掲示板

平面群

繰り返し模様$$p6$$と$$p6mm$$★

■第16の類は国際記号で$$p6$$,ロシア式記号で$$(a/a):6$$です.

以下のペルシャのパターン(Owen Jones)の例では,黒い6角形の内の花は厳密には6回対称ではありませんが,これを6回対称とみなすと,周りに風車がまわっているような6回軸の配列のパターンが見えます.

 

 

 

 

 

 

 

 

 

 

6回回転軸が通る点を頂点とする平行4辺形が単位胞.非対称要素モチーフが6個で単位胞を埋めます.

 エッシャー作品の例

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■第17の類は国際記号で$$p6mm$$,ロシア式記号で$$(a/a)・m・6$$,あるいは$$(a・a):m・6$$です.

$$p6$$の対称性に鏡映面が加わりますが,並進軸に平行な鏡映面も,垂直な鏡映面もあります.

 

 

 

 

 

 

 

 

 

 

 

非対称要素である直角3角形が12個で単位胞を埋めます.

 

 対称性の法則をもっと利用すると,アーティストがデザインパターンのモチーフを変形するのが容易になる.

繰り返し模様$$p3m1$$と$$p31m$$★

■第14の類は,国際記号で$$p3m1$$,ロシア式記号で$$(a/a):m・3$$と記述します.対称性$$3・m$$の図形を60°で交差する等価な2つの軸$$(a/a)$$に沿って並進させて得られますが,鏡映面(赤色)の入り方が,並進軸(青色)に直交している.

 

 

 

 

 

 

 

 

 

 

非対称要素(黄色)が6個で単位胞を埋める.

■第15の類は,国際記号で$$p31m$$,ロシア式記号で$$(a/a)・m・3$$と記述します.並進の格子$$(a/a)$$は同じですが,鏡映面の入り方が,並進軸方向に平行である.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

上の図で鏡映面は格子に重なっている.非対称要素(黄色)が6つで単位胞を埋めている.

■この両者の区別は多くの書物で混乱がみられます.分かりにくいので,もう少し詳しく説明を加えましょう:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

美しい幾何学,p.100,p.110より引用

 

繰り返し模様$$p3$$★

壁紙模様の対称性の第13番目の類は,対称性3の図形を,60°で交差する2つの等価な並進軸$$(a/a)$$で並進して得られる.

国際記号で$$p3$$,ロシア式記号で$$(a/a):3$$です.今回から始まる残り5つの対称性の類(第13~17)は,正3角形のメッシュに属します.

 

 

 

 

 

 

 

 

 

 

 

 

 

等価な図形が隙間なく平面を充填しているこの対称性のパターンを以下に示します.モチーフ(非対称要素)は,正3角形メッシュ座標を作っている頂点に集まる曲線で囲まれた形です.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

非対称要素(モチーフ)3つで,単位胞の面積に等しくなります.鏡映対称はありません.

以下の例は,アルハンブラの有名なモザイクです.これは対称性$$p3$$の例です.ただし,色の区別はしていません.

 

 

 

 

 

 

 

 

(参考)以下の「千鳥」のパターンの対称性は$$p3$$ではありません.何故でしょうか?

 

 

 

 

 

 

 

 

 

 

 

(解答)上図の「ちどり」のパターンは,単位胞の菱形の頂点に6回軸がありますので,$$p3$$ではありません.このパターンは,後ででてくる$$p6$$の対称性です.単位胞の中を,2つの千鳥図形で埋まますが,この千鳥の形は,等価なモチーフにさらに3分割できますから,非対称要素は,千鳥を3分割したものになります.

17table

\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
\textgt{国際記号} & p1 & p2 & pm & pg & cm & pmm2 & pmg2 & pgg2 & cmm2 \\[0mm]
\hline
\textgt{ロシア式記号} & \left( b/a \right) 1 & \left( b/a \right) :2 & \left( b:a \right) :m & \left( b:a \right) \tilde{b} & \left( a/a \right) /m & \left( b:a \right) :2m & \left( b:a \right) :m:\tilde{a} & \left( b:a \right) :\tilde{b}:\tilde{a} & \left( a/a \right) :2m \\[0mm]
\hline
& & & & & \left( c/b:a \right) :m & & \left( b:a \right) :2\tilde{a} & \left( b:a \right) :2 \odot \tilde{a} & \left( c/b:a \right) :2m \\[0mm]
\hline
\textgt{対称要素} & \begin{minipage}[b][95pt]{130pt}
\includegraphics[width=130pt,height=95pt]{tex17tplaneable_001.bmp}
\end{minipage}
& \begin{minipage}[b][86pt]{121pt}
\includegraphics[width=121pt,height=86pt]{tex17tplaneable_002.bmp}
\end{minipage}
& \begin{minipage}[b][85pt]{93pt}
\includegraphics[width=93pt,height=85pt]{tex17tplaneable_003.bmp}
\end{minipage}
& \begin{minipage}[b][86pt]{97pt}
\includegraphics[width=97pt,height=86pt]{tex17tplaneable_004.bmp}
\end{minipage}
& \begin{minipage}[b][80pt]{97pt}
\includegraphics[width=97pt,height=80pt]{tex17tplaneable_005.bmp}
\end{minipage}
& \begin{minipage}[b][88pt]{103pt}
\includegraphics[width=103pt,height=88pt]{tex17tplaneable_006.bmp}
\end{minipage}
& \begin{minipage}[b][112pt]{141pt}
\includegraphics[width=141pt,height=112pt]{tex17tplaneable_007.bmp}
\end{minipage}
& \begin{minipage}[b][113pt]{132pt}
\includegraphics[width=132pt,height=113pt]{tex17tplaneable_008.bmp}
\end{minipage}
& \begin{minipage}[b][113pt]{131pt}
\includegraphics[width=131pt,height=113pt]{tex17tplaneable_009.bmp}
\end{minipage}
\\[0mm]
\hline
\end{array}
\ \\
\ \\
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
\textgt{国際記号} & p4 & p4mm & p4gm & p3 & p3m1 & p31m & p6 & p6mm \\[0mm]
\hline
\textgt{ロシア式記号} & \left( a:a \right) :4 & \left( a:a \right) :4m & \left( a:a \right) :4 \odot \tilde{a} & \left( a/a \right) :3 & \left( a/a \right) :m & \left( a/a \right) m & \left( a/a \right) :6 & \left( a/a \right) :m \\[0mm]
\hline
& & & & & & & & \\[0mm]
\hline
\textgt{対称要素} & \begin{minipage}[b][116pt]{121pt}
\includegraphics[width=121pt,height=116pt]{tex17tplaneable_010.bmp}
\end{minipage}
& \begin{minipage}[b][116pt]{115pt}
\includegraphics[width=115pt,height=116pt]{tex17tplaneable_011.bmp}
\end{minipage}
& \begin{minipage}[b][114pt]{119pt}
\includegraphics[width=119pt,height=114pt]{tex17tplaneable_012.bmp}
\end{minipage}
& \begin{minipage}[b][109pt]{147pt}
\includegraphics[width=147pt,height=109pt]{tex17tplaneable_013.bmp}
\end{minipage}
& \begin{minipage}[b][98pt]{145pt}
\includegraphics[width=145pt,height=98pt]{tex17tplaneable_014.bmp}
\end{minipage}
& \begin{minipage}[b][99pt]{143pt}
\includegraphics[width=143pt,height=99pt]{tex17tplaneable_015.bmp}
\end{minipage}
& \begin{minipage}[b][98pt]{145pt}
\includegraphics[width=145pt,height=98pt]{tex17tplaneable_016.bmp}
\end{minipage}
& \begin{minipage}[b][98pt]{147pt}
\includegraphics[width=147pt,height=98pt]{tex17tplaneable_017.bmp}
\end{minipage}
\\[0mm]
\hline
\end{array}

繰り返し模様$$p4mm$$★

繰り返し模様の対称性の第12類は,$$4・m$$の図形を正方形単純格子$$(a:a)$$で並進させて得られる.

この対称性は,国際記号で$$p4mm$$,ロシア式記号で$$(a:a):4・m$$と記述される.
この対称性のパターンの例は

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

非対称要素(モチーフ・タイル)は,単位胞の1/8です.

この対称性の日本の伝統模様はたくさんあります.
例えば,以下の七宝つなぎなどです.イスラムの模様との交流もあったと思われます.