掲示板

note.com投稿記事

COVID-19感染拡大とナイチンゲール病院

 

 

 

 

 

 


 
■NHS Nightingale Hospitalについて
NHS=国民保険サービス,Nightingale Hospital=臨時救急病院≒野戦病院
イギリスのNHSは4つの地域区分(イングランド,スコットランド,ウエールズ,北アイルランド)があります.イングランドのナイチンゲール病院は,London(4,000床)にオープン(4月3日)を皮切りに,7つ目のSunderland(460床)は日産自動車工場近くに整いました.Covid-19患者の数に北東部の病院が対処できない場合に限り使われます.「人々が社会的距離を保ち,あるいはワクチンができ,この病院を使わないですむことを願っている」とNewcastle病院のNHS局長は語りました(Sunderland Echo紙).
Stay at home, protect the NHS, and save livesがスローガンで,
イギリスは,3月23日に3週間の全土封鎖に踏み切ったが,まだピークが去らないとしてさらに3週間の延長しています.4月19日現在.累積確認患者数は90,629,累積死者数は14,399に上りますが,一日の感染者の広がりは減少始めたようです.封鎖と並行して,PCR検査から抗体検査に転換し,抗体検査の大規模実施(現時点で1万3729人1日3万5000件の能力がある)と「NHSナイチンゲール病院」の設立を進めました.
クリミア戦争(1853-1856)で野戦病院の衛生状態の改革を行ったナイチンゲールは,『看護覚え書』,『病院覚え書』など多くの著作を残し,そこにはワンルームの病院設計図もあり,高い天井まで延びた3層の窓,3層目の窓を開放し換気,ベッドの間隔,等々要点が記されています.
NHSが設立した病院は,ナイチンゲールの病院概念が活かされた臨時救急病院≒野戦病院だからこう呼ぶのでしょう.
■ナイチンゲールについて(以下のウエブサイト記事を参照しました)
草の実堂;https://kusanomido.com/study/history/western/21987/ 
ナイチンゲールはクリミア戦争(1853-1856)で野戦病院の衛生状態を実践改革し死亡率を低下させました.帰国後のナイチンゲール・チームはバーリントンホテルに集結し,戦時の報告書をもとに病院の状況分析をして,数々の統計資料を作成,改革のためにつくられた各種委員会に提出しました.特に,死亡原因ごとに死者の数をひと目で分かるようにレーダーチャートの発明があります.
1860年にナイチンゲールが看護専門学校(ナイチンゲールスクール)を設立したのは広く知られていますが,ナイチンゲールが統計学者であることはあまり知られていません.疫学研究の元祖です.1859年にイギリス王立統計学会の初の女性メンバーに選ばれ,アメリカ統計学会の名誉メンバーにも選ばれました.ナイチンゲールは90歳で亡くなりますが,晩年50年間はほとんどベッドの上で,本の原稿や手紙を書く活動でした.その病因はブルセラ病に感染したこと(by D A B Young,Florence Nightingale's fever,1995)でした.

ブルセラ病については,次号に続きます.

ブルセラ症とは何か



 
ナイチンゲールが50年間ベッドでの仕事を余儀なくされ,死因ともなったのは,クリミア戦争時に流行したマルタ熱(ブルセラ症)であることが明らかになった.D A B Young,Florence Nightingale's fever,(BMJ VOLUME 311 23-30 DECEMBER 1995)
ーーーーーーー
■ブルセラ症(brucellosis)
NIID国立感染症研究所https://www.niid.go.jp/niid/ja/kansennohanashi/513-brucella.html,および,wikiを参照した.----
ブルセラ症はマルタ熱とも呼ばれる細菌に感染して起こる人獣共通感染症.クリミア戦争でマルタ熱が流行したことで世界的に注目されたが,紀元前400年頃のヒポクラテス著書にブルセラ症と思われる疾患がすでに記載されている.現在でも,世界中で毎年50万人を越える家畜ブルセラ菌感染患者が新規に発生(食料や社会・経済が家畜へ依存し,家畜ブルセラ病が発生している国や地域)発生している.マルタ熱の原因菌として,イギリス軍の軍医Sir David BruceによりB. melitensis が分離(1887)されて以降,種々のブルセラ属菌が発見されている.ヒトへの感染が報告されている主なものは,B. melitensis (自然宿主:ヤギ,ヒツジ),B. suis (ブタ),B. abortus (ウシ,水牛),B. canis (イヌ)の4菌種である.日本では,過去に牛のB. abortus感染が流行し問題になったが,家畜衛生対策の徹底により,1970年を最後に国内家畜から菌が分離された例はない.感染動物の加熱殺菌が不十分な乳・乳製品や肉の喫食による経口感染が最も一般的である.ヒト-ヒト感染は極めてまれである.
ブルセラ属菌は敵国の兵士や住民に罹患させて能力を低下させる生物兵器としても研究・培養された.アメリカは1942年、ソ連は1978年に兵器化を実現した.

■サビノワとリユドミラ物語.Екатерина Савинова и Людмила Сенчина
Приходите завтра「明日来なさい」(1963年,ソビエト映画)は,1540万観客の大ヒット映画(ロシア語)です.シベリアの寒村からИнститут имени Гнесиных モスクワの音楽学校に入ろうと出てきた才能ある少女の物語です.重い荷物を背負って一人で都会に出てきた元気で愉快な純粋な少女です.しかし,モスクワに来たときは既に遅く入学試験は終わっていました. 少女の役名はФросяフローシャ.これは実在のЕкатерина Савиноваサビノワの伝記映画で,サビノワ自身が主演し歌います.あの声はサビノワしか出せません.私がこの映画を知ったのも彼女の3.5オクターブ出るという魅力的な声の歌を耳にしたからです.音楽学校の玄関で有名なソコロフ教授に何度か訴えます.ついに引き出した教授の返事が Приходите завтра!「明日来なさい」でした.教授に学校のオーデトリウムで聞いてもらえた彼女の歌声がすばらしい.教授もフローシャの純粋さと素晴らしい声を見抜き,何とか入学させようと動きます.この映画はサビノワが自分で主演した愉快で楽しい映画で,私はとても好きです.しかし,残念ながら,その後のサビノワは,ブルセラ病(生牛乳を飲むと牛から感染する)が重くなり鉄道自殺(1970年,43歳)してしまいます.

興味深いのは,1963年にウクライナで高校生時代に,Людмила Сенчинаリュドミラ・センチナはきっとこの映画を見たのではないかと私は想像します.リュドミラは成功して,ロシア人民芸術家歌手になります.彼女は今年の1月25日に,ペテルブルクの病院で死去(67歳)しました.
リュドミラは,高校を卒業して,歌手になるために,ウクライナからレニングラード(現ペテルブルグ)に出てきました.でも,そのとき音楽学校の試験は終わっていたのです.よく似た話があるものですね.サビノワと違うのはペテルブルグに親戚がいたことです.
リュドミラの代表曲は,Песня Золушкиシンデレラの歌
-------

Covid-19感染拡大シミュレーションの石黒数理モデル

 

 

 

 

 

 

 

 

 


 
新型コロナウイルスCovid-19の感染拡大が止まりません.皆様お元気でお過ごしでしょうか.現在,日本では「人と人との接触機会を8割減にしよう」との呼びかけがなされています.規制を遵守し感染機会を減らすことはこの時期非常に重要です.

8割減は,感染拡大の転換点であるとされています.その根拠となる手法の総説には,例えば,「感染症流行の予測:感染症数理モデルにおける定量的課題」(西浦・稲葉;統計数理,第54巻第2号,461-480,2006)があります.しかし,接触機会8割減が転換点であるという具体的なシミュレーションはまだ見ておりません.

いろいろな感染症はそれぞれの特異な伝染状況があり,それに合わせた数理モデルを作る必要があるので一般論ではかたづきません.Covid-19の感染拡大に対しての数理モデルと,感染率,ウイルスの活性期間,患者の死亡率,感染者が感染源になりうる期間,等々の係数を仮定する必要があります.Covid-19は,まだ解明されない特異な感染の振る舞い(無症状の保菌者が感染源になる,感染回復後も再度感染する,等々)があり,完全な数理モデルができず確定的予測は困難です.
今回,石黒真木夫が,簡単な仮定に基づくCovid-19の特徴を考慮した数理モデルを作り,教育的なシミュレーション結果を得ました.その詳細は.「NPO数学月間の会」のホームページhttp://sgk2005.saloon.jpにありますのでご覧ください.


■ここでは,数式を用いずに,石黒の数理モデルとシミュレーションの内容要点を紹介します.

(1)ある人口集団を未感染者,ウィルス感染源,免疫獲得者,死亡者に分類し,未感染者がウィルス感染源の一員と接触したときにある感染確率で未感染者が感染してウィルス感染源となるものとする[実際は,Covid-19では,人-物ー人の感染ルートもあるといわれる].

(2)ウィルス感染源のウィルス拡散は14日間つづき,14日目に「死亡率」に従って死亡者と免疫獲得者に分かれ,免疫獲得者はもはやウィルスを拡散することも再感染することもなくなる[実際は,再感染するケースも稀にある].

(3)このモデルでは時間の経過とともに未感染者は単調減少,免疫獲得者は単調増加するので,感染の流行はかならず止まる.しかしそれは集団全員が感染した後である.

(4)感染確率と死亡確率を適当に与えればシミュレーションは簡単である.いまの計算機をもってすれば人口集団の各個人の命運をたどるミクロ・シミュレーションもさして難しくないが,以下で紹介するのは未感染者やウィルス感染源集団の大きさの変化を追跡するマクロ・シミュレーションである.確率的な現象の「期待値の動き」を追いかける決定論的なダイナミクスを採用する.ミクロ・シミュレーションをして,算術平均の変化を見るとマクロシミュレーションの結果に「誤差」が乘ったような動きになるだろうと考えられる.

(5)感染が感染源と未感染者の接触でおきるので,接触規制で感染源率を下げて「医療崩壊」は防ぐことは可能だが,これは未感染率を「高止まり」させ,規制をはずすと残った未感染者が感染する事態が発生することを示している.接触規制で再流行時期を遅らせて得た時間的余裕を有効に使って致死率を下げることが重要.それができないと、結局は死者の数は減らせないということになる.

■石黒の数理モデルを用いたシミュレーション・プログラム(Excelファイル)は,NPO数学月間の会のウエブサイトhttp://sgk2005.saloon.jpに公開しています.各自このファイルをダウンロードし,パラメータも色々変えてシミュレーション実験をすると面白いだろう.各種規制の効果は接触機会数に乗じるパラメータを変えて見ることができます.
感染者数のピークが過ぎても,揺れ戻しの感染者数の小さなピークが観測され,このような波動を繰り返しながら収束に向かうことがわかるでしょう.

ベイズの定理と新型コロナウイルスPCR検査

 

 

 

 

 

 


 
私は3月24,26日のメルマガまぐまぐ(311,312号)で以下の内容の発表をしました.-----
3月21日の厚労省の公表値を用いて,罹患率=発症患者/PCR検査数と定義すると,罹患率は,約5%になります.しかし,PCR検査の,感度と特異性(酒井健司,朝日デジタル)の情報を入れてベイズ推定した罹患率は5.9%になりました.この推定値の増加は,主としてPCR検査感度に原因があり,実際の罹患者を取りこぼすためです.(注)この数値は,PCR検査を受けた限定されたグループをサンプルとしているために,一般の集団に対しては少し割り引いた数値になるでしょう.-----
今日,PCR検査数も増加したので4月23日厚労省のデータを用いて,再計算をしてみました.どのように変わったでしょうか?
ただし,PCR検査数が増加したといっても(多少はPCR検査を受ける条件の緩和があるかもしれませんが),陽性の確率が高いサンプル集団について検査が行われている状況は変わりません.
カバーの図を見てください.ここで推定する数値はあくまでもサンプル集団に関するもので,一般集団に対してはいくらか割り引いた数字になるでしょう.
ーーーーーーーーーーーーーーーーーーーーー
■条件付き確率についての「ベイズの定理」とは次のようなものです.
p(Y|X)p(X)=p(X∩Y)=p(X|Y)p(Y)
記号の意味は例えば以下の様です.
p(X)  Xが起こる確率
p(Y|X) Xが起こった後でYが起こる確率
p(X∩Y) XかつYが起こる確率
ベイズの定理は,X(原因)が起きた後でY(結果)が起きる確率p(Y|X)と,XとYを入れ替えた確率p(X|Y)を結び付ける定理です.
ーーーーーーーーーーーーーーーーーーーー
■新型コロナウイルスに対するPCR検査数は,厚労省の発表https://www.mhlw.go.jp/stf/newpage_11012.html で,4月23日現在,
135,983人になりました(1月前の3月21日の数字の7.5倍です).
PCR検査数    135,983
PCR検査陽性者数   11,919
陽性者のうち発症患者(陽性者∩発症患者)7,315人
発症患者/PCR検査数=罹患率 と仮の罹患率を定義すると,罹患率は約5.4%です.
陽性率=陽性者数/PCR検査数=0.088 ,陰性率=0.912 と定義できます.

■PCR検査の精度
新型コロナ検査、どれくらい正確? 感度と特異度の意味(酒井健司,朝日デジタル)に基づき,次のように仮定します.PCR検査の感度というのは,罹患者がPCR検査で陽性+と正しく判定される確率のことで,あまり大きくなく0.7, 罹患者でもPCR検査が陰性-となる(偽陰性)の確率は0.3程度.
検査の特異性により,非罹患者が+(疑陽性)と判定される確率は0.01だそうです.

■これらの仮定の下で,以下の2つを推定しましょう.ただし,ベイズの定理を使います.
(1)PCR検査で陽性と判定されたとき,罹患者である確率を求めなさい.
p(罹患|+)=p(+|罹患)p(罹患)/p(+)=0.7×0.054/(0.054×0.7+0.946×0.01)=0.80

+(陽性)でも検査感度のせいで罹患者をとりこぼすことが多い.また,非罹患者の割合が大きいので偽陽性の数も無視できない.この2つの原因が,+判定でも罹患者である確率を80%(前回79%)に下げている.

(2)罹患率を推定しなさい.
p(罹患|−)=p(−|罹患)p(罹患)/p(−)=0.3×0.054/(0.054×0.3+0.946×0.99)=0.017
-(陰性)と判定されたものの中に見逃された患者である可能性は1.7%(前回1.6%)ほどある.

従って,サンプル集団で推定される罹患率は0.088×0.80+0.912×0.017=0.086
すなわち,8.6%(前回5.9%)と推定できます.

ナポレオンの定理


 

 

 

 

 

 

 

 

 

 

 

 

 


ナポレオンが発見したといわれるナポレオンの定理とは次のようなものです.

ーーーーーーーーーーーーーーーーーーーーーーーーー
ナポレオンの定理
任意の⊿ABCの各辺上に正3角形を作図し,それら3つの正3角形の重心をD,E,Fとする.D,E,Fを結んでできる⊿DEFは正3角形である.
ーーーーーーーーーーーーーーーーーーーーーーーーー

なかなか美しい形の定理ではありませんか,ナポオンの名を冠するのにふさわしい定理だと思います.ただし,ナポレオンが発見したかどうかは記録がなくわかりません.

ナポレオン (1769 -1821) は数学好きです.
陸軍幼年学校で,代数,三角法,幾何などを勉強し,数学で抜群の成績をおさめ,1784年にパリの陸軍士官学校に入学.数学が役に立つ砲兵科へと進みます.騎兵科,歩兵科でなく砲兵科に進んだのも戦術の時代の流れを見据えての決断でしょう.砲兵司令官,将軍,皇帝になりました.この時代にフランスには多くの数学者がいました.ラプラス,モンジュ,フーリエなどが近くにおり,エジプト遠征 (1798 年) にはモンジュやフーリエが同行しました.
ナポレオンは数学が大好き,このような幾何問題を考えるのが楽しみで,きっと定理を発見したのだと私は想像します.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

証明

与えられた任意の3角形を⊿ABCとします.
その各辺上に作図した正3角形のそれぞれの重心がD,E,Fです.
点Oは⊿ABCの垂心(⊿ABCのそれぞれの辺の垂直2等分線が交差する点)で,点D,E,Fは,この垂直2等分線上にあります.

色々な角の角度は図中に記入してあります.我々が証明すべきことは,⊿DEFが正3角形であることで,例えば,∠DFE=60を証明すれば済みます.考えてみてください.

ヒントは,∠BFE=∠BXC  と  ∠AFD=∠AXC を証明することです.


正3角形であるための必要十分条件は「3つの内角すべて(すくなくとも2つの内角)60°」です.

図形の対称性から,内角の1つが60°であることを証明すれば済みます.

これは,補助線1本引けば自明です.三角関数を使って計算で証明する方法もありますが,補助線1本で自明になるのが幾何の醍醐味です.

■さて,ここに出てきた6辺形には面白い性質があるのを見つけました.

この6辺形の中にある正3角形の中に点Pを中心になるように,正3角形の外の6辺形の部分を折り込むことができます.

 

数当てカードの数理

4月25日,10:30から,Zoomを用いてリモートでの同志社中学校のDo★MATH博物館の見学がありました.10分間ほどの休憩をはさんで1時間ほど園田先生が出演され,見学会と,一太刀切りでハートや星形を作ったり,誕生日を当てる数あてカードを楽しみました.今年は,「数学月間」のイベント(毎年7月22日に実施し今年は第16回)もリモートで実施することになりそうです.

誕生日(1~31の数)を当てるには,4x4の数字が書かれた5種類のカードを見て,自分の誕生日が書かれているカードを選び出します.そして,それらのカードの左上の数を足し合わせると誕生日が当たるのです.
なかなか不思議ですね.この原理を今日は解説します.

■これからの説明は,誕生日を当てるゲームの変種で,15までの数を当てるゲームについて語りましょう.ゲームの実施方法も,数字が書かれてあるカードを選ぶのではなく,数字が書かれたカードの上にマスクをかぶせて当てようとしている数が見えているかどうか訊ねる方法になります.この両方のゲームとも同じ原理(2進数表記)を利用しています.

4x4の16個のマスに0~15の数字が書かれたカードがあります.このカードの上に孔のあいたマスクカードを重ね「あなたの思った数が見えますか」と尋ねる.これをマスクカードを変えて4回行えば,相手が心の中で思っていた数が当てられるというのが,この数当てのゲームです.

どのような仕組みがあるのでしょうか.秋山久義さんが,2019年7月のパズル懇話会で発表されています.今日は,秋山久義さんの発表「数当てカードの諸相」から引用して,その仕組みを解説します.

まず,16個の数の配列は,ランダムに配置したふりをしていますが隠れた規則があります.
例えば次の2つの方法があります.
(1)左右対称の位置にある2つの数字の和は常に15になる.
(2)回転対称(2回対称あるいは点対称)の位置にある2つの数字の和は常に15になる.

 

 

 

 

 

 

 

 

 

 このために右半分(あるいは左半分)を知れば,全部の数の配置がわかります.つまり,相手の意中の数がマスクに隠されて見えない場合は,その数との和が15となる数の方が見えているのです.

さて,0~15の数を2進数で表すと次の表のようになります.下図をご覧ください.a,b,c,dはそれぞれ2^3,2^2,2^1,2^0の桁に相当します.

2進数表示で3桁目を表すマスクカードがa,2桁目を表すマスクカードがb,というように4枚のマスクカードができます.
それぞれの数の上に乗る4種類のマスクカードで,2進数表示の1のところに孔を開ける(逆に統一してもかまわないが)ことにします.
例えば,13に場合は,aとbとdのマスクカードに孔(網掛け部分)をあけ,cのマスクカードには孔はあけません.

以上で,仕掛けの準備ができました.

これで,質問を開始して,数字が見えるといったマスクカードはそのまま横に置き積み重ねていきます.
見えないといったマスクカードは
(1)の場合には裏返して重ね/(2)の場合は180°回転して重ねるのです.

結局,4枚のマスクカードを重ねたものは,
相手の心の中で思っている数字の位置に孔があいた状態になっているはずです.

 

格子が作る干渉模様(モワレ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

同じ正3角形(正6角形)格子[あるいは,正3角形2つよりなる平行4辺形格子とみてもよい]のパンチングメタルを2枚重ね合わせました.
この図の状態は,2枚の格子どうしのなす角度が2θ=30°になった場合です.初めの正3角形(正6角形)の格子より大きな新しい周期の格子が出現しているのがわかりますか.

 

 

 

 

 

■正方形格子(網目)を2枚重ねた場合を考察してみましょう.
(Coincidence-site-lattice)

 

 

両方の網目が重なった位置に,新しい網目の格子が見えて美しい.

2枚の正方形の格子(正方格子という)どうしの傾きを変えると,ときどきこのような新しい格子が現れます.もとの格子の互いに直角な2つの並進ベクトルをa,bとすると(正方格子ならa=b),
もとの格子は,格子点 na+mb,(n,mは任意の整数)の集合です.
同じ正方格子を2枚傾けて重ねて,新しい周期の2つの並進ベクトル x, yが生じています.これらの図の状態は,

(上図)x=2a+b,y=a+2b .(下図)x=3a+b,y=a+3b(面心格子,2格子点胞)

  

 

 

この基底変換を行列で書き,行列式を求めると3(左図),8(右図)ですので,新しくできた格子はもとの格子と比べて面積で3倍(左図),8倍(右図)粗くなっていることがわかります.

 

 

 

 

 

 

 

格子というのは,並進ベクトルの作る群=並進群の”図的表現”です.2枚の格子の干渉で生じた新しい格子の周期は,もとの格子の粗いサンプリングになっているわけで,新しい格子は,もとの格子の部分群になります.

格子が重なって,拡大された(粗い)格子が見える現象は,干渉(ビート)と同じことです.
実際に,2つの原子網面が重なって,このようなビートが見えることは,電子顕微鏡で格子像の観察をするときにもよく起こります.
結晶は周期的な構造をしているので,周期的な空間は「結晶空間」とも呼ばれます.エッシャーの繰り返し模様や,壁紙模様などで,周期的空間の実例をたくさん目にしていると思います.

■2つの正方格子の平行なずれによる干渉(モワレ縞) 

 

 それぞれの正方格子の周期をλ1,λ2とすると,新しい周期Lは
1/L=1/λ1−1/λ2 の関係があります.

私は,子供のころ家にあった織物検査器というもので遊んだことがあります.これは,標準となる格子模様がガラスに刻んであり,織物にこのガラスを重ねると繊維の周期とのビートで縞模様が観察できます.1mmの中に何本繊維があるかとか,織り方が均一でなくどの程度乱れているかが,モアレ縞からわかります.

 

 

次の写真は,工事現場のネットが折り返されて2重になっているために観察されるモアレ縞です. 

 

美しい幾何学ー美しいものには理由がある

昨年9月に表題の本(技術評論社)を出版しました.この本の構成は8つの章からなり,全章を通して万華鏡で繋がっています.1,2章は有限図形の対称性(点群).3,4章は周期的な空間の対称性(平面群).これらの映像は,万華鏡で作り出すことができます.5章は万華鏡.6章は円による反転という数学的な鏡を用いた万華鏡.7章はフラクタル操作という数学的な鏡を用いた万華鏡です.8章は東京ジャーミイで,イスラミック・デザインを鑑賞します.写真撮影にご協力いただいた東京ジャーミイの本屋さんにも本書を置いていただいています.


■この本に,第9章を続けて書くとすれば,イスラミック・デザインになります.イスラムデザインの特徴は,黄金比(すなわち5回対称や10回対称)がちりばめられていることです.しかし,5回対称性と2次元(あるいは3次元)世界の周期性とは両立できませんから,ちりばめられている5回(あるいは10回)対称性はロゼット内部だけに局所的に作用し,世界の全域を支配するものではありません.そのため,あたかも我々の住む3次元に高次元宇宙が投影しているようで不思議な魅力を感じます.イランのDarb-i Imam寺院(1453)の壁には,その500年後にヨーロッパで発見されるPenroseタイリング[自分の中に自分と同じパターンが繰り込まれる]と同様なパターンがすでに見られることをPeter LuとPaul Steinhardtが報告しています.イスラムの繰り返し模様は準結晶や基本領域が分割されて写像される万華鏡と似たところがあります. 

 

MRIについて(核磁気共鳴のイメージング)


 
病院でMRI(核磁気共鳴イメージング)を撮ったことがある方もおられることでしょう.私も3年前にMRIの診断を受けたことがあります.お陰様で現在は絶好調です.このMRIの記事はそのころ書いたものです(記事の中で1.5Tの静磁場と記述しましたが,3年たち3.0Tの装置の普及も多少進んだようです).
MRIの測定中に聞こえる”カタカタ”や”ビー”というほとんど冗談かと思うようなふざけた音は何でしょうか? あれは,1.5T(テスラ)という強い磁場中で装置が動くために,あたかもスピーカーと同じように装置が振動して出す音です.それにしてもなんとかならないものか?振動しないようにガッチリ作るのは,今でも何トンという重量ですから無理なのでしょうが.

さて,画像の分解能を良くすれば,測定時間は増えるわけです.しかし,
分解能を上げて,かつ,測定時間も短縮できる「圧縮センシング」という数学的な方法があり,これに言及するのが後編の主題です.その前に,前編では,まず,MRIの装置の仕組みについてお話しましょう.
■プロトン(水素の原子核)はスピンを持ち,磁石の性質(核磁気)があります.強い静磁場下に置かれたプロトン核磁気は,磁場に沿ってだいたい向きが揃い,歳差運動している状態です.歳差運動の周波数(ラーモア周波数という)は,磁場が強いほど高く,MRI装置の静磁場は1.5T程度と超強力なので,ラーモア周波数は64MHz(ラジオ電波の周波数領域)程度です.
静磁場下のプロトンに,このラーモア周波数の電波が照射されると吸収共鳴が起こり,核磁気の歳差運動の振幅(周波数は変わらない)が増大しほとんど横倒しの状態で回転(古典論的なイメージ)しています.
一方,歳差運動をしているプロトン核磁気からは同じ周波数の電波が放射されるので,これを検出することができます.
■生体組織は,水をはじめ水素原子と結合した分子からなる組織です.
つまり,プロトン(水素の原子核)核磁気は組織の至る所に分布していて,
その水素の属する組織の環境(診断される情報)がそのプロトン核磁気の性質(緩和現象)に反映されています.
すなわち,核磁気の歳差運動の縦緩和,横緩和という現象は,そのプロトン(水素)が含まれる(結合している)組織内の状態で違いが出ます.
緩和というのは,電波の照射を止めると,励起されていた核磁気の歳差運動が定常状態に戻ることで,静磁場方向の核磁気成分の復元緩和を「縦緩和」,静磁場に垂直面内の成分の減衰緩和を「横緩和」といいます.
組織の各点で,これらの緩和定数を測定し,マップに表示できれば,
診断に役立つ組織の特徴を反映したイメージングになります.
■さて,組織画像の位置情報はどのようにして得られるのでしょうか.
これがなければ画像として見ることができません.断層測定をするには,検出器に到来する電波が,1つのスライス平面から来るものだけ集める必要があります.このためには,静磁場の他に傾斜磁場を印加します.
傾斜磁場はさきほどの静磁場とは別で,ペアのコイルによって発生する
(数十mT/m程度の強さ)もので,たとえば,z軸方向の静磁場があり,加えて,z方向に沿って変化する傾斜磁場,x方向に沿って変化する傾斜磁場,y方向に沿って変化する傾斜磁場の3種類があります.
傾斜磁場があると,空間内で磁場の大きさが一定になるのは平面になります.例えば,静磁場方向と同じz方向の傾斜磁場を印加すると,磁場一定の平面はz軸に垂直な平面です.
プロトン核磁気のラーモア周波数は,磁場の強度に比例するので,
共鳴吸収する電波の周波数をスキャンすれば,z軸に垂直な各断層平面に並ぶ核磁気からの電波を順次採取することができます.
次に,各断層面内の(x,y)位置情報はどのように得たらよいでしょうか?
断層内のプロトンの歳差運動を励起した後に,x傾斜磁場,引き続きy傾斜磁場の印加を行うとします.
x傾斜磁場印加でx軸に沿って歳差運動の周波数が変化し,その場所から放射される電波のx座標情報(周波数エンコーディング)が得られます.
xおよびy傾斜磁場の印加でy軸に沿って歳差運動の位相が変化し,
y座標情報(位相エンコーディング)が得られます.
傾斜磁場を印加して,空間の位置情報を得,画像化を可能にしたのは,
Lautergur(1972)の発明で,2003年のノーベル賞を受賞しました.
■緩和時間の測定は,歳差運動の励起後,照射電波を切って行うので,
立ち上がり時間も考慮した電波照射の複雑なパルスシークエンスになり,
256x256画素の測定でもかなりの時間を要します.高分解能画像を得るには,正攻法で行うならさらに細分化した画素数の測定が必要になり膨大な測定時間になるでしょう.
これを解決し,MRIの高分解能かつ高速化を実現したのは,
後編で言及する予定の「圧縮センシング」という数学方法です.

MRIについて(圧縮センシング)

 

 

 

 

 

 

 

 

2017年の数学月間懇話会(第13回)の講演の一つとして,ブラックホールの形を見る(池田思朗)をとりあげました.ブラックホールはなんでも引っ張り込み光も脱出できません.しかし,ブラックホールの穴に荷電粒子が引き込まれるときに電波やX線が放出されるので,ブラックホールの形は,この放出される電波を観測(地球上の6地点の電波望遠鏡を結んで電波干渉計を作り,電波の強度とその位相を観測)して,それらのデータをFourier変換すると形が見えるはずです.しかし,Fourier変換に用いる観測データは,地球が宇宙空間で旅した範囲の観測点で得られるのは圧倒的に限られたデータしかありません.

ブラックホールの穴画像を$$x$$,観測されたデータを$$y$$とすると,$$y=Ax$$
(行列$$A$$や,形式的な逆行列$$A^{-1}$$は線形演算子で,Fourier変換やその逆変換のことです).
行列Aが正則ならば逆行列を両辺に左から乗じて,$$x=A^{-1}y$$と簡単に解くことができるのですが,$$y$$の次元$$N$$は非常に小さく,$$x$$の次元$$M$$は非常に大きい(行列$$A$$は$$N$$x$$M$$行列でランク落ち)ために解けません.多数($$M$$個)の未知数のある$$x$$を解くのに,式の数($$N$$個)が少ないので,不定解になります.もし,解$$x$$にたくさんの0要素(スパース)があるとしランクを下げれば,一意解を持ちます.なぜこのようなスパースな解が合理的なのかは難しいのですが,我々のまわりの画像は統計的にスパースなようです.この方法は,LASSO(Least Absolute Shrinkage and Selection Operator)といいます.数学的には,$$x$$がスパースであるという条件を,$$Σ|x_{i}|$$が最小という条件にして,最小2乗法$$||y-Ax||^{2}$$ を解き,少ない観測値$$y$$から$$x$$を求めます.このための数学には,ラグランジュの未定乗数法が適用できます.

■圧縮センシング
このような手法は,医学画像(MRIなど)解析で用いられており,高速で高解像度の画像が測定できる圧縮センシングとして役立っています.得られる画像の解像度を上げるには,観測空間でも細かくたくさんのデータを収集し,それらを用いてFourier変換を行うのが正攻法です.これは情報理論でシャノンのサンプリング定理(注)と呼ばれるものであります.

しかし,実際には画像内で急峻な変化がある場所は少なく大体がだらだら変わっています.そのような性質のある実際画像では,観測空間内を細かい分解能で測定するのは時間がかかり過ぎてもったいない.観測空間の少数の点だけのデータで十分なのです(この考え方はjpgなどの画像圧縮と同じ).得られる画像は至る所0(スパース)という仮定は,大胆であるが良い結果をもたらします.

観測空間のサンプリングをナイキスト・レート(注)より細かく行う場合はオーバーサンプリング,ナイキスト・レートより粗い場合はアンダーサンプリングと呼ばれますが,画像がスパースという条件があれば,アンダーサンプリングのデーター集合を用いて解像度の高い原画像が再現できるのです. 解のスパース性を利用するこの手法は,医学画像(MRIなど)の撮影で利用でき,高解像度の画像を短時間で得られるようになりました.
ーーーーーーーーーーーーーーーーーーーーーー
(注)シャノンのサンプリング定理(1949年)

アナログ信号をあるサンプリング・レートでデジタル化すると,元のアナログ信号に含まれる周波数成分のうち,サンプリング周波数(ナイキスト間隔とも呼ばれます)の1/2の周波数成分までが再現できます.ナイキストは,サンプリング定理を1928年に予想していました(シャノンの証明が広く知られています).

デジタル音源のサンプリング周波数は44.1kHzが使われていますが,この周波数でサンプリングすれば,人間の耳が聞き分ける高音限界といわれる20kHzの音まで十分に再現できるからです.
ーーーーーーーーーーーーーーーーーーーーーー

 

現代の標準時計

 

 

 

 

 

 

特定方位に切り出した水晶Quartzの両側の面に電圧をかけると結晶は変形します.逆に両側から力をかけると両端に電圧(分極)を生じます.この性質を圧電効果といいます.圧電効果は,結晶構造に対称心がある場合には生じません.なぜなら,結晶中のいかなる方向に電圧(分極)ベクトルが生じたとしても,対称心に矛盾するからです.

所定の方位で所定の厚さに切り出した水晶片の両面に交流を印加すれば,水晶片は振動します.水晶片の共振の起こる周波数で安定な発振器を作ることができます.水晶振動子(通常32.768kHz=2^15Hzの水晶音叉)を用い,精度の高いクォーツ時計が作られており,実際の標準時計もこれです.
現在の時間標準は,セシウム(133Cs)の原子時計と定められました.原子時計とは,水晶時計を含む総合システムで,水晶発振器の周波数の校正標準に原子の状態遷移の周波数を用います.
セシウム原子は,最外殻の電子が1つ(水素原子型)なので,解析的にエネルギー準位の計算ができます.磁場を印加して縮退している準位を分離させた状態で,基底状態から励起状態への遷移を起こさせると,マイクロ波領域の9.192631770GHzのエネルギーで遷移します.そこで,水晶発振器により,この近傍のマイクロ波を発生させ,セシウム原子による吸収が最大になったときの水晶発振器の周波数を,9.192631770GHzであると校正しています.
ちなみに,GPS衛星は,ルビジュウムの原子時計を積載しています.最近はMEMS(Micro Electric Mechanical Systems)技術により,ルビジュウムの腕時計の開発も進んでいるそうです.
長さの標準は,地球の経線の1/4を10,000mと定めたのが始まりでした.しかし,1983年に,真空中の光速でこれを定義することになりました.1mの定義は「光が真空中を1/299,792,458秒間に進む長さ」です.長さの標準も時間に基礎を置くことになったのです.
数学と基礎科学,谷克彦(数学文化15号P82より抜粋)

シュロ縄の結び方

シュロ縄で柵の竹竿を結びました.庭師は男結びと言う方法で結ぶそうですが,私は簡単にランニング・ノットという方法で結びました.実は,シュロ縄の扱いが大変だったので,一番作業の楽な結び方をして,後でこの結び方の名前を調べたら,ランニング・ノットという方法であることがわかりました.
ランニング・ノット(あるいは,スリップ・ノット)と言われる所以は,竹竿を通してから紐を引っ張って締めると結節ノットが移動して,自然に竹竿の周りの輪が締まるからです.結節になる輪から紐の両端が同じ方向に出ていますから,竹竿を通してから紐の一端を引っ張ると,輪が締り結節になると同時に,他端も同方向に引かれるので,両側から輪を締め,自分自身を締め緩みを防止しする一番シンプルな結び方になります.
ランニング・ノットの結び方で紐の両側を引っ張ると,輪の中に竹竿がなければ手品のように紐は結び目が出来ずに解けてしまいます.比較のために,もやい結びを見てみると,結びの両側を引っ張ると結節ノットは移動せず輪が出来てしまい,竹竿の周りを締める結び方にはなりませんし,竹竿がない状態で,もやい結びの紐の両側を引っ張ると解けずに固定した輪を残して結び目が出来てしまいます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

紐の始まりを竹竿の周りのランニング・ノットから始めて,柵を組んだ竹竿に巻きつけ固定し,紐の最後もランニング・ノットで収めようとするとなかなか難しい.巻いてきたひもが緩まないように締めながら出口の結節になる結び目を作る必要があるからです.
シュロ縄は水に湿らせた方がしなやかでよく締まります.シュロ縄を繰り返ししごいていると,縄に毛玉のような塊や細い箇所ができますから注意しましょう.

今回は,紐の両端をそれぞれ別の場所で固定したので,使いませんでしたが”かます結び”という方法もあります.これは紐の両端を結ぶ結び方です.

アラビア文字のアブジャド数

アラビア文字の各文字は数を割りあてられています.このシステムのことはアブジャドabjadと呼ばれ,十進法のインド数字が採用される以前は数値を表現するのに使われていました.また,単語や文章の数値はシンボリックな意味があります.
例えば,「アッラー」は66,このアナグラムの「ラーレ(チューリップ)」も66で,同じ数値ですので,チューリップ模様はジャーミイの装飾に使われます.

 

 

 

 

 

 

 

 

 

 

 

クンデカリを構成するピースの数も意味があります.例えば,ドアの文様を構成するセグメント数の165ピースは,「アッラーのほかに神はいない」,
66ピースは,「アッラー」を意味するそうです.

■私はアブジャドのことは聞きかじっただけで,正確な記述ではないかもしれません(アブジャドのことをご存知の方教えてください).
私の理解した考え方だけおおざっぱに述べると,アラビア語でも,アルファベット(英語)で計算する数秘術のように,単語(スペル)の文字の数値を総計し,その単語の数値が決まります.ただし,数値を対応させるのはアブジャドに対してで,アラビア文字そのものに対してではないそうです.

(注)世界には,ギリシャ文字(ラテン文字,キリル文字,...),漢字,アラビア文字,などいろいろありますが,アラビア文字は子音を表記する文字に母音も含めるようで,文字も独立の場合と単語の中に使われる場合で異なるようです.漢字や速記文字なども記号全体で一定の意味もつのに似ています.単純なアルファベットではなくアブジャドという文字体系に数字を対応させます.

■クンデカリ技術で作られたドアを構成するピース数の意味

以下の写真のドアの文様の数値227は,次のようにして数えるそうです.この数値のシンボリックな意味は知りません.

 

 

 

面積1の正方形の数14個 →1x14=14
面積2の長方形の数11個 →2x11=22
面積3の長方形の数13個 →3x13=39
ーーーーーーーーーーーーーーーーーー 
   (全図形数)38個     75(全面積)
         x4
      -----
 (枠のピース数)152 +(面積数)75 =227(全ピース数)

クンデカリ

 

 

 

 

 

 

 

 

クンデカリKundekariという技術は,接着剤も釘も使わず木のピースを組み立てていく技術です.イスラム模様の装飾のある説教壇(minbar),ドア,家具に用いられます.12世紀にアナトリア地区で生まれたこの技術は,その地のセルジューク帝国,オスマン帝国時代に洗練されました.杉,薔薇,梨,クルミ,黒檀,リンゴなどの木材が使われます.木材ピースを溝とホゾで組み立てるので.各ピース間は2~3mmのギャップがあり,それぞれのピースの膨張伸縮で歪みが生じることがありません.接着剤や釘で固定された作り方よりも,湿気などに対する耐久性があり,ひびが入らず700年持つといわれます.ジャーミイのドアは,5cm位の多くのパーツをクンデカリの技術で組み立てています.そしてさらに,このドアーを構成する木材ピースの総数は,数秘術的な意味があるそうです.
⇒数秘術的な意味については,アラビア文字のアブジャド数に続く.
(参考文献)クンデカリについては,Mugla Journal of Science and Technology, Vol2,No2,2016,110を引用

ダイヤモンドのブリリアン・カットの数学

 

 

 

 

 

 

 

 

■ダイヤモンドの価値は,4C[Carat重量,Color色,Cralityキズ,Cutカット]で評価されます.ここでは,数学的に興味のあるカットのプロポーションについて述べました.ラウンド・ブリリアン・カットのダイヤモンドが最も輝くようにしたプロポーションを理想カットといいます.理想カットは1919年にベルギーのMarcel Tolkowsky(数学者でダイヤモンドのカッター)が計算しました.今なら,コンピュータもあるし,光線追跡のソフトウエアもある時代で,理想カットの形(プロポーション)を見つけることは容易でしょうが.1919年にどのように計算したのか,興味深いことです.多分,閉じ込められた光線が全反射を繰り返す光路に注目したのでしょう.

 

 

 

 

 

 

 

 

 

ダイヤモンドのブリリアン・カットの各部の名称を図に記載してあります.正面の平らな面をテーブル面,上半分をクラウン,下半分をパビリオンと呼びます.真ん中のガードル面に対してクラウン斜面のなす角度をβ,パビリオン斜面のなす角度をαとしました.

 

 

 

 

 

 

 

 

 

 

 

テーブル面の左隅Aに入った光線(赤色)が,ダイヤモンド内部を進み,後方の左パビリオン斜面で全反射され,次に,右パビリオン斜面で全反射され,テーブル面右隅Bに戻り,前方に出て行く光線もありますが,テーブル面右隅Bで一部は反射され内部に戻る光線(青色)になります.この光線は全反射を繰り返し内部に閉じ込められることになります(青色).
この図で追跡した光線は,テーブル面の左隅Aから出て,テーブル面の右隅Bに達する左右対称の光路です.ダイヤモンドの屈折率n≒2.417を用いて,この光路のテーブル面での入射角φ,屈折角γに対する屈折の式,sinφ=n・sinγ から,左右対称になる入射角φ(テーブル面の垂線と入射光線のなす角)を求めると,21°になります.というのは,左右のパビリオン間でテーブル面と平行になる光路ですから,左のパビリオン斜面での反射の法則(反射角αはパビリオン角αに等しい)から,γ=90°ー2α=8.5°となることが決まるからです.ここで,パビリオン角α=40.75°を用いました.

■屈折率の高い媒質中に光が閉じ込められるのは,全反射を起こし易いからで,ダイヤモンドの全反射の臨界角θ(入射角でいうと)は,sinθ=1/nだから,θ=24.4°(反射面から測った反射角で言うと,65.6°)です.
テーブル面の出口で反射されて内部に戻った一部の光線は,パビリオン面とクラウン面で全反射を繰り返し内部に閉じ込められます.パビリオン角α=40.75°,クラウン角β=34.50°というのは実によくできた設計です.
全反射によりブリリアン・カット内に閉じ込められた光線の経路は,一周すると,これに平行な経路に戻ることを証明するために,次の作図をしてみました.BC(赤色)の直線はダイヤモンド内部で全反射を繰り返す光線(青色)を外に引き伸ばしたものです.その代わりに,ダイヤモンドも反射面を共通にしてつないで並べました.結局,全反射を4回繰り返すと光線が平行になるということは,このように配置したダイヤモンドが4つで回転角が0に戻る(初めの向きと同じ)ことからわかります.

 

 

 

 

 

■カットの形を評価するには,そのカットの形を磨き直して理想カットにするとしたら,重量がどれだけ減るか(カット減点%)で表します.カット減点5%までは理想カットと見做されます.さて最後になりましたが,トルコフスキーの理想カットのプロポーションを表紙の図に示しました.トルコフスキーはガードル厚には言及せず,ナイフ・エッヂだったそうですが,現実にはナイフ・エッヂは作れず,ガードル厚は必要です.
■(注)ラウンド・ブリリアン・カットとは,58のファセット面を磨き上げた形(キューレットも1面と数えます)です.ダイヤモンドは立方晶系の結晶ですから,複屈折はありません.また,光の分散もそれほど強くなく上品です.虹色にぎらぎらするようならキュービック・ジルコニアなどの疑いがあります.
クラウン面の高さや,パビリオンの深さが最適でないと,テーブル面の中が暗くなります.

折り紙で厳密な正5角形が作れるか

ある折り紙の本に正5角形の作り方がありました.
複雑な手順なので整理して原理だけ説明しましょう.
正5角形の中心角72度を作るミソは,以下のようです.
これで,Θは72°になることを証明できますか?

 

答,72°になりません.
約71.56...°です.

この折り紙手順で作れる角度は,72°に非常に近いので
実際の折り紙工作では非常に良い方法といえるでしょう.
でも,幾何の命題としては正しくないのです.

話は別になりますが,
正5角形を,コンパスと直線定規で作図できます;
例えば http://www.natubunko.net/zukei/png/penta03.png
ここから図を引用しましょう.

 

 

 

 

 

 

 

さてそれでは,この作図を折り紙の手順で追いかけてみましょう.
折り紙の手法で,「円を描く」というのは,可能でしょうか?

コンパスの使い方には2通りあます;
1)所定の長さを所定の方向にとる.
2)2つの円の交点を求める
(与えられた2点から,それぞれ与えられた距離だけ離れた点を求める).


このうち,1)は折り紙手順で可能ですが,2)は折り紙手順で不可能ではありませんが工夫がいります.折り紙の手順で,正5角形の作図を追いかけてみると,(4)の段階で,2つの円の交点を求めることが必要になり,ここが困難です.でも不可能ではないようなので,皆様,挑戦されて,もし,うまい方法を発見したら教えてください.

まったく別の方法でも,折り紙で正5角形を作ることができます.例えば,表紙の写真は定幅紙(帯)を用いて正5角形を折ったものです.この場合はどのような手順の作図になるのかを考察してみてください.このような折り紙は手順が全部完成してからつじつまが合うように最初から調整しますから,漸近的に正5角形を得る作図のようなもので,無限の手順がかかるので幾何学の作図としては認められません.

 

 

円に内接する正5角形の作図

折り紙では近似的な正5角形(星型)が出てきましたが,これから扱うのは数学的に厳密な正5角形についてです.
半径1の円に内接する正5角形の1辺の長さを求めましょう.
この正5角形の1辺の長さをxとします.
△BACと△ADCは相似(相似比が黄金比Φ)で,形は2等辺三角形(等辺xとすると,底辺Φ・x)です.Φ・x=x+(x/Φ) ですから,Φは黄金比の方程式
 Φ^2ーΦー1=0を満たします.この方程式の解(Φ>1のもの)は,Φ=(1+√5)/2 です.

 

 

 

 

 

 

 

 

 

 

 

 

 

■次に,△BCEと△BOFとが相似であることを利用し,
1:(Φ・x)=OF:CE=(1-y):(x/2) が成立するので, y=1ー1/(2Φ) 
ただし,y=√[(x/Φ)^2-((Φ・x)/2-x/Φ)^2]=√[x^2ー(Φ・x/2)^2]=x√[1-(Φ/2)^2] 
x=y/√[1-(Φ/2)^2]=[1-1/(2Φ)]/√[1-(Φ/2)^2]=(√[10-2√5])/2=1.1756

■ 作図
半径1の円に内接する正5角形の一辺の長さx=(√[10-2√5])/2を作図する方法
(証明)ピタゴラスの定理を2回使います.

 

 

 

 

定規とコンパスで作図できる長さ

私は,yahooブログ 「数学と社会の架け橋<数学月間>(2012.5~2019.3)」に,発行している同名のメルマガまぐまぐのバックナンバーを保存していました.メルマガはテキストなので,必要な図はどこかに保存したもののリンクを張らねばなりません.そこで,必要な図や写真はyohooブログに保存していました.しかし,昨年yahooブログが閉鎖しましたので,ブログ機能はlivedoorブログと数学月間の会のホームページに引っ越しました.
テキストは移動できたのですが,移動できなかった画像や写真があります.yahooブログに張ったリンク先が消えてしまったので後の祭りです.
今回Noteを始めて,それらの記事中から面白いものを優先し,図を作り直し再現しようとしています(新規の記事も並行して随時書きます).お付き合いのほどよろしくお願いします.記事の候補全体は,数学月間の会ホームページにありますので訪問ください.その中で再現すべき記事のリクエストがありましたらお寄せください.まだNoteの使い方になれないので皆さまのお気づきのことをお教えください.記事に数式が必要なこともありますが,Texが使えないようなので,まとまった数式は画像にして埋め込むことにしています.

今回再現するのは,以下のメルマガの記事です.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.10.23] No.238
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今日は,たいへん古典的だが,重要な証明問題を扱いましょう.
ギリシャの幾何学者達が研究した不可能作図とは
以下のものがあります.

(1)与えられた正立方体の2倍の体積の正立方体を作れ
(2)与えられた円と同じ面積の正方形を作れ
(3)任意に与えられた角を3等分せよ
これらは,定規とコンパスだけを有限回使って作図できるか?
ということです.

■なぜ作図できないか
(1)は,2の3乗根の作図が必要です.
(2)の円と同じ面積の正方形を作る方針を以下の図に示します.


どうしてこの作図ができないのかわかりますか?
与えられた円の半径をrとします.まず,円と同じ面積の長方形を作りましょう.もし,縦r,横aの長方形が作れたら,r・a=x^2 となるxの作図は可能です.問題は,円の面積と同じ縦 r,横 a=πrの長方形を作るところで,
円周の半分の長さπrの線分を作図する方法が,定規とコンパスではないからです.無理数πが作図できません.

 

 

 

 

 

 

■直線定規とコンパスだけを有限回繰り返し用いて作図できる長さは
2つの有理数の,加法,減法,乗法,除法,開平だけです.
作図方法は,以下をご覧ください.
条規とコンパスで作図
開平を繰り返せは,2のべき乗根(4乗根,8乗根,...)は作図できますが,例えば,立方根は作図できません(この証明は難かしいのでスキップ).

(3)任意の角度の3等分が作図できないわけ.
角度3等分の方程式は x^3-3x-a=0 で,
例えば,与えられた角度が60°ならa=1の方程式です.
60°の3等分の方程式は,x^3-3x-1=0 となりますが,この3次方程式は,p+q√r (ただし,p,q,rは有理数)の型の解を持たないので
この角度の作図は,定規とコンパスでは不可能です.
もちろん,60°の3等分の20°は存在しますが,
定規とコンパスだけを使う方法では作図できないということです.
詳しくは,以下をご覧ください.


■任意の角度の3等分
任意の角度∠XOYの3等分がなされたとします.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

抵抗ラダー回路とフィボナッチ数列

フィボナッチ数列F(n)は,1,1,2,3,5,8.13,21,34,.....のような数列です.
F(n)=F(n-1)+F(n-2) と再帰的に定義されます.
この数列は,いろいろな所に現れます.得られた数列が,フィボナッチ数列であることを証明するには数学的帰納法を用います.
今回は,その典型的な例として,抵抗ラダー回路を取り上げましょう.

■抵抗ラダー回路

ラダーとは梯子のことで,梯子型に抵抗を並べた回路を,抵抗ラダー回路といいます.例えば,表紙の図は3段のラダー回路です.

 

 

 

 

 

 

 

 

A-Bの端子(入力側)から見たインピーダンスをZ_i,
C-Dの端子(出力側)から見たインピーダンスをZ_oとします.
この3段のラダー回路は,A-B側(入力側)にR1の抵抗があるが,C-D側(出力側)にはないので,左右対称ではありません.入力側から見たインピーダンスと出力側から見たインピーダンスの比から,減衰率Z_i/Z_o≡Aが定義されますが,A>1なのでこの回路はアッテネータ(減衰器)として使えます.
抵抗値をすべて同じR1=R2=1とすると,
ラダーの段数mを増やしていくと,減衰率A(m)=F(2m+1)/F(2m-1)は,2/1,5/2,13/5,34/13,...とフィボナッチ数列が出てきます.
(参考)n=1から3までの計算は以下にありますのでご覧ください.
証明は数学的帰納法を使う練習になりますので,各自試みてください.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■ラダー回路の応用例
ラダー回路は,アナログ信号が入力されたときに,そのアナログ信号の大きさを,瞬時に8水準に分類する(8ビットのデジタル化)回路(これを8ビットのAD変換といいます)に使われたりもします.次の図をご覧ください.

 

 

 

 

 

コンパレータが7個並列に並んでいますね(カスケード結合).
入力信号の大きさを8水準に分類するのは,7個のコンパレータの働きで,
その境界値となる7段階の基準電位をそれぞれに供給します.
この7つの基準電位を発生するのが,一番左の直列に並んだ抵抗ラダー回路です.nビットのAD変換には(2^n)-1個のコンパレータと基準電位がいります.

正5角形の作図いろいろ

 

 

 

 

 

 

 

 

■正5角形の性質
正5角形の中に相似な2等辺3角形(頂角36°)が次々に組み込まれていく様子を見てください.赤い2等辺3角形→緑の2等辺3角形→青い2等辺3角形の順です.2等辺3角形の辺の比率は,いつもΦ:1で,Φは正5角形の対角線(星形の辺),1は正5角形の1辺です.このとき成立する方程式,Φ2-Φー1=0を解いて(Φ>1をとる),Φ=(1+√5)/2=1.6180・・が得られます.Φは黄金比の値です.

 

 

 

 

 

 

 

 

 

 

■正5角形の実用作図法
この作図はつぎの式が成り立ちます.AH=HB=1/2,MH=√3/2 であるので,PH=(√3ー1)/2,従ってPB=(√[(√3-1)2+1])/2=(√[5-2√3])/2
AB/PB=2√(65-26√3)/13=1.6138・・・
この作図法は,イスラームのタイル作図で便利ですが,厳密な正5角形ではありません.しかし,誤差は0.26%なので実用上問題ない恐るべき精度です.

 

 

 

 

 

 

 

 

 

 

 ■厳密な正5角形の作図
AB=1,AH=1/2,PH=1 ですので,AP=(√[1+22])/2=√5/2
従って,QP=(1+√5)/2=Φ
この作図で得られるのは厳密に正5角形であることが証明されました.

 

 

 

 

 

 

 

 

■折り紙で作る正5角形(1)の精度
この図は折り紙で正5角形を作る原理を示しました.y=3xの直線とx軸のなす角θを求めると,θ=arctan3=71.5651・・° となりますが,正5角形では72°になるべきです.この誤差は.0.6%ですのでかなり良い精度と言えましょう.他の角度は,72.1087(0.2%),72.6524(0.9%)程度です.(カッコ内は誤差)

 

 

 

 

 

 

 

 

 

 

 

■折り紙で作る正5角形(2)の精度
折り紙の一太刀切で大変作り易い星型です.この原理は以下の図を見てください.正5角形(星型)の一辺の中心角は360°/5=72°ですから,一太刀切りに対応する中心角は36°です.
以下の図を見ると,一太刀切りの中心角は,35.783°(36°からのハズレは-0.6%)to,36.870°(+2.4%)に収まっています.