掲示板

note.com投稿記事

理論結晶学の予備知識(谷)

1.結晶空間群.結晶点群

結晶は周期的な内部構造を持ちます.周期的な離散空間を<結晶空間>と言い,
その対称性は<結晶空間群>で記述します.結晶空間群の種類は,3次元では230種類です.
3次元の周期構造の幾何学的な表現を<格子>と言ったり,その数学的な表現を<並進群>と言ったりします.
結晶空間の中で,格子分だけ移動しても,周囲の状況は移動する前の状況と全く同じなので,無限に繰り返す結晶の中で自分がどこにいるか区別できません.そこで,格子分だけ移動した点はすべて同値とみなして,
無限に広い結晶空間を1つの単位胞の中に畳み込んでしまうことができます.
あたかも,無限に続く時間を,時計の文字盤(12時間)に畳み込んでしまうのと同じです.
<単位胞>(有限図形)の対称性は<点群>で記述でき,3次元の<結晶点群>は32種類です.

(注)<結晶点群>の対称操作は周期性と両立しなければならないので,ただの点群とは異なり,
回転対称は2,3,4,6回軸に限定されます.

格子を法として(あるいは,並進群を核として)準同型写像をすると,結晶空間群の230種類を,結晶点群の32種類に還元できます.

 $$\mit\Phi /T \cong G$$ ,     $$T \vartriangleleft \mit\Phi $$    ($$\mit\Phi $$結晶空間群,$$T $$並進群,$$G$$結晶点群)

2.双対空間.コンボリューションのFourier変換.Curieの原理(因果律)

結晶格子をFourire変換すると逆格子が得られます.結晶格子($$r-$$空間)と逆格子($$R-$$空間)は,Fourier変換で移り変わる互いに双対な空間です.結晶の電子密度関数$$ρ(r)$$とそのFourier変換F(R)は,1:1に対応し,両者の対称性は同じです.

電子密度分布$$ρ(r)$$により散乱されるX線の散乱振幅は$$F(R)$$で,$$ρ(r)$$のFourier変換にほかなりません.観測される散乱強度は$$|F(R)|^{2}$$で散乱振幅$$F(R)$$の位相情報は失われます.

 $$Tr[\rho (r)]=F(R)$$,     $$Tr[\rho (r)*\rho (r)]=|F(R)|^{2}$$

結晶の対称心の有無にかかわらず,観測されるX線散乱強度には,対称心が生じます:$$|F(-R)|=|F(R)|$$,これをFriedel則と言います.

Friedel則は,もっと大きい次のCurieの原理の一部です.

原因である「結晶構造の対称性」は,結果である「その結晶で生じる現象の対称性」に反映される.

(例1)結晶構造に,4回対称性が存在すれば,X線回折像の対称性に,少なくとも4回対称性は反映される.しかし,X線回折像に4回対称性が存在しても,結晶に必ずしも4回対称性が存在するわけではない.
これを回折対称の上昇という.

(例2)X線回折像に10回対称(5回対称⊗Friedel則)があったとしても,その原因たる結晶構造に5回対称性があるとは限らない.結晶構造の5回対称性は周期性(結晶の定義)と矛盾するのであり得ない.しかし,周期性を外せばあり得る.準結晶のモデルは,非周期のペンローズ・タイリングで実現できる.

3.点集合とベクトル集合.ホモメトリック

結晶構造(点集合)の対称性と,回折強度像(点集合のベクトル集合が作るスター)の対称性の関係を考察しましょう.両者の対称性では,回折強度像の対称性が高いわけで,与えられたベクトル集合から点集合を推理するのは,面倒な逆問題になる場合がある.

一般に,回折強度像の対称性から結晶構造の対称性は,一意に定まらず,同一の回折強度像を与える結晶構造が複数存在する可能性があります.これらをホモメトリック構造という.
下の2つの図は,1次元のホモメトリック構造の例[Patterson(1944)].
(注)この図の見方は,1次元の単位胞が全円周(長さ1)です.図中に描き込まれた長さは円弧に沿って測ります(弦の長さではない).円周(長さ1)のどこか1点で切って,線分(長さ1)に延ばします.この線分を1次元のタイルのように並べていくと1次元の周期的な図形になります.この図形には黒い点が並んでいますが,2つの図形で黒点の配列は異なります.それにもかかわらず,出現する黒点間の間隔の種類は2つの図形で同じになります.

PCR検査は何のためか

PCR検査の統計と論理               谷 克彦

(要旨)
◆PCR検査の感度と特異度は,遥かに1に近い確率でした.偽陰性や偽陽性を理由に検査数をコントロールする理由は成り立ちません.検査を拡大し有病者を発見し早期隔離しましょう(感染から5日目頃が最もウイルスを放出し,有病者の半減期は10日位です).◆日本の陽性率は7%と計算できますが,最近の変動の勾配(末尾に掲載)から見ると10%を越えたように見えます.このグラフがそのように見えるのは,検査数を抑制しているために陽性者数のオーバーフローが起きている証拠かもしれません.
---------------------------------

COVID-19パンデミックは,実効再生産数を1より低下させると鎮まります.この対策は,次の3つの数値を下げることです;①感染者が感染力を持つ期間,②感染者が接触する人数,③感染者との接触で感染する確率.そして,それぞれに対する施策は以下のようです;
①感染者を早期に発見し隔離する.このためにPCR検査の拡充が必要.
②効果的なロックダウンの期間,地域,方法を,シミュレーションで予測し戦略的に介入する.
③ワクチン接種で,感染感受性のある人の割合を減らす. 

COVID-19に感染すると,次のような経過になります. 

感染(陽性)→潜伏無症状期→発症期(無症状もありうる)→回復(陰性)or死亡
陽性の期間[潜伏無症状期+発症期(無症状もありうる)]は,「罹患者」が感染源となる有病状態なので「有病罹患」と呼ぶことにします.感染源となる「有病罹患」(症状の有無にかかわらず)を早く発見し隔離する必要があります.
有病罹患者の発見はPCR検査でなされます.検査の目的は蔓延率の推定だけではなく,感染源となる有病罹患者をできるだけ早期に探し出し隔離するという緊急な役割があります.検査対象を限定し,検査の陽性的中率を上げることが検査の目的になってはいけません.
実世界の現象は,多数の原因と結果が複雑に絡んだ因果関係をなし,数学(統計)で論理的に推論するのは,その一部を切り取った世界です.その範囲で得た数学(統計)的推論の結果を,系全体の中で解釈できる論理的な思考が必要です.
正しい数学(統計)推論で得られた結果でも,複雑な全体系で非論理的に利用されるとしたら,社会を誤った方向へ導く主張に,数学が加担してしまうことになります.PCR検査の規模拡大は有病率の低い集団ではすべきではないというのは正しい主張ではありますが,その主張の根底にあるPCR検査の性能から見直し,これを論理的に考察してみましょう.

■有病率とは
日本感染症学会の定義によると,有病率とは,「その疾患をもっている人数の全人口に対する割合」ですが,日々発表される厚労省の新規陽性者数と検査数のデータから,日本の有病率を計算できるように,有病率$$x_{0}$$の解釈を次のようにします.
(定義)$$有病率=有病罹患数/累積PCR検査数$$
        $$有病罹患数=累積検査陽性者数-累積回復退院者数-累積死亡者数$$
これにより,日時($$T=$$5月15日)の日本の有病率を求めると$$x_{0}=0.58$$%になります.
ここでは,陽性者=罹患者と見なしています.
この検査集団の陽性率($$T$$)と罹患率($$T$$)は,7日平均(8~15日)を用いて,
$$陽性率(T)=陽性者(T)/検査数(T)=6288/92167=0.068$$,
罹患率(*)$$(T) =陽性者(T)/累積検査数(T)=6288/13015244=0.0005$$

 

 

 

日時$$T$$の有病罹患数$$(T)$$を別の定義で表現してみましょう.有病罹患状態は,14日位で回復(陰性になる)します(運悪く死亡の場合もありますが,少数のため無視します).今日$$T$$の有病罹患者(感染源となる罹患)の中には,$$t$$日前に罹患した者も残っています.そこで,次の定義が成り立ちます:
有病罹患数$$(T)=\displaystyle \int_{0}^{T}$$罹患数$$(t)p_{a}(T-t)dt$$,
ここで,$$p_{a}(t)$$は,陽性保持確率(病気の減衰関数のような性質)で,(付録3)の大規模調査の結果に報告されています.病気の感染初日を推定するのは大変難しいのです.PCR検査で見つかった日が感染日という訳ではないでしょう.感染から5日目あたりが,感染者が最も多くウイルスを放出するので,その頃が最も発見され易いのではないかと思います.
病気減衰関数の半減期は約10日ですので,コンボリューション積分は次のように近似できます:
有病罹患数$$(T)=10×罹患数(T)$$.この集団の累積検査数で規格化すると.
$$有病率(T)=10×罹患率(T)$$が得られます.
注*)感染症学会の定義では,罹患率の分母は,「集団の感受性のある人数」ですが,ここでは「集団の人数」としています.

 

 

 

 

 

 

 

 

 

 

■PCR検査の感度と特異度
PCR検査の感度$a$とは,罹患者をPCR検査で陽性($$+$$)と正しく判定する確率のことで,真の罹患者でもPCR検査が陰性($$-$$)(偽陰性)と判定される確率は$$1-a$$程度あります.検査の特異度$$b$$とは,非罹患者を正しく陰性($$-$$)と判定する確率のことで,非罹患者を陽性($$+$$)(疑陽性)と判定する確率は$$1-b$$程度です.

 

 

 

 

確率$$a , b$$は1に近いほど,優秀な検査になります.従来の議論に用いられてきたこれらの数値は,$$a=0.70, b=0.99$$ですが,昨年の英国ONSによる大規模調査(付録3.)で判明した数値は,$$a=0.95(0.85 ~ 0.98)$$,$$b=0.9992$$です.
低い有病率の集団でPCR検査対象を拡大すると,莫大な偽陽性が出て医療崩壊につながるので,有症状者や濃厚接触者に限定して検査を行っているとの主張がありますが,英国ONS調査の感度と特異度を採用すると,この主張の根拠が覆えることを検証します. 

■ベイズ推定による有病罹患の内訳

 

 

 

 

 

 

 

 

 


この集団の罹患率を$$p(罹患)=x$$,とします.この集団で,PCR検査が$$+$$判定のとき,罹患者である確率$$p(罹患|+)$$,および,$$-$$判定のとき,罹患者である確率$$p(罹患| - )$$,などを推定しましょう.
$$p(罹患| + )=p( + |罹患)・p( 罹患) /p( +) =a・x/( a・x+(1-b)( 1-x)) $$,
$$p(罹患| - )=p\left( - |罹患 \right) \cdot p\left( 罹患 \right) /p\left( - \right) =\left( 1-a \right) x/\left( (1-a)x+b\left( 1-x \right) \right) $$, 
$$p(非罹患|+)=p\left( + |非罹患 \right) \cdot p\left( 非罹患 \right) /p\left( + \right) =(1-b)(1-x)/\left( (1-b)(1-x)+a \cdot x \right) $$,
$$p(非罹患| - )=p\left( - |非罹患 \right) \cdot p\left( 非罹患 \right) /p\left( - \right) =b\left( 1-x \right) /\left( b(1-x)+(1-a)x \right) $$,
下に$$x$$を変数とするグラフを示します.ベイズの定理は線形システムなので,重ね合わせができ,罹患状態を束ねた状態で定義される有病率$$x_{0}$$を入力にしても良いでしょう. 
■集団の有病率 $$x=0.006$$に対して,感度$$a$$,特異度$$b$$を変えて比較
(1)$$a=0.95, b=0.9992$$(英国ONS)を用いた場合 
 $$p(罹患|+):p(非罹患|+)=真陽性:偽陽性=0.9:0.1$$
 $$p(罹患|+):p(罹患|-)=真陽性:偽陰性=0.9:0.0003$$
(2)$$a=0.7, b=0.99$$(従来)を用いた場合 
 $$p(罹患|+):p(非罹患|+)=真陽性:偽陽性=0.3:0.7$$
 $$p(罹患|+):p(罹患|-)=真陽性:偽陰性=0.3:0.002$$
PCR検査が$$+$$判定であるときに,真陽性の確率$$p(罹患|+)$$と,偽陽性の確率$$p(非罹患|+)$$を比較すると,従来用いられている感度,特異度では,偽陽性確率が真陽性確率の$$2.3$$倍もありますが,英国ONSの数値では,逆に1/10になり,医療崩壊を懸念する根拠にはなりません.
いずれにしろ,陽性確定までにPCR検査は2度行われ,さらに,抗原検査の併用もありますから,偽陽性の誤判定リスクは回避可能です.積極的にPCR検査の対象を拡大し,感染源となる無症状の罹患者を拾い出し早期隔離する道を閉ざすべきではありません.

次に,真陽性の確率$$p(罹患|+)$$と偽陰性の確率$$p(罹患|-)$$を比較すると,
(1)では,$$1:3 \times 10^{-3}$$,(2)では,$$1:7 \times 10^{-3}$$で偽陰性は小さい確率です.これを人数で比較するには,陽性率$$y=0.07$$,陰性率$$1-y=0.93$$を,それぞれ,$$p(罹患|+)$$と$$p(罹患|-)$$に乗じます.
(1)では,$$真陽性人数:偽陰性人数=1:4 \times 10^{-2}$$,
(2)では,$$真陽性人数:偽陰性人数=1:9$$
この集団の陽性率は$$7$$%と低いので,陰性集団が大多数で,偽陰性の確率が小さくても偽陰性者数は多いとの主張もあります.確かに,従来の数値(2)を用いると,真陽性者の9倍もの偽陰性者がいます.しかし,数値(1)を用いると,偽陰性者の数は1/100で,PCR検査対象を拡大しない理由にはなりません.検査を拡大すれば,拾い出せる陽性者は検査数に比例して確実に増加します.

 

 

 

 

 

 

 

 

 

 

 

 

 

■PCR検査数は十分か
ここに引用した2つの図は,1日の$10^{6}$人あたりの(横軸)検査陽性数:(縦軸)検査数の散布図で,日本(上)と英国(下)の例です.英国の散布図スケールは日本のものより縦軸で25倍,横軸で16倍大きいのでご注意ください.散布図パターンを比較すると特徴的な違いがあります.時間経過とともに,右横あるいは右下がりに伸びる部分では,検査数が足りず陽性者の増加傾向を頭打ちにしている可能性があり,縦に伸びる部分では,陽性者を拾い出す十分な検査が行われているようです.英国の例を見ると,始めは,陽性者が多く検査数が間に合わないほどでしたが,現在みられる検査数を増しても陽性者が一定となる状態は,十分な検査数が確保されている証拠です.日本の例で,検査数と陽性者数の増減の比例が見られる傾向は,検査数を増やせば,陽性者数も増加する可能性があります.
これらの図は,2020.1.25~2021.5.25の期間のもので,赤細線は,日本の図では,陽性率5{\%}と10{\%}の勾配,英国の図では,0.5{\%}と20{\%}の勾配を示しています.
これらのグラフは,https://ourworldindata.org/coronavirus-testingから引用しました.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■付録-----
付録1.ベイズの定理
条件付き確率についての「ベイズの定理」とは次のように説明できます.
$$p(Y|X)p(X)=p(X \cap Y)=p(X|Y)p(Y)$$
ただし,記号の意味は例えば以下の様です.
$$p(X)$$:$$X$$が起こる確率 
$$p(Y|X)$$:$$X$$が起きる条件下で,$$Y$$が起こる確率
$$p(X \cap Y)$$:$$X$$かつ$$Y$$が起こる確率
ベイズの定理は,$$X$$(原因)が起きる条件下で$$Y$$(結果)が起きる確率$$p(Y|X)$$と,$$X$$と$$Y$$を入れ替えた確率$$p(X|Y)$$を結び付ける定理です.

付録2.PCR検査の原理
PCR(ポリメラーゼ連鎖反応)を利用して,わずか数分子のターゲットDNAから数ミリグラムのDNAに増幅する技術を,1983年にマリスが発見し1993年のノーベル化学賞を受賞しました.
RNAに対しても逆転写酵素によりDNAを合成し,DNAの複製反応が利用できます.ターゲットDNA鎖全体の複製ではなく,ウイルスを特徴づける断片の複製をします.これが,パウエル社が発表(1987)したRT-PCR技術です.PCR検査は,検体に含まれるCOVID-19ウイルスの微量なRNAから,逆転写酵素を用いて,cDNAを合成し,温度サイクル処理を40回程度繰り返し,cDNAを検出可能な濃度まで複製するというものです.このようなPCR検査の原理から,検体にわずかでもターゲットRNAが含まれていればいくらでも増幅できますが,含まれていなければ誤混入がない限り増幅物は全く生じません.すなわち,特異度の高い検査です.

付録3.英国ONSのcovid-19感染の大規模調査
英国国家統計局(ONS)によるcovid-19の大規模感染調査は,パイロット調査としてイングランド(2020.4末)で開始されました.7月以降,規模を拡大し,住所リストから世帯のランダム・サンプリングを行い,8月には,2週間ごとにテストされるサンプルを,イングランドで15万人,ウエールズ,スコットランド,北アイルランドで各1.5万人の規模に拡げました.調査は,小児の症候性および無症候性感染の有病率と発生率を知るため,2歳以上の子供を含みます(参照:covid-19学校感染調査).16歳以上の成人の20{\%}は血液サンプルの提供を求められました.2020.7.31~9.10の6週間で,208,730の検体調査を行いました.偽陽性は症状のない人で発生すると予想されましたが,調査研究のデータからは,症状の有無によらず同じでした.血液サンプルは,オックスフォード大学で,抗体検査,IgG免疫グロブリンのテストをしました.
PCR検査に関する知見は;その感度が,85{\%}~98{\%}(95{\%}である可能性が最も高い)にあり,特異度は,99.92{\%}でした.
綿棒スワブの検体採取は,適切な監督下で行えば,自己採取でも医療従事者が直接採取した場合と同様の正確な結果になることも報告されています.

引用データ

1)厚生労働省 
2) Coronavirus (COVID-19) Infection Survey, UK Statistical bulletins
3) Keeping up with COVID-19, Rachel Thomas;
https://plus.maths.org/content/keeping-covid-19
4) https://ourworldindata.org/coronavirus-testing

数学とコンピュータを結びつける

2021年3月に,2021年のアーベル賞の受賞者が発表されました.ラズロ・ロヴースLászló Lovász(ハンガリー科学アカデミー・レニェイ数学研究所)とアヴィ・ウィグダーソンAvi Wigderson(プリンストン高等研究所)です.
プレスリリースによると,「理論計算機科学および離散数学への基本的な貢献,および,これらの分野を現代数学の中心的な分野として確立するのに果たした主導的な役割」が評価されました.
アーベル賞は,2002年にノルウェー科学アカデミーによって設立された数学で最も権威のある賞の1つです.ノルウェーの天才数学者ニールス・ヘンリック・アーベル(1802–1829)にちなんで名付けられ,この分野の発展に多大な貢献をした科学者に毎年授与されます.

2021年の受賞者について,ステクロフ数学研究所,シカゴ大学(米国)の数学科アレクサンドル・ラズボロフ教授による解説記事を要約紹介します.
「トリニティオプション-科学」第6号(325),2021年3月23日号
https://elementy.ru/nauchno-populyarnaya_biblioteka/435811/Troitskiy_variant_Nauka_6_325_23_marta_2021_goda


離散数学は,有限の離散的オブジェクトの特性を研究します.その重要な部分は,伝統的には組み合わせ論と呼ばれ,「純粋」数学で生じる構造に動機付けられています.たとえば,組み合わせの観点から,トポロジーの基本である複体の概念は,複体の面に対応する有限集合の閉じたファミリーにすぎません.組み合わせの抽象化は顕著な結果をもたらし,「有用な」(つまり,基本的な数学に適用される)組み合わせ論は,数学界で常に重視されてきたのは当然です.

離散数学は,「ハンガリーの数学」と長い間関連しており,その最も活発な支持者および宣伝者は,ポール・エルデシュでした.ラズロ・ロバースは1948年にブダペスト(ハンガリー)で生まれ,この数学的文化の中で育ちました.特に,彼はかなり早い年齢でエルデシュに会いました.そしてこれは彼のその後のキャリアと展望に非常に大きな影響を与えました.ラズロ・ロバースは,ポール・エルデシュの直接の後継者と見なすことができます.

 

         ラズロ・ロバース

理論情報学の形成
理論計算機科学,または,コンピュータサイエンスは,一般に「計算の複雑さの理論」の基礎が築かれた1970年代頃に独立した分野として出現しました.この分野では,大まかに言えば,アルゴリズムの存在の問題,または多くの場合,それらの効率に与えられた制約を伴うアルゴリズムの非存在が研究されます.

その名称にもかかわらず,理論計算機科学は厳密に数理科学であり,そのすべての成果は,数学の他の分野と同様に,厳密な定義,定理,および補題の形で定式化されています.それにもかかわらず,開発の内部論理とともに,理論情報学もまた,実際のアプリケーションによって大部分が導かれ,時には非常に具体的であります.他の「半応用」分野と同様,それに対する「純粋」数学者の態度は,穏やかではあるが長い間警戒していたことは明らかです.

アヴィ・ウィグダーソンは,1956年にハイファ(イスラエル)で生まれました.彼の学生時代は,理論計算機科学,特に独立した分野としての計算の複雑さの理論の形成に費やされました.プリンストンでの大学院での研究中,アヴィは,複雑性理論の創設者の1人である彼の学術顧問Richard JayLiptonの影響を大きく受けました.ロバースの場合と同様に,理論計算機科学が彼の人生の仕事になりました.

 

         アヴィ・ウィグダーソン

両受賞者の主な成果の1つは,数十年にわたる両方の分野の成熟と形成の過程で,彼らの科学的研究と国際的な教育および普及活動が大きな貢献をしたことです.
理論計算機科学は,コンピュータが操作する対象のほとんどが離散的であるという自然な理由から,離散数学の成果,アイデア,概念を積極的に利用しています.その多くは「純粋な」数学では需要がありませんでした.一方,理論計算機科学のニーズは,離散数学の全く新しい分野の創造につながっており,これは科学の歴史の中で最も成功した共生関係の一つであると思います.この分野から他分野への「アイデアの移転」における最大の功労者は,今年のアーベル賞受賞者なのです.
「純粋」数学者や数学者との関係も,より良い方向に変化しました.たとえば,ラズロ・ロバース(ちなみに,ロシア科学アカデミーの外国人会員)は4年間(2007〜 2010年)国際数学連合の会長を務め,プリンストン高等研究所(IAS)でのアヴィ・ウィグダーソンの役職は数学学校に属しています.この道を歩み始めた当初は,どちらも考えられないことでした.これは,抽象数学の多くの分野に密接に関連する問題,アイデア,定式化が両分野に蓄積され,多くの場合,抽象数学自身の発展に影響を与えることによって,多かれ少なかれ自然な形で起こったことです.この点において,ラズロとアヴィは誰もが認めるリーダー的存在です.

離散性から連続性へ
離散数学の特徴として,連続的ではなく有限的な対象への関心が高まっていることを前述しました.ラズロ・ロバースは,正反対の仮定に基づいた非常に重要なプロジェクトの創設者の一人であり,おそらく主人公です.その結果,非常に大きなグラフやその他の組み合わせ対象物は,10進法の分数が無理数の近似値とみなされるのとほぼ同じ意味(ロバースのアナロジー)で,幾何学的または代数的な性質を持つ自然な連続構造の近似値とみなすことができることがわかりました.その結果,美しく一貫した理論が生まれ,当然のことながら組合せ論だけでなく,代数学,解析学,測度論,統計力学,エルゴード理論など,数学や物理学のさまざまな分野と驚くほど関連していることがわかりました.

ラズロ・ロバースは,優れたモノグラフのLarge Networks and Graph Limitsを書き,すぐにこの分野の古典的なテキストになりました.興味のあるすべての読者にお勧めします.

 

 

 

 

 

 

 

 

 

 

 

 

 

 


疑似乱数理論
アヴィ・ウィグダーソンに最も関連するトピックに名称を付けると,疑似ランダム性の理論でしょう.最初の動機から始めると,最も重要なアルゴリズムの多くが本質的に確率的なことです.つまり,作業で乱数検出器を使用します.ただし,絶対的なランダム性はまれであり,実際には,いわゆる疑似乱数発生器がほとんどの場合使用されます.これは,アルゴリズムがそのような置換に「気付かない」ことを期待して,決定論的手順によって生成されたランダムビットとして渡されます.

擬似乱数理論とは,大まかに言えば,この希望に理論的根拠を与えようとするもので,さまざまなアーキテクチャやパラメータを持つ発生器を構築し,それらが必要な特性を持つことを数学的に証明することができ,同時に,これらの対象や概念は,計算複雑さの理論において,まったく独立した別の用途があることや,対応する構造が,たとえば代数幾何学のような,数学のきわめて古典的な分野に関連していることも,すぐに判明しました.アヴィ・ウィグダーソンは,この分野で誰もが認めるリーダーです.特に,最も重要な構成要素(Nisan-Wigderson発生器)と,複雑さの理論における顕著な影響(Impagliazzo-Wigderson定理)の両方があります.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kneser仮説
ラズロ・ロバースは,クネーザー予想の証明があります.クネーザーグラフは,代数的組み合わせ論で発生する非常に自然な有限グラフで,タスクは,その色数を計算することです.つまり,エッジで接続された頂点が常に異なる色になるように頂点に色を付けることができる最小の色数を計算します.

 

おそらく,最適な着色を作成するのは簡単です.問題は,それを改善できないことを証明することです.この問題は,25年近くの間,組合せ学的な努力を必要としていましたが,1978年にロバースが発表したエレガントな論文で,厳密に離散的な絵全体を多次元の球体に浸し,実数位相幾何学の基礎的な結果の1つであるBorsuk-Ulamの定理を適用することで解決されました.この証明から,今日では位相幾何学的組合せ論と呼ばれる学問全体が発展し,その方法によって,他のアクセスできない問題の数々が解決されました.

解の系

証明の複雑さの理論では,数学の定理や,あるグラフが与えられた数の色に着色できないという主張,あるコードにエラーが含まれていないという主張など,さまざまな自然な主張の効果的な証明が可能かどうかを研究します.最も重要な証明系は,いわゆる解の系であり,それに基づくアルゴリズムが最も広く実用化されているからです.

解の系を研究する方法はかなり昔から知られていましたが,2001年にEli Ben-SassonとA. Wigdersonが研究するまでは,せいぜい私的なものでした.本研究では,このような証明を分析するための驚くほど簡単な一般的手法を,幅と呼ばれるもう一つの複雑さの尺度の関与に基づいて提案しました.この論文は,証拠の複雑性に関する理論のパラダイムとなり,多くの新しいアイデアやコンセプトを生み出しました.

イベルメクチン

イベルメクチンは,北里大学特別栄誉教授の大村智博士が1974年,静岡県・川奈のゴルフ場近くで発見した微生物が生み出す「アベルメクチン」をもとにした化合物(誘導体)で,アメリカの製薬会社のメルク社との共同研究で,もともとは家畜やペットの寄生虫,回虫などの治療薬として1981年に開発されました.イベルメクチンは,家畜の寄生虫や皮膚病,イヌのフィラリア症などの特効薬となり,動物抗生物質として20年以上にわたって売上高世界トップを維持する記録的なヒット薬剤です.

人間のオンコセルカ症 (アフリカ・中南米・中東などの河川流域で蔓延していた河川盲目症)に効果があっただけではありません.その作用の範囲は驚くほど広いことが判明しました.線虫,ほとんどの昆虫,ダニに効果があります.そして,多くの寄生虫(またはそれらが運ぶ病気)は動物から人間に伝染するので,寄生虫のペットを取り除くことも重要な仕事です.そして,人々はオンコセルカ症や他のフィラリア症に苦しんでいるだけでなく ,1億人以上が桿虫症に感染しており,私たちが忘れていた疥癬とアタマジラミは世界のどこでも消えていません.イベルメクチンはこれらすべての病気に適応されます.イベルメクチンはノーベル賞を受賞した英雄的な薬です.

ーーー

■以下のサイトより引用します

イベルメクチンはコロナ治療に有効か無効か 世界的論争の決着に日本は率先して取り組め : NEWS特集 : 記事・論考 : 調査研究POINT ■北里大学の大村智博士が発見した抗寄生虫病の特効薬イベルメクチンが、コロナウイルス感染症(COVID−19)にwww.yomiuri.co.jp
 河川に生息するブユ(ブヨ、ブト)がヒトを刺した際に,ミクロフィラリア(回旋糸状虫)という線虫をうつし,それが体内で繁殖して失明する人が多数出ていた.この治療に役立てようと,1975年に大村博士がメルク社のウィリアム・キャンベル博士と共同研究を進め,オンコセルカ症や脚のリンパ腺に線虫がはびこって太いむくみが出るリンパ系フィラリア症(象皮症)の特効薬としてイベルメクチン(薬剤名はメクチザン)を開発した.世界保健機関(WHO)の研究者は「これまで出てきたどの熱帯病薬剤と比較しても,けた外れに優れた効果を持つ」とイベルメクチンを高く評価し,メルク社と北里大学に協力を求め,1987年から熱帯地方の住民に無償で配布することにした.何よりも年に1回,錠剤を水で飲むだけという簡単な服用法がWHOの評価を高めたポイントだった.この特効薬が出てきたため,盲目になる人が続出していたオンコセルカ症は急速に減少し,コロンビア,メキシコなどでは,オンコセルカ症を撲滅したと宣言している.その後,ダニによる疥癬かいせん症や糞線虫症など重篤な風土病の予防・治療薬になることもわかり,イベルメクチンは世界中に広がった.臨床現場では,副作用がほとんど報告されないことも評価を一層高めた.大村・キャンベル両博士は,この業績を評価され,2015年にノーベル生理学・医学賞を受賞した.

■COVID-19の大流行で浮上したイベルメクチン
 イベルメクチンは今,新型コロナ(COVID-19)のパンデミック(世界的大流行)で再び世界中の注目を集めている.試験管レベルの研究で,新型コロナウイルスがヒトの細胞内で増殖する際に,ウイルスのたんぱく質の核内移行を妨害し,増殖を抑制することがわかったからだ.

 WHOは2020年3月11日,COVID-19のパンデミックを宣言し,世界中に厳戒態勢を求めた.しかし,感染が拡大しても有効な治療薬がないことから,中南米・中東諸国を中心に,イベルメクチンをCOVID-19治療に投与する事例が広がった.

 最初に臨床試験の結果が発表されたのは,アメリカ・南フロリダの4病院での臨床試験だった.20年6月に発表された試験結果によると,イベルメクチン投与患者173人の死亡率は15.0%で,非投与群107例の25.2%と比べて有意(p=0.03)に優れているというものだった.


ーーー

■北里大学病院の治験

新型コロナウイルスに対するイベルメクチンの現状・世界的の状況と北里大学の取り組み


■以下は,セルゲイ・グラゴレフによる記事から抜粋

Герой и злодей • ЗадачиБезопасное для животных и людей лекарство от паразитов —elementy.ru

 

 

 

 

 

 

 

 

 

 

日本の科学者大村智が伊東・川奈で土壌を採取

土壌から 分離した放線菌Streptomyces avermitilisの二次代謝産物である 8つの成分を発見しました.45年間,森林は伐採されていません.
長い間,この種のバクテリアは他の場所では見つけることができなかったようです.これは生物多様性の保全を支持する大きな根拠です.ジャイアントパンダや ミンククジラだけでなく,土壌や植生がある場所ならどこでも重要です.

アベルミクチンは,マクロライド系抗生物質に関連する 16員の大環状ラクトンで,それらの品種の多くは,この放線菌と密接に関連する種の放線菌から得られ,次にそれらから多くの半合成誘導体が得られ,そのうちの約5つが駆虫薬として使用されました.

詳細は,Andy Crump(2017)のレビューを参照ください.
Ivermectin: enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations

https://www.nature.com/articles/ja201711.pdf

 

数学の未解決問題

数学の未解決問題は無数にあります.
未解決の数学の問題のリスト(書ききれないので以下をご覧ください)

Открытые математические проблемы — Википедияru.wikipedia.org
このリストに挙がっているものだけでも,あまりにたくさんあるので驚くでしょう.
挑戦してみたくなるものもあるかもしれません.

実際に,数学上の未解決問題は,無数に存在します.そのうちから,ここには,リーマン予想のようにその証明結果が数学全域と関わりを持つような命題,P≠NP予想のようにその結論が現代科学,技術のあり方に甚大な影響を及ぼす可能性があるような命題,問いかけのシンプルさ故に数多くの数学者や数学愛好家達が証明を試みてきたような有名な命題を7つ列挙します:


以下の7つの問題はミレニアム懸賞問題と呼ばれ,クレイ数学研究所によってそれぞれ100万ドルの懸賞金が懸けられています.
P≠NP予想
ホッジ予想
ポアンカレ予想(解決済み)
リーマン予想
ヤン-ミルズ方程式と質量ギャップ問題
ナビエ–ストークス方程式の解の存在と滑らかさ
バーチ・スウィンナートン=ダイアー予想(BSD予想とも)

音は真空中を伝わりますか?

 

 

 

 

 

 

真空ギャップを通り抜けるフォノンのトンネリング。左側に入射する音波は、表面に交流電場を生成し、右側の2番目の物体の原子の同期振動を生成します。Phys.Rev.Lett.105,125501より
https://elementy.ru/novosti_nauki/431440/Mozhet_li_zvuk_peredavatsya_cherez_vakuum?from=rxblock 
2010 年10月27日• イゴール・イワノフ

■固体媒体で見られる新しい現象、つまりフォノンが真空(空隙)を介して、右の固体から左の固体に「ジャンプ」することが説明されています。音波は薄い真空の隙間を乗り越え伝わり、熱は通常の熱放射が伝えるより何十億倍も効果的に真空を介して伝達できます。
[訳者注)真空中を熱が伝わる様式は放射(輻射)のみと思い込んでいました.魔法瓶は壁の中に真空層があるために,真空中は熱伝導がなく放射だけなので熱流の遮断ができます.熱放射は真空中を伝搬できますが,それ程高温でない物体からの熱放射は小さいものです.物質の熱は原子の振動ですので,原子の振動を伝えることができれば非常に高効率な伝達でしょう.この発見の面白さはここにあります.ここで引用されているphys.rev.letters(フィンランドのグループ)によると,近接場熱伝達は音響フォノンが真空中をトンネルする現象で,フォノンによって誘起されるエバネッセント波が固体間を結合するので離れた誘電体間で起こり,いわゆる電流加熱でもないようです.近接場放射熱伝達の測定法はよくわかりませんが,以下の論文(入手していません)が引用されています.A. Narayanaswamy, S. Shen, and G. Chen, Phys. Rev. B,78, 115303 (2008)].

音波とは、物質の原子が平衡位置を基準にして同期的に振動することです。音が伝播するためには、これらの振動を支える物質媒体が必要です。真空中では、音はそこには存在できないので、伝搬することはできません。しかし、最近になって発見されたこの現象は、音の振動は、サブミクロンの厚さの真空隙間を突き抜けて、固体から固体へとジャンプすることです。この効果は「真空フォノン・トンネリング」と呼ばれ、Physical Review Letters誌の最新号に掲載された2つの論文で説明されました。結晶格子の振動は音だけでなく熱も運ぶため、真空中での熱伝導が異常に大きいことに注目が集まっています。

新しい効果は、結晶の音波と電界の間の相互作用によって起こります。1番目の結晶格子の振動は、結晶の端面に到達し、その表面近くに交互の電界を生成します。これらの場は真空ギャップを越えたもう一方の端面で「感じられ」、2番目の結晶の格子振動を起こします(図1を参照)。全体として、フォノン(結晶格子振動の「量子」)が1つの結晶から別の結晶にジャンプし、その中でさらに伝播するように見えますが、もちろん、2つの結晶間の真空空間にはフォノンは存在できません。

発見者は、効果を説明するために「トンネリング」という言葉を使用しました。この現象は、量子粒子がエネルギー的に禁止された領域を飛び越えるときのトンネリングをイメージしています。ただし、この新しい現象は古典物理学で完全に記述でき、量子力学の関与をまったくないことを強調しておく必要があります。これは、変圧器、誘導ホットプレート、ガジェットの非接触充電装置などで使用される電磁誘導の現象に少し関連しています。固体で起こるなんらかのプロセスで電磁界を生成し、電磁界は、非放射的に(電力の損失なく)真空ギャップを介して別の固体に伝達され、そこで応答を引き起こします。両者の違いは、電磁気学のインダクタンスでは電流(つまり電子の動き)が「働く」のに対し、真空フォノン・トンネルでは原子そのものが動くということです。

このような結晶振動と電界が効果的に結びつく具体的なメカニズムはいろいろあるでしょう。フィンランドの研究者による理論論文では、この目的のために圧電素子(水晶などの電場で変形し,かつ変形すると電荷を生じる物質)を使うことを提案しています。加えて:効果的に真空ギャップを突き抜けフォノンが伝わるには、 "対向 "フォノン、交流電場と "エスケープ "フォノンの間の共振同調が必要です。計算によると、物質の現実的なパラメータの下では、このような共鳴が実際に存在し、特定の入射角でフォノンが100%の確率でトンネリングさせられることが示されます。

 

図2. 走査型トンネル顕微鏡の針の先端にある最後の原子と基板との間の熱交換が異常に強い。原子は基板上に電荷を誘導し、原子の熱ジッタを追従して基板上にフォノンを発生させ、その過程で原子からエネルギーを奪う。 Phys.Rev.Lett.105,166101より

 

別の論文では、物理学者たちは、一見まったく技術的な問題を研究して、議論されているこの効果に行きつきました:走査型トンネル顕微鏡の針の最先端の熱は、冷たい基板(図2参照)に(触れることがない)運ばれるのか?繊細な実験方法を用いて、彼らは針の先端の文字通り最後の原子の温度を測定することができ、驚くべき事実を発見しました:この原子は、針ではなく、基板の温度でした!これは、基板と先端の最後の原子の非接触熱交換が(真空を通して!)先端の残りの部分の針よりもはるかに強力であったことを意味します。

このようなことから、通常の熱放射だけ考えても、かなり不十分であることが判明します。研究者らは、針から基板への熱伝達は、熱放射が作り出すことができるものよりも数十億(!)倍も効率的であると推定しました。このことは、詳細な測定結果と相まって、真空中のフォノンのトンネル現象がここでも起こっていることを示しています。


論文の著者は、この効果のメカニズムを次のように説明します。金属表面近傍に置かれた電荷は、金属に電荷を誘起します(静電気の問題では、仮想電荷イメージ)。初期電荷が、例えば熱振動によって揺れている場合、誘起された電荷もまた同じ周波数と振幅で揺れます(電子は原子よりもはるかに軽いという事実のため、原子のそれぞれの動きには "適応 "する時間がかかります)。その結果、基板の表面にある種の電子塊が現れ、「熱い」原子のように揺れる。この塊は、基板上の原子の振動を励起しエネルギーが費やされる。それは、電子塊から、したがって、電気力によって電子塊としっかり接続されているの元の原子の熱を奪う! これが、針の残りの部分が暖かい場合でも、先端の最後の原子は、クールダウンされるメカニズムです。

どうやら、応用はいろいろありそうです。新しい効果は、特定の状況で以前に考えられていたよりもはるかに効率的なので、熱伝達の観点から興味深いものになります。この観察は、マイクロメカニカルデバイスの設計や、多結晶圧電体サンプルの熱伝導率の研究において非常に重要なものとなるでしょう。また、圧電部品と金属部品を組み合わせたマイクロデバイスでは、電子が活躍します。これは、真空を介して電子とフォノンの間で、ある物質から別の物質へのエネルギー移動を迅速に行う現象のすべては、まだ探求されていません。

■Источники:
1) Mika Prunnila, Johanna Meltaus. Acoustic Phonon Tunneling and Heat Transport due to Evanescent Electric Fields // Phys. Rev. Lett. 105, 125501 (14 September 2010); текст статьи находится в свободном доступе в архиве е-принтов под номером arXiv:1003.1408.
2) Igor Altfeder, Andrey A. Voevodin, Ajit K. Roy. Vacuum Phonon Tunneling // Phys. Rev. Lett. 105, 166101 (11 October 2010).

См. также:
Структура электромагнитных полей в веществе оказалась сложнее, чем считалось ранее // «Элементы», 29.11.2005.

Игорь Иванов

ブラックホールと時空の構造(時空の構造)

4. 時空の構造
これらの考え方は、時空の構造に深く根ざしています。2+1次元時空の境界の粒子論から始まり、3+1次元時空の重力論に至りました。時空の次元の一つがどこからともなく現れたのです。この次元は、2+1次元の粒子の相互作用から出現しました。

そして、これは時空が最も基本的な概念ではないということを意味しています。それは、より基本的な概念によって生成され、その法則は、研究対象から観察者の一定の距離の後にのみ有効になります。例え話をしてみましょう。湖面を観察したとします。波が見えたり、水面に浮いている虫が走っていたり。湖の表面は透明度が高く、非常に描写しやすいように見えます。確かに、波の伝搬や表面張力などを記述する方程式を書くこともできます。さて、水面の構造をもっと詳しく調べたいと思ったとします。顕微鏡で見ると、以前のように水面がはっきりと観察されていないことがわかります。そして、電子顕微鏡で見てみると、水の蒸発分子が絶えず表面から出てきて、その場所は空気中の水の分子が凝縮したものに取られていることがわかります。よくよく考えてみると、水の表面が十分に明確に定義されていないことがわかり、個々の分子のレベルで起こる現象をなんとか含めなければならないことがわかりました。同様に、時空は近距離では明確に定義された概念ではなくなります。 明確に定義された概念は、境界に存在する粒子であり、時空は集合的な特性としてのみ出現します。

もし我々が負の曲率を持つ時空の中だけに住んでいるとしたら、我々の宇宙で起こっているすべてのことを理解するためには、その中の粒子の振る舞いを記述する境界層の適切な理論を作くることで十分でしょう。

しかし、興味深いのは、すべての利用可能なデータから判断すると、巨視的なスケールでは、私たちの宇宙の時空は、残念ながら、正の曲率を持っています。現時点では、正の曲率を持つ時空の重力場を同様に記述できる可能性があるかどうかはわかっていません。このような記述が存在し、それを見つけることができれば、ビッグバンの特異点問題は解決するでしょう。

 

ブラックホールと時空の構造(ひも理論)

 https://elementy.ru/nauchno-populyarnaya_biblioteka/25568/25571

Juan Maldacena, 
Institute for Advanced Study, School of Natural Sciences Princeton,
New Jersey 08540, USA

Скачать видеозапись (avi): Часть 1 (160 Мб), Часть 2 (170 Мб), Часть 3 (195 Мб)

1. Black Holes
2. Black Holes and Quantum Mechanics
3. Solving These Puzzles
4. The Structure of Space-Time
5. Bibliography


3. これらの謎を解く
3.1. ひも理論
量子力学と重力は、あまりうまくいっていない2つの理論です。物理学者たちは、この二つの理論を整合性のある理論にまとめようとしてきました。私たちが遭遇するほとんどの物理現象は、重力の影響を無視してもいいし、量子力学の影響を無視してもいいようなものなので、日常生活の実用上、量子重力の理論を開発することはあまり重要ではありません。一方で、ビッグバンの最初の瞬間に宇宙の起源を理解しようとするならば、一貫した理論が必要です。そもそも量子力学と重力の両方が重要なのです。これが、量子重力の理論を見つけるための大きな動機の一つです。


ひも理論は量子重力の理論です。量子力学と重力をまとめて管理している。それが正しい理論なのかどうかはわかりませんが、我々が持っている理論の中では最も有力な候補です。それは,「ひも理論」と呼ばれますが、そのわけはここでの議論で重要ではありません。重要なのは、それが量子重力の理論であるということです。


3.2. ひも理論におけるブラックホール
ひも理論では、ブラックホールを考えることができる。いくつかの特殊な状況下で、これらのブラックホールの微視的な記述を見つけることが可能です。技術的な理由から、一定の負の曲率を持つ時空の中に存在するブラックホールを理解する方が簡単です。このような時空は、平面空間の最も単純な一般化で、平らな空間は曲率がゼロ、正の曲率を持つ空間の例は球体の表面です。図1では,一定の負の曲率を持つ2次元空間の「地図」を見ることができます.また,ゼロ,正,負の曲率を持つ時空を考えることもできます.負の曲率を持つ時空は、実質的に無限大に境界を持っています。粒子は有限時間内に無限大に行き、有限時間内に戻ることができますが、これは時間の流れが異なる位置で異なるため、遠くに行くほど時間の流れが速くなります。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

図1:このエッシャーの描画は、双曲空間の幾何学を捉えようとしたもので、双曲空間を円盤に投影したものです。元の双曲空間では、それぞれの図は同じ大きさなのですが、投影の歪みの影響で、円盤の境界に行くに従って小さく見えます。実際には,円盤の境界は内部のどの点からも無限の距離にあるのです.世界地図を平面上に表現する場合も同様の歪みがあります.標準的な投影[訳者注)メルカトール図法のこと]では,地図上では極点付近の領域が不釣り合いに大きく見える.ここの双曲空間の投影では,逆の効果があり、双曲空間の大きさは無限大なのに、境界付近の領域がどんどん縮小されて投影されるので、全体が円盤内に収まって見えます。


1997年に、私はこの空間における重力物理学の全体が、境界上の普通粒子の理論で記述できると推測しました。これは、ガブサーS. Gubser,クレバノフ I. Klebanov,ポリャコフA. Polyakov,ウィッテンE. Witten らによってさらに発展しました。詳細はやや複雑ですが:境界理論は、私たちが理解していなかった重力理論を、私たちが理解している普通の素粒子理論と同等のものにします。さらに重要なのは この境界理論が 量子力学の原理に従うことです。


内部のブラックホールは、境界にある粒子と比べて熱状態にあります。ブラックホールのエントロピーは、これらの粒子のエントロピーに過ぎません。時空幾何学の「素粒子」とは、境界に存在する粒子のことです。


 

ブラックホールと時空の構造(量子力学)

Juan Maldacena,
Institute for Advanced Study, School of Natural Sciences Princeton,
New Jersey 08540, USA


Скачать видеозапись (avi): Часть 1 (160 Мб), Часть 2 (170 Мб), Часть 3 (195 Мб)

1. Black Holes
2. Black Holes and Quantum Mechanics
3. Solving These Puzzles
4. The Structure of Space-Time
5. Bibliography


2. ブラックホールと量子力学
次に驚いたのは、量子効果が研究されたときです。量子力学では、真空は単に粒子が存在しないだけではありません。真空は非常に興味深い状態で、常に粒子のペアが生成されたり破壊されたりしています。平らな空間では、エネルギーが保存されているので、粒子の純生産はありません。生成された粒子はすべて、非常に早く消滅しなければなりません。1974年にスティーブン・ホーキング博士は、地平線が存在すると、もはやそうではないことを示しました。地平線の近くに正のエネルギーを持つ粒子と負のエネルギーを持つ粒子ができてしまうのです。負のエネルギーを持つ粒子はブラックホールに落ち、正のエネルギーを持つ粒子は飛び去る。平面空間では、負のエネルギーの粒子を持つことができないので、このようなことはありえません。しかし、地平線の反対側では、遠くの観測者から見て負のエネルギーを持つ粒子が、地平線の内側の観測者から見て正のエネルギーを持つことができます。正味の効果は、ブラックホールが粒子を放出することです。放出された粒子は、ブラックホールの質量に反比例する温度を持つ熱分布を持っています。太陽質量のブラックホールでは、この温度はこの効果を測定するには小さすぎます。もしブラックホールが空の空間にあったら、ブラックホールはゆっくりと質量を失い、小さくなるでしょう。質量の小さいブラックホールの方が高温になる可能性があります。1018キログラム(山脈の質量)の質量を持つブラックホールは、1000度の温度を持ち、白く見える。1ミリワットの電球1個分の光を出すことになる。その質量がどんどん小さくなるにつれて、その温度は上昇し、おそらく完全に蒸発するまで、どんどん速く蒸発していきます。実際、数キログラムの質量をブラックホールに崩壊させた場合(実際にはとても難しいことですが)、1ミリ秒もしないうちに完全に蒸発し、核爆弾よりも多くのエネルギーを放出します。

ブラックホールのこの熱的性質は、2つの謎を生み出します:1) 何がエントロピーを生み出すのか?2) 情報パラドックス?
これらについて詳しく説明しましょう。

2.1. ブラックホールのエントロピー
通常の物理学では、熱的性質は常に構成要素の運動から生じます。例えば、空気の温度は、空気分子の平均速度に関係しています。これと密接に関連した概念として、"エントロピー "と呼ばれるものがあります。エントロピーは、すべての構成要素の運動に関連する無秩序の量です。エントロピーは熱力学の法則で温度と関係しているので、システムのミクロな詳細を知らなくても計算できる。ホーキングとベッケンシュタインは、ブラックホールのエントロピーは、地平線の面積をプランク長の2乗で割ったものと同じであることを示しました。巨視的なブラックホールにとって、これは巨大なエントロピーです。このエントロピーにブラックホールの寄与が含まれていても、熱力学の法則は有効であることがわかりました。ブラックホールの「構成要素」が何であるかが全く分かっていないため、非常に不可解な結果となっています。ブラックホールは時空の穴なので、その構成要素を見つけることは、時空幾何学の最も基本的な構成要素を見つけることと密接に関係しています。

ブラックホールのエントロピーは体積ではなく面積に比例するというのは非常に興味深いことです。1990年代初頭、トホーフトHooftとサスキンドSusskindは、量子力学と重力を含む理論では、系を記述するために必要な構成要素の数は、系を取り囲む表面の面積よりも大きくてはならないことを提唱しました。このことは、時空が普通の固体とはかなり異なることを意味しています。ほとんどの実用的な目的のためには、このエントロピーの束縛はそれほど厳密ではありませんが、時空のある領域は、その領域の境界に住む構成要素によって記述できることを示唆しているので、理論的には興味深い意味合いを持っています。

2.2. 情報のパラドックス
これまでブラックホールはいろいろな方法で作れることを述べてきましたが、結局はいつも同じブラックホールになってしまうようです。物理学では、通常、異なる初期状態から始めると、最終的には異なる状態になります。時々、その違いは非常に微妙なものですが、違いがあります。例を挙げてみましょう。2枚のお皿を用意して、片方にAの文字を書き、もう片方にBの文字を書きます。最初の概算では、最終的な結果は同じで、たくさんの破片が割れていることになる。しかし,破片を詳しく調べれば,どの文字が書かれているかが分かります.

そのうちの一つをブラックホールに放り込んだとしましょう。どうやら、ブラックホールはホーキング博士の放射線を放出して完全に蒸発してしまうらしい。ホーキング博士の計算では、この放射は完全に熱的で、ブラックホールの初期状態とは無関係のようだ。つまり、元々プレートの上にあった文字の情報を完全に復元することはできなさそうです。

これは非常に難解な学術的な問題のように思えます。私たちはいつも物事を忘れているので、そんなことは気にしていません!(笑)。なぜこの問題が非常に重要な問題なのかというと、量子力学では、このプロセスを支配する法則は、原理的に情報を復元できるようなものでなければならないと教えてくれているからです。だから、情報の問題を解決することが、量子重力の一貫した理論に必要なのです。そのような理論は、情報の謎を解決しなければなりません。

ホーキング博士を含む多くの著名な物理学者は、これは不可能だと考えていました。彼らは、ブラックホールが本当に情報を破壊していると考え、量子力学を捨てなければならないと考えていました。彼らは、量子力学と重力は根本的に相容れないものであり、正しい理論は情報が失われないことを暗示する量子力学の原理に従わないと考えていた。

この疑問を考えることで、弦理論や素粒子物理学の分野で興味深い進歩を遂げてきました。


ーーー続く

ブラックホールと時空の構造(ブラックホール)

Juan Maldacena,
Institute for Advanced Study, School of Natural Sciences Princeton,
New Jersey 08540, USA

https://elementy.ru/nauchno-populyarnaya_biblioteka/25568/3_Solving_These_Puzzles

Black Holes and the Structure of Space-Time • БиблиотекаBlack holes are very puzzling objects that are predicted by gelementy.ru
Скачать видеозапись (avi): Часть 1 (160 Мб), Часть 2 (170 Мб), Часть 3 (195 Мб)

1. Black Holes
2. Black Holes and Quantum Mechanics
3. Solving These Puzzles
4. The Structure of Space-Time
5. Bibliography


1. ブラックホール
ブラックホールは、アインシュタインの一般相対性理論によって予測された最も魅力的な天体の一つです。ブラックホールには興味深い歴史があり、時空の性質の理解を深めるために多くの理論的な驚きの源となってきました。

まず、ニュートンの重力理論を考えてみましょう。ここ地球の表面では、重力の力を感じることができます。石を上に投げると、重力の力で石が下に戻ってきます。では、物を上に投げても下に落ちてこないようにすることはできるのでしょうか?はい、できます。秒速11km以上の速度で投げると、地球の重力場から離れてしまいます。この「脱出速度」は、地球の質量と半径に依存します。もし地球がもっと質量があり、同じ半径であれば、脱出速度はもっと高くなります。では、もし、光の速度よりも脱出速度が速いほど密度が高く、質量のある物体があったとしたらどうなるだろうか?そうすると、光が逃げられなくなり、それは黒く見えます。例えば、大きさが

 

より小さい星は黒く見えるでしょう。ここでG_{N}はニュートン定数、cは光速です。計算式に慣れていない方のために、いくつか例を挙げてみましょう。地球の質量の物体がブラックホールになるためには、その大きさが1cm以下でなければならない。太陽の質量を持つ物体は、1km以下の領域に集中していなければなりません。このことは1800年代にP.ラプラスによって指摘されましたが、誰も注目していませんでした。

1905年に特殊相対性理論が登場して、光の速度は他の普通の速度とは違うことがわかりました。それは宇宙の速度の限界であり、光より速く進ませることができるものはないのです。アインシュタインの相対性理論は、空間と時間が密接に結びついていることも教えてくれます。時間の流れは、お互いに相対的に移動している観測者によって異なります。あなたが通りのそばに立って車が通るのを見ているとしましょう。車に乗っている人の時間の流れは、あなたの時間の流れとは異なります。2 つの別々の街灯が同時に赤になるのを見たとしましょう。運転手にとっては、同時に赤になることはないでしょう。これはもちろん、光が両人の目に届くまでの時間を考慮に入れた上でのことです。両者とも光の速度で進んでいる光を見ていますが、時間の流れ方は異なります。時間は相対的なものであり、光の速度は絶対的なものである。私たちは通常、光の速度よりもはるかに小さい速度で移動し、私たちは非常に正確に時間を追跡していないので、これは私たちにとって非常に小さな効果であるため、これは逆に直感的に思えます。これは、粒子加速器では常に見られる効果です。粒子は光速に近い速度で移動しているときには、はるかに長く生きています。

空間と時間は、一つの概念である時空にまとめられています。時間は、お互いに相対的に移動している二人の観測者によって異なる知覚をします。どちらの観測者も同じ時空を見ています。この二つの観測者の観測を関連付けるための正確な公式があります。

重力の話に戻りましょう。重力には、ガリレオによって発見された非常に特殊な特徴があり、真空中では、羽と石が一緒に落ちる。これは他の力では起こりません。電場の中の粒子は、その質量や電荷が変われば、異なる動きをする。ニュートンの重力理論では、すべての粒子が同じように落ちるのは、重力の力が質量に比例するからです。これを "等価原理 "と呼ぶこともあります。

アインシュタインは、ニュートンの理論では重力が瞬間的に伝播するので、ニュートンの理論は特殊相対性理論と両立しないことに気づきました。1915年、アインシュタインはこの問題を、等価性の原理も自然に取り入れた方法で解決しました。彼はこの理論を一般相対性理論と名付けた。彼は、重力は時空の湾曲に起因することを提案しました。湾曲した時空の中の粒子は最短の線に従う。湾曲した空間上で最初は平行な線は、後になってお互いに向かって移動するかもしれない。例えば、地球の赤道にある2本の子午線は、最初は赤道で平行だったが、北極で交差する。時空の形は、その上を移動する物質に依存しています。一般相対性理論は、時間の流れが重力場に依存していることを暗示しています。したがって、同じ建物の最上階と最下階に住んでいる二人の人は、時間の流れが違って見えることになります。下の階に住んでいる人の方が時間の流れが遅くなります。これは、この地球上の建物にとっては非常に小さな効果であり、1/1015の効果です。私たちが学んだことは、巨大な物体が空間と時間をゆがめるということです。特に、これは巨大な物体の近くの時間は、遠くの時間よりもゆっくりと流れることを意味します。

物理学者は常に最初に最も単純な状況を研究しようとします。そこで、一般相対性理論が発明されて間もない1916年、カール・シュワルツシルトという若いドイツ人が、アインシュタインの方程式の最も単純な球対称解を発見しました。これらの方程式は、点状の質量によって生成される幾何学であると考えられていた特定の幾何学を記述しています。その幾何学が何であるかを語るのではなく、その特徴の一つである静止した時計がチックする速度に焦点を当ててみよう。太陽の表面にある時計は、遠くにある時計よりも100万分の1の速度で動いています。中性子星の表面にある時計は、遠くにある時計の70%の速度で動いています。この場合、大きな効果があることがわかります。シュワルツシルトが発見した解は、「中心」にある時計が完全に止まってしまうことを示しています。当初、ほとんどの物理学者は、これは物理的ではない結果であり、過度に単純化された解析の産物だと考えていました。

さらに研究を進めると、シュワルツシルトの解の「中心」は、実際には完全に滑らかな表面であることがわかりました。時空を旅している観察者は、この領域を何の違和感も奇妙さも感じずに通過することができます。ブラックホールの外にいる人は、落下してくる観測者からの信号が、すべての実用的な目的のために、最終的には消滅するまで減速することを見ています。静止した時計がゼロに減速する表面は "地平線 "と呼ばれ、この地平線は戻りがない点を示し、この表面を横切った観測者は、再び出てくることができず、内部の「特異点」に押しつぶされてしまいます。特異点とは、非常に高い時空の曲率の領域で、彼は引き裂かれてしまいます。アインシュタインの理論におけるブラックホールの大きさは、今でもニュートンの理論でラプラスが計算した式で与えられていることが判明しましたが、物理的な解釈は大きく異なっています。

ブラックホールは、太陽の数倍の質量を持つ星が核燃料を使い果たし、その重力の下で爆発することで、天体物理学的な過程で形成されることがあります。宇宙にはブラックホールが存在することを示す多くの観測的証拠があります。これらの天体物理学的ブラックホールには、大きく分けて2つのタイプがあります。太陽の数倍の質量を持つものと、恒星が崩壊してできたものです。ブラックホールは黒いので、なかなか見ることができません。運よくブラックホールの中にガスが落ちてくることがあります。ガスが落下すると、このガスは熱を帯びて独特の放射線を発しそれを検出します。このガスは、ブラックホールを周回している別の星から来ることもあります。つまり、お互いに公転している2つの星があって、一方の星が崩壊してブラックホールになったとすると、もう一方の星からガスが出てきます。そして、もう一方の星からのガスがブラックホールに落ち始めます。また、銀河の中心には、もっと質量の大きなブラックホールがあります。これらは10億個の太陽の質量を持っています。これらのブラックホールに物質が落下すると、熱を帯びて放射線を発し、それが最終的には地球上の私たちによって検出されます。私たちのような大きな銀河はすべて、中心にブラックホールがあると考えられています。

この講演の焦点は、天体物理学的なブラックホールの説明ではなく、ブラックホールが時空の構造に与える影響を探ることにあります。

アインシュタインの理論によれば、ブラックホールは時空の穴であり、一度落ちたら二度と戻れない。ブラックホールに投げ込まれたものは永遠に失われる。ブラックホールは非常に興味深い普遍的な性質を持っています。星がブラックホールに崩壊したとき、その最終的な形は質量と角運動量の2つのパラメータだけに依存します。つまり、ブラックホールは普遍的なものであり、ブラックホールを形成した物質の特異な詳細な性質に依存しないのです。最初の星の化学組成に関係なく、常に同じブラックホールを得ることができます。つまり、ブラックホールは重力の理論だけに依存しており、他の力の詳細な性質には依存しないのです。

ブラックホールのもう一つの特異な特徴は次のようなことです:ブラックホールが関与しているプロセスがあるとします。例えば、2つのブラックホールの衝突を考えてみましょう。ブラックホールが衝突して、より大きなブラックホールを形成する。ちなみに、この過程では重力波を出すことができ、それを測定しようとしている検出器があります。この過程を計算するのはかなり難しく、複雑な方程式を解かなければなりません。それでも、いくつかの簡単な結果があります。最終的なブラックホールの面積は、最初のブラックホールの面積の合計よりも常に大きい。面積は常に大きくなる。これは「面積定理」と呼ばれ、1970年にホーキング博士によって証明された。