ブログ

2019年12月の記事一覧

数当てカードの数理★

4x4の16個のマスに0~15の数字が書かれたカードがあります.このカードの上に孔のあいたマスクカードを重ね「あなたの思った数が見えますか」と尋ねる.これをマスクカードを変えて4回行えば,相手が心の中で思っていた数が当てられるというのが,この数当てのゲームです.

どのような仕組みがあるのでしょうか.秋山久義さんが,2019年7月のパズル懇話会で発表されています.
今日は,秋山久義さんの発表「数当てカードの諸相」から引用して,その仕組みを解説します.

まず,16個の数の配列は,ランダムに配置したふりをしていますが隠れた規則があります.
例えば次の2つの方法があります.
(1)左右対称の位置にある2つの数字の和は常に15になる.
(2)回転対称(2回対称あるいは点対称)の位置にある2つの数字の和は常に15になる.

このために右半分(あるいは左半分)を知れば,全部の数の配置がわかります.
つまり,相手の意中の数が見えない場合は,その数との和が15となる数の方が見えているのです.

 

 

 

 

 

 

 

 

さて,0~15の数を2進数で表すと次の表のようになります.a,b,c,dはそれぞれ2^3,2^2,2^1,2^0の桁に相当します.

 

2進数表示で3桁目を表すマスクカードがa,2桁目を表すマスクカードがb,というように
4枚のマスクカードができます.
それぞれの数の上に乗る4種類のマスクカードで,2進数表示の1のところに孔を開ける(網掛け部分)
ことにします(逆に統一してもかまわないが).
例えば,13の場合は,aとbとdのマスクカードに孔(網掛け部分)をあけ,cのマスクカードには
孔はあけません.

以上で,仕掛けの準備ができました.

これで,質問を開始して,数字が見えるといったマスクカードはそのまま横に置き積み重ねていきます.
見えないといったマスクカードは
(1)の場合には裏返して重ね/(2)の場合は180°回転して重ねるのです.

結局,4枚のマスクカードを重ねたものは,
相手の心の中で思っている数字の位置に孔があいた状態になっているはずです.

 

 

 

 

0

エッシャー視覚の魔術師

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2019.12.24] No.298
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
12/20はアップリンク渋谷に映画,「エッシャー 視覚の魔術師」を見に行きました.
エッシャー(オランダ,2018)の版画作品からは,数学者としてのエッシャーは良く知られていますが,
どんな生活をした人物かはあまり気にしたことがありませんでした.
映画では,エッシャーの息子たちへの取材が面白かったです.作品にまつわるエピソード
[1955年作「表皮」から1956年作「婚姻のきづな」に発展]など,よくわかりました.
ムッソリーニ時代の全体主義に息子が染められるのを嫌いイタリアからスイスに移住しました.
人物像のわかる良い映画でした.

最後の方でエッシャーが国際結晶学会の講演に呼ばれていくところがありましたが,
私の専門は結晶学で,結晶学会では昔からエッシャーの周期的模様を教材にしており,
結晶学者には,エッシャー作品は馴染み深いものです.

アルハンブラのモザイクには平面群の17種のすべてがあるという説と1種類かけているという説があります.
どちらでしょうか?それともどちらも違うのか.実際にアルハンブラには行って調べて見たいものです.
ペンローズ・タイリングを発見したペンローズも,アルハンブラのタイルからヒントを得たと聞きます.
私も,イスラームのデザインに立戻って,タイル張りの見直しをしてみようと思っています.

映画のエンドロールにスナップ映像が流れますが,その映像の一つに,大道絵師の光景が写りました.
たまたま昨夏,ニューカッスルの通りで見かけたエッシャー作品ばかり道に描いていた大道絵師のようです.

http://cinejour2019ikoufilm.seesaa.net/article/escher-review.html シネマジャーナルへ掲載いただきました.

■エッシャー作品の生まれるまで
コクセターとエッシャーはオランダで開催された1954年の国際数学者会議で出会いました.
1958年にコクセターはこの分割を掲載した論文*をエッシャーに送り,
これがエッシャーの「極限としての円」の作品群を生むことになります.
http://sgk2005.saloon.jp/blogs/blog_entries/view/46/a655be2fc4e933a93af15e269d8b684e?frame_id=54

極限としての円の数学については,以下のブログを参照ください.
http://sgk2005.saloon.jp/blogs/blog_entries/view/46/2e340c06148db50daae618a772629e15?frame_id=54

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

0

クンデカリ

クンデカリKundekariという技術は,接着剤も釘も使わず木のピースを組み立てていく技術です.イスラム模様の装飾のある説教壇(minbar),ドア,家具に用いられます.12世紀にアナトリア地区で生まれたこの技術は,その地のセルジューク帝国,オスマン帝国時代に洗練されました.杉,薔薇,梨,クルミ,黒檀,リンゴなどの木材が使われます.木材ピースを溝とホゾで組み立てるので.各ピース間は2~3mmのギャップがあり,それぞれのピースの膨張伸縮で歪みが生じることがありません.接着剤や釘で固定された作り方よりも,湿気などに対する耐久性があり,ひびが入らず700年持つといわれます.ジャーミイのドアは,5cm位の多くのパーツをクンデカリの技術で組み立てています.そしてさらに,このドアーを構成する木材ピースの総数は,数秘術的な意味があるそうです.
⇒数秘術的な意味については,アラビア文字のアブジャド数に続く.
(参考文献)クンデカリについては,Mugla Journal of Science and Technology, Vol2,No2,2016,110を引用

0

機械設計と数学

機械設計(日刊工業新聞社)1月号のSekkeiBookReviewに拙著「美しい幾何学」を取り上げてくださいました.本の狙いをよく理解いただいたようで工学分野で読まれるのは嬉しいです.
この雑誌は専門書なので初めて手にしますが,回転ステージやDCモーターなど,会社でX線反射率測定装置を作ったとき購入したものも色々載っていて懐かしいです.ロボットの分野はずいぶん進み洗練されましたね.

以下の記事が目につきます.これらは数学とも無縁ではありません.
・「歯車装置の設計計算」→表計算ソフトで歯車の歯切りに使うピニオンカッタのトコロイド曲線を描く.

・「Mathcad学ぶで力学解析」→Mathcadは数式通りの記述で計算ができるので,私も初期のMathcadを個人購入し(初期の頃はMathematicaに比べかなり安かった)愛用していたことがあります.いまはMathcad prime6.0になったようです.

・「鳥はなぜ飛べるのか」→非常に興味深い.翼まわりの渦輪など解析をしていますが,難しい流体力学なのでまだ読めていません.

0

数学書として憲法を読む

12月4日の夕方から秋葉忠利さんの「数学書として憲法を読む」の出版記念パーティがありました.100人ほど集まり楽しいパーティでした.田中康夫さんや阿部知子さんも来られました.おりしも,PISAテストで15歳の読解力の低下が指摘されています.国民もマスコミも読解力のない社会になりました.論点を次々にずらしたり,揚げ足取りで本論から逸脱させたり,部分否定と全否定をすり替えたり,必要条件と十分条件を区別しなかったり,みな詭弁への道で,まともな議論になりません.論旨を素直にとらえて,正面から議論する当たり前のことが通じない社会になりました.特に,国会やマスコミの報道でこのようなまともな論理の劣化が気になります.

読解力は,読書をしたり話を聞いたりして自然に身に着くものです.私の子供の頃は,落語のラジオ放送を聞く毎日でしたが,まとまった話を最後まで聞くというのは,読解力を身に着けるための良い訓練であると思います.

論理的な普通の読解力で(いかめしく言うと数学的に)憲法を読むというアイデアは画期的な問題提起です.
秋葉さんの本の一読をお勧めします.この本は以下の様に憲法を舞台にしていますが,何の分野でも正しくあるがままに理解するということは重要なことです.

■改憲不可条項
憲法にある「義務」,「尊重」などの単語,特に,「永遠」,「永久」といった「絶対性」をもつ単語を,素直に受け入れ(「義務」という言葉は素直に法的義務と読むべきなのに,都合の悪いところになると道義的要請とよむ「憲法マジック」は詭弁の入り口),「全部否定」と「部分否定」,「必要条件」と「十分条件」との違いを峻別できないと,詭弁に引き込まれます.この他に,憲法に書かれていないこと(あるいは,他の文献)に依存せず,憲法全体は,無矛盾・自己完結するなど,9つのルール(9大律)を設定し,憲法の条文を公理に見立て,論理的な結論となるいくつかの「定理」を導きました.

「永久に」,「国民の総意」,「不断の」などの絶対的な表現と関連がある8つが「改憲不可条項」に当たります.改憲禁止の条項とは明示されてはいないが,論理的にそのような結論になる条文が8か条あるということです.この8か条も含めて,改正の対象にならない条文は30か条を超えることが示されました.改憲の手続き規定である96条は改憲のための必要条件に過ぎないわけです.時間的な極限を表す言葉,「永久に」が使われている9条を変えて,1946年以降の有限時間内のある時点で「戦争をすることが可能になる」ようにすることは,「永久に」という言葉に反します.したがって,9条を「改憲」することは憲法違反になります.

0

アラビア文字のアブジャド数

 

アラビア文字の各文字は数を割りあてられています.このシステムのことはアブジャドabjadと呼ばれ,十進法のインド数字が採用される以前は数値を表現するのに使われていました.また,単語や文章の数値はシンボリックな意味があります.
例えば,「アッラー」は66,このアナグラムの「ラーレ(チューリップ)」も66で,同じ数値ですので,チューリップ模様はジャーミイの装飾に使われます.

クンデカリを構成するピースの数も意味があります.例えば,ドアの文様を構成するセグメント数の165ピースは,「アッラーのほかに神はいない」を意味するそうです.

■私はアブジャドのことは聞きかじっただけで,正確な記述ではないかもしれません(アブジャドのことをご存知の方教えてください).
私の理解した考え方だけおおざっぱに述べると,アラビア語でも,アルファベット(英語)で計算する数秘術のように,単語(スペル)の文字の数値を総計し,その単語の数値が決まります.ただし,数値を対応させるのはアブジャドに対してで,アラビア文字そのものに対してではないそうです.

(注)世界には,ギリシャ文字(ラテン文字,キリル文字,...),漢字,アラビア文字,などいろいろありますが,アラビア文字は子音を表記する文字に母音も含めるようで,文字も独立の場合と単語の中に使われる場合で異なるようです.漢字や速記文字なども記号全体で一定の意味もつのに似ています.単純なアルファベットではなくアブジャドという文字体系に数字を対応させます.

 

■クンデカリ技術で作られたドアを構成するピース数の意味

以下の写真のドアの文様の数値227は,次のようにして数えるそうです.この数値のシンボリックな意味は知りません.

面積1の正方形の数14個 →1x14=14
面積2の長方形の数11個 →2x11=22
面積3の長方形の数13個 →3x13=39
ーーーーーーーーーーーーーーーーーー 
   (全図形数)38個     75(全面積)
         x4
      -----
 (枠のピース数)152 +(面積数)75 =227(全ピース数)

0

ジャーミイ・バザーの万華鏡ワークショップ

11月30日は東京ジャーミイのチャリティ・バザーの一環として万華鏡のワークショップを行いました.3クラス実施し,
66人の材料を使い切りました.新館の3Fの工事が終わったばかりの美しい部屋のHouse-warming partyになりました.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0