそれを作成しました。ホロスコープは酷いものであることが判明したため、オイラーはあえてそれを使用せず、別の非常に成功したものを提案しました。一年後、エリザベタ・ペトロヴナは赤ん坊の王を退位させシュリッセルブルク要塞に幽閉し、(ミロビッチ中尉がイワンアントノビッチを釈放しようとしたとき)1764年にエカテリーナ2世の密令で殺されました。オイラーは優秀な計算機でした。1783年の彼の死後、誰かが「オイラーは死んで計算をやめた」と言いました.
■1972年3月、レニングラード水文気象研究所の大気物理学部長であるデイビッド・L・ライヒツマン教授から、惑星大気の力学に関する講義を2週間で4回行うように招かれました。
私(ゴリツィン)は週に半日2回忙しく、残りの時間は美術館で過ごし、街を歩き回りました。ネフスキープロスペクト近くのルビンスタイン通りに部屋を提供してくれた友人のネイルBと滞在しました。
ある日、モスクワ駅近くのネフスキーにある古着屋に行きました。1階にはあらゆる種類の衣類があり、2階には絵画やその他のオブジェがありました。そこには、巨大な金箔の額縁に入った大きな暗い肖像画があった。漆喰が所々落ちていましたが、まともな状態でした。近づいてみると、その肖像画にはレオンハルト・オイラーが描かれていることがすぐにわかりました。オイラーの肖像画は、無名の画家の無名の人物の肖像画として売り出されていた。キャンバスは所々破れていたり、絵の具がボロボロになっていたりしていました。この肖像画は買わないと一生後悔すると実感しましたが、それは、93ルーブルで 50カペイカだった。
私はそのようなお金を持っていませんでした(当時、理学博士の給料は月に400ルーブルでした)。ネイルに足りないものを借りて、翌朝の開店に行きました。支払った後、なぜそんなに安い価格なのかと尋ねました。店員は私がラッキーだったと言った。肖像画は3か月以上店にあり、最近15%割引にしたと。したがって、肖像画の元の価格は110ルーブルだったのです。
フレーム付きの肖像画の重さは15キログラムで、裏には指の太さのロープが付いていました。ネイルは彼の肩に肖像画を掛け、私たちは彼の家に行きました。翌日、私はモスクワに向けて出発しました。ネイルが私に同行しました。車掌が、120×140cm巨の大な絵を車内に乗せないと言い、私はそれをコンパートメントの頭上の荷物棚に置くと言いましたが、確かに、棚ははるかに狭いのです。チェックインする時間がありません。電車が出発する約10分前です。ネイルは送ってくれると約束し、電車に沿って歩いて行ったが、数分後戻って、肖像画が別の車の前デッキに乗せたと言いました。私はボロゴエで、肖像画が乗客の出入りを妨げないことを確認し、モスクワでは私が最初に電車を降りることにしました。車掌には5ルーブルを支払いました。
モスクワのレニングラード駅で、重くて公共交通機関が不便だったので、一人では家にも仕事場にも肖像画を運ぶことができないのに気づき、保管室に渡しました。駅にある十数台のロッカーのうちで、そのような大サイズのものを受け入れられるのは最も遠くにある1台だけでした。数日後、私は研究所「カジク」に、絵を持ち込みました。
肖像画は明らかに修復が必要な状態でした。いとこのイラリオン・ウラジミロヴィチ・ゴリーツィン(ロシア人民芸術家、芸術院議長会会員、2003年の国家賞受賞者)に電話してみました。 イラリオンは、ペトリーヌ時代からの家族の肖像画をすべて保管しており、その中のいくつかは、この事件の少し前にトレチャコフ・ギャラリーで修復したものです。プロの修復業者の電話番号を教えてくれました。汚れを落とし、新しいキャンバスの裏に貼り、落ちていたところを塗り直して、すべて70ルーブルでできました。似顔絵は新品同様に良くなりました! 右下隅には署名がありました:I. Konig, 1881.
肖像画は私のオフィスの壁に取り付けられました。USSR科学アカデミーの大気物理学研究所の所長である学者のアレクサンダー・ミハイロヴィッチ・オブホフがそれを見に来て、それを賞賛した後、突然「ゴガ、私に肖像画を売ってください」と言いました。数秒経過の後、私は次の返事を返しましたが、それには数十年後の今でも驚いています。「アレクサンダーミハイロヴィッチ、あなたはすでにあなたのオフィスに必須で良い肖像画をぶら下げていますが、これはそれより芸術的に優れ、政治的に間違っています。」オブホフはうなって立ち去り、このトピックに戻ることはありませんでした。
1973年、科学アカデミー250周年記念式典の準備が始まりました。その年の雑誌『自然』9号には、V.I.ヴェルナドスキーの論文「科学アカデミーの最初の年」が掲載されており、父パヴェルの息子キリル・パブロヴィッチ・フロレンスキーの資料に基づいて作成されています。他の肖像画の中で、私はレオンハルト・オイラーの自分の肖像画を見ました。キャプションには、E. ハンドマン(1756年、バーゼル大学)の肖像画が掲載されています。
スイスのこの街でオイラーは生まれ、1720年から1724年にかけて上記の大学でヨハン・ベルヌーイの数学の講義を受けた。若きオイラーは毎週土曜日に彼と数学の話をし、子供のニコラスとダニエルと仲良くなった。この二人は1724年にサンクトペテルブルク・アカデミーへの招待状を受け取り、翌年には同アカデミーに入学しています。オイラーは本当に一緒に行きたかった。しかし、彼が招待を受けたのは翌年の1726年12月でした。ニコライ・ベルヌーイが、かの地の気候に慣れることができなかったため、アカデミーに空席が発生したからです。オイラーは1727年5月に20歳でロシアに来て、1741年までここに住み、数学と力学の約80の論文を作成しました。
1740年、アンナ・イオアンノブナ皇后が亡くなりました。幼児ジョン6世の下の摂政は彼の母親アンナ・レオポルドブナでした。彼女の治世の数年間、ロシア国家の情勢は完全に混乱、アカデミーは1年間給与を支払わなかった。1741年オイラーは、ベルリン科学アカデミーを組織た若いプロイセン王フリードリッヒ2世(後にグレートの愛称で呼ばれる)の招待を受け入れた。オイラーが数学教室長に就任。彼はベルリンに25年間滞在しました。1759年には、このアカデミーの初代学長であるモーペルチュイ(力学における最小作用の原理の発案者として知られていますが、オイラーの貢献が大きい)、モーペルチュイの死後、オイラーはアカデミーのマネージャーに任命されましたが、フルードリッヒは給料を上げませんでした。厳格なフリードリッヒは、常に服装が正式でないオイラーを非常に嫌っており、これは数年間続きました。
王位に就くと、エカテリーナ2世はすぐにサンクトペテルブルクアカデミーに注目をしました。ベルリンでの25年間を通じて、オイラーはサンクトペテルブルクでの出来事を追跡し、アカデミーのメンバー、特に彼が常に支援していたロマノソフとの広範な通信を維持していました。エカテリーナは、首相であるN.I.パニンに、どうしてもオイラーをロシアに戻すように指示し、彼はベルリンでの給料よりもはるかに高い給料を約束され、1766年7月にオイラーと彼の家族はぺテルブルグに戻りました。ここで過ごした最後の17年間で、彼は約400点の論文を作りました。
(続く)-----
ハンドマンと私の肖像画では、オイラーは明らかに生命のない右目をしています。これには独自の物語があり一度は聞いたことがありますが、今は正確なリンクを与えることができません。1740年代か1750年代には、パリのアカデミーが帆船のマストの配置を競うコンテストを発表しています。オイラーは長年造船業に携わっており、大会に参加したかったのですが、コンテストの論文提出期限が迫っていた。ついに彼は計算のために座り、丸3日間机から離れませんでした。その間、彼は他の人が少なくとも1か月を費やしたであろう計算を完了し、賞を受賞しました。しかし、彼は目を失った。第二の目で、レナード・オイラーはすでにサンクトペテルブルクで盲目になりました。それから彼は彼の長男に彼の仕事を口述した。オイラーの子孫はまだサンクトペテルブルクに住んでいます。
1981年1月、私はソ連科学アカデミーの対応メンバー3名の代表団を率いて、「気象・気候予測モデルのための大気プロセスパラメータ化に関する国際シンポジウム」に参加しました。ワシントンDCのすぐ北にあるメリーランド大学コンベンションセンターで開催されました。そこから私は同僚の海洋学者オーウェン・フィリップス氏(ボルチモアのジョンズ・ホプキンス大学教授)に電話をかけました。1時間足らずでワシントンからボルチモアまで 送ってくれました。地球惑星科学専攻では、回転流体の対流に関する講義を行いました。講演会の後、私はもう一人の同僚である有名な乱流研究者のスタンリー・コルシン(Stanley Corrsin)という研究所の友人を訪ねました。彼と一緒に、私は偉大な流体力学の写真の肖像画を見ました:ジョシュア・レイノルズ、乱流の科学の創始者、ルートヴィヒ・プラントル、セオドア・フォン・カルマン、ジェフリー・テイラー、そして、レオナルド・オイラーの肖像画の小さなカラー写真を見せてくれました。コルリジンは、"科学と芸術の歴史の中で、こんなに素晴らしい題材を個人的に所有することができるのか?"と質問し、どうすればいいと思っているのか聞いてみました。答えは、"科学史博物館か、せめて科学アカデミーに渡した方がいい "というものでした。私には、その後、前述の流体力学者の肖像画の写真が郵送されてきました。
コルジンの事務所を出ると、世界的に有名な力学者であるトゥルースデル教授に会いました。その本の多くは、1960年代と1970年代にロシア語に翻訳されました。この教授の主な趣味はレナナルド・オイラーの人生と仕事の研究であることを私は知っていました。コルジンは私たちをお互いに紹介しました。幸いなことに、私はオイラーの肖像画の写真の別のコピーを持っていました。私はこれをトゥルースデルに渡し、飛行機に遅れたことを謝罪し、必要に応じてフィリップスとコルジンが私の住所を持っていると言いました。
当時、まだメールもファックスもありませんでした。約1か月後、トゥルースデルから手紙を受け取りました。彼は、私が偉大な科学者のこのような素晴らしい肖像画を持っていたことがどれほど幸運であったかについて、ほぼ文字通りコルジンの言葉を繰り返しました。彼は次のように書いています。「あなたがこの肖像画を継承したと仮定させてください。」彼は続けて、この肖像画の最初の所有者が誰であったかについて2つの提案をしました。最初の可能な所有者である彼は、啓蒙された慈善家であるアレクサンダー・ミハイロヴィッチ・ゴリツィン副首相(1722-1806)を指名しました。もう1人は、当時の有名な科学者であり、すべてのヨーロッパのアカデミーのメンバーであり、エルミタージュの絵画や芸術作品を購入するエカテリーナ大王の主な代理人であり、フランスとオランダのロシア大使であるドミトリー・アレクシーヴィッチ・ゴリツィン(1734-1803)である可能性があります。彼については別の話があります。
(訳者注)著者名も含めて,ゴリツィンが3人も出てきて私も混乱しましたが,皆別人(ゲエオルギィ,アレクサンダー,ドミトリー)です.
トゥルースデルは、オイラーの肖像画が3か月以上誰も興味を持たなかったため、古着屋で割引価格で購入されたと聞いてがっかりしました。1989年12月にアカデミックA.M.オブホフが亡くなり、すでにUSSRの科学アカデミーの正会員であったので、1990年1月1日から私は大気物理学研究所の所長に任命されました。最初の2年間、私は古い小さなオフィスを研究所と気候理論部門の責任者として維持しました。オイラーの肖像画がそこにありました。1991年の終わりに、USSRの崩壊、ソビエト連邦の共産党の主導的役割の廃止、そして部屋を空ける必要性とともに、私は小さな古い事務所を空け、壁からウラジミール・イリイチ(レーニン)のかなりまともな肖像画を取り除き、そこにレナルド・オイラーの肖像画を置きました。
2000年末までは肖像画の関連することは何も起こりませんでした。その全容は不明のままでした。2000年12月、モスクワ石油ガスアカデミーの数学教師である末娘のマーシャは、パイプ内の非定常ガス運動に関する博士論文の防衛戦に臨んでいました。彼女の結果によると、パイプの2つの場所で希薄化波の振幅と通過時間を測定すると、ガスパイプライン(例えばウクライナ)からの不正なガス抽出の場所と量を特定することができました。防衛に成功した後、出席者全員が部署に招待され、少しお祝いをしました。論文評議会のメンバーであるグレブ・ミハイロフ教授は、何気なくレオナルド・オイラーのことを口にしていた。マーシャはすぐに、父親が科学者の大きな肖像画を持っていると答えた。教授は珍しく興奮して、この肖像画を見ることができるかどうか尋ねました。マーシャは彼に私の電話番号を教えてくれました。翌日、彼は私に電話し、私たちは彼が私の研究所に来ることに同意しました。「この肖像画を見てもいいですか?」マーシャは私の電話番号を教えてくれた。次の日、彼は私に電話をかけてきて、私の研究所に来ることになりました。
到着すると、グレブ・コンスタンティノヴィッチは、オイラーが彼の人生の主なテーマであると言いました。ソビエト(後にロシア)委員会の事務局長、そして流体力学はサービスです。本職はオイラー。これまでサンクトペテルブルク、ベルリン、スイスの彼のアーカイブは完全に解かれていませんでした。レオンハルト・オイラーの遺産に関する国際委員会のメンバーとして、毎年1ヶ月間をスイスやドイツで過ごしており、その活動は後を絶たない。「この素晴らしい肖像画に出会えて何と嬉しいことでしょう。2、3日でロシアでの歴史が調べられると思います」と、ミハイロフ教授は別れを告げました。
その日のうちに電話が鳴った。興奮したグレブ・コンスタンチノビッチが次のように言っていた。1875年、ロシアアカデミーは創立150周年を迎えていました。その中でも特に目立つメンバーの肖像画があることが決まった。オイラーの肖像画は、ドイツの画家ヨハン・ケーニッヒに依頼され、彼は1756年のバーゼルの肖像画の非常に正確なコピーを作成しました。 その後、このコピーやコピーから、質が著しく低く、色調が異なる多くの新しいコピーが作成されました。このような二次コピーは、モスクワ大学、ロシア科学アカデミー学長の応接室にあります。
1881年にケーニッヒによって実行されたこの命令は、最初にサンクトペテルブルクのワシリエフスキー島にある科学アカデミーの建物に吊るされました。1889年は、プルコボ天文台の開館50周年の年でした。オイラーは天体力学の分野でも多くのことをしていたので、彼の肖像画はこの天文台に贈られました。1918年、天文台は革命家船乗りによって2度略奪されました。54年後、私はネフスキーのコミッションショップで「不明」の暗い肖像画を見たのです。