掲示板

note.com投稿記事

ストークス-19世紀の数理物理(4) 数学と物理の架け橋

[訳者注]19世紀には,数学がその源泉として物理学と一体でした.ニュートンは自分の力学の研究のために新しい数学(微分や積分)が必要で,自分で開発しました.ニュートンは物理学者兼数学者です.ストークスの数学も現実の物理現場に対応する中から誕生し実験現場に適用されました.今日,高度に分化し抽象化した数学を数学の中で扱うことだけに興味をもつ数学者を,私は嫌いです.数学者が現場に足を入れることを願います.このエッセイを私が好んで読んだ理由はここにあります.
**********************

科学者の研究に対する評価
J.ニュートンによって始められた光のスペクトルの研究は、W.H.ウォラストン、J.フラウンホーファー、J.F.W.ハーシェル、C.ホイートストン、J.H.ストークスの研究によって発展しました。黒体放射のH.R.キルヒホフの研究も有名です。化学者R.W.ブンゼンと彼の実験的研究は、スペクトル線の反転効果の発見、フラウンホーファー線の説明、物理学、化学、天文学のための重要なスペクトル分析法の創出につながりました。

同時代のW.トムソンは、J.G.ストークスの物理学のこの分野への貢献について書いています。彼は、ストークスの太陽化学と恒星化学の原理が、ここ8、9年の間、公開講座で概説されていたことを思い出しました。ブンゼンとキルヒホフ(ストークスとは独立して理論を発見した)の研究は応用されて、太陽には鉄、マグネシウム、その他の既知の金属が存在することが示されました。すでに何年も前に会話の中でストークスは、太陽スペクトルの暗い線によって、太陽大気の化学的性質について結論を出すことができるという考えを表明していました[8, p.114]。

同時にストークスは、地球の基準表面[訳注)ジオイド面を近似した回転楕円体]、質量、軸を中心とした自転の角速度によって地球の外部重力場を決定するという問題も解決しました。この問題の解答可能性を証明し、ポテンシャル理論の最初の境界問題として、圧縮されたスフェロイドの収縮の二乗のオーダーの相対誤差を持つ近似解を与えた。楕円体のストークス問題のかなり正確な解は、1945年にイタリアのP.ピツェッティとロシアのM.M.モロデンスキーによって与えられた。

ケンブリッジでは、自然科学や技術科学における数学的手法の使用が奨励され、ストークスもまた、それらを広く活用していました。これは、ヴァイルが指摘したように、ベクトル解析とテンソル解析のすべての積分定理が、座標 x_i で囲まれた空間にある r 次元(方向性のある)多様体上の次数 r の微分形に対するストークスの一般定理の特別な場合であるという事実に現れていた [9, p. 192]。

実際、ストークスは数学の発展に重要な貢献をしました。ベクトル解析の主要な公式の一つであるストークスの定理は、ベクトル場の回転を、閉曲線を境界とする有向曲面上で面積分したものが、元のベクトル場を有向曲面の境界の閉曲線上で線積分したものに等しいという彼の名を冠した定理で、1849年にW.トムソンによって得られました。J.G.ストークスは、半収束無限級数の指摘をし、無限級数の完全収束(絶対収束?)や限定収束(条件収束?)を研究しました。
[訳注)収束する無限級数には、絶対収束級数と条件収束級数(半収束級数)があります]

1848年、J.G.ストークスはドイツの数学者F.L.vonザイデルとともに、級数と級数の一様収束の概念を科学的に導入しました。彼は純粋な数学だけでなく、物理学の様々な分野(力学や光学)、天文学や工学への応用にも興味を持っていました。漸近解析におけるストークス現象、流体力学におけるストークスパラメータとベクトル、微分幾何学における彼の定理、光学におけるストークス線、結合、せん断、Navier-Stokes方程式、ストークスドリフト、ストークス電流と波動関数、流体力学におけるストークス境界層などが科学の歴史に登場しています。

彼の研究結果の修正は、ストークスの科学におけるメリットを損なうものではありませんでした。P.N. レベデフ と彼の教え子である N.P. ネクレパエビム は、音響ストークス波とキルヒホッフ波の公式の係数の正確性に疑問を持ち [10, p.349]、W.G.ブラッグは、ストークスのインパルス理論(加速された電子がエーテル中でインパルスを発す)では、X線と電子の交換性を説明できないと指摘し、R.E.ミリカンは、液滴の運動法則がストークスの法則と一致するのは、連続的な媒体の場合だけであることを強調しました。その他にもストークスの研究結果に対する多くの議論が起きました。

ストークは晩年も研究を続けていましたが、レントゲンの発見を乗り越えることができませんでした。1898年には「X線の性質について」という論文の中で、陰極ビーム粒子の制動の結果として反陰極(陽極)上での短時間の電磁的インパルスを理論的に扱おうとしました。ドイツの物理学者J.E.ウィーチェルトと同様に、J.G.ストークスは、X線が非常に短い波長の発光であることは、X線の発生モードから明らかであるという結論に達しました。

科学のオーガナイザー、教育者としてのストークス
生前、ストークスはM.ファラデーからE.ファラデーに至るまで、イギリスの著名な科学者たちに囲まれていました。まだまだスターダムの瞬間を待っていたラザフォードら。

ストークスは最後の日が来るまで、科学的な出来事に関心を持ち、批判的に(いつも評価が正しかったわけではないが)評価していました。例えば、W.トムソンのように、J.K.マクスウェルの 論文に対しては寡黙でしたが、W.レントゲンによるX線による発見はすぐに認め急いで手紙で知らせました。

ストークスとその仲間たちは、精密科学と応用科学の発展、物理現象の解明方法の解明、自然哲学と科学的知識の区別、経験的活動と科学的活動の区別に多大な貢献をしました。彼や彼のような人たちのおかげで、大学教育の質が将来の研究者のニーズに沿ったものになリ、ストークは何十年も講義をしました。マクスウェルも彼の意見に耳を傾け、やがてストークの親友となりました。

ストレットの回想によると、ストークの講義や実験は彼に感銘を与え、教えることについて多くの有益なことを教えられたという。ストークスのコースの学生が、自分たちが理解していない光学現象の解明を彼に訴えたとき、彼は大抵の場合、親身になって対応してくれました。

19世紀後半と20世紀初頭の英語教育の伝統では、まず、生徒に説明する際には、自分自身がその質問を理解しているかどうかを確認することが大切だと指摘しています。第二に、クリアーの形を探すときに... プレゼンの... 新しいアイデアが浮かんできます。第三に、学生の質問は思考を刺激し、私たちがいつも標準的な方法でアプローチしている現象を新しい視点から見させてくれるので、創造的な思考にも役立ちます[11, p.261]。かつてストークがやっていたことです。

彼のコレクションから、ストークスは、学生が物理学や数学の問題に関連する1つまたは別の問題を解くことを勧めます。そのうちの一人は、等高線上の積分が、等高線を通過する流れの大きさに関係していることを証明することを提案した。今日では、このためにはストークスの定理を証明する必要があると言われていますが、ストークス自身はその証明を発表したことはありませんでした。1854年、トライポサス(ケンブリッジ大学の優等学士号取得のための公開試験)に合格したとき、ストークスの大学院生だったマクスウェルは、気体中の速度による分子の分布の問題を解きました。

1887年から1892年まで、ストークスはケンブリッジ大学の国会議員の一人であった。そのような責任ある立場にもかかわらず、合理的な心と冷静な性格のためか、下院での発言はほとんどせず、注意深く聞き役に徹していました。

強い宗教的信条を持つ家庭で育ったストークは、保守的な価値観と人生の信念を堅持していました。1886年にはヴィクトリア・インスティテュートの会長に就任しました。ダーウィンの進化論からキリスト教の原則を守るために設立されました(ストークスもダーウィンの進化論を批判していた)。また、イギリスと外国の聖書協会の副会長を務め、その宣教活動を支援していました。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1851年、ストークスはロンドン王立協会の会員となり、その後その幹事となり、1885年~1890年にはロンドン王立協会の会員-社長となりました。1849年から1903年までケンブリッジ大学のルーカス教授。1852年に光の研究で王立協会からラムフォード・メダル、1893年にはコプリー・メダルを受賞。ストレットのおかげで、1889年には男爵に昇格し、フランス学士院からアラゴ勲章を授与され、ロシア帝国軍医学校のメンバーとなりました。

ストークスのスタイルを評価し、彼についての本を書いたJ.ラーモアは、次のように述べています:ストークスの極端に慎重な研究発表の特徴は 質量で捉えた物質の性質と規則性に言及した定義の一般的なトーンで、正確さ、厳格な定式化は、分子という概念を使用することも必要としないようです [12, p.329]。

ストークスの仕事は、当時の科学文化の有機的な一部となりました。19世紀や20世紀の科学者たちがストークスの仕事を数多く紹介していますが、彼らの研究でストークスの研究結果に磨きがかけられ、発展したことは、彼の努力が無駄ではなかったことを証明しており、現代の科学のさらなる進歩を刺激する肥沃な材料となっています。

 

 

 

 

 

 

 

 

科学の古典の遺産
ストークスの発見-まず、ストークスの法則、ストークスの定理、ストークス・シフト、ストークスの方程式とそのパラメータ-は、科学技術の世界に入り込み、外国とロシアの科学者の開発活動を活性化させた。1909年にN. ボーアがレイリー理論を指定してストークス法にも言及していることを思い出していただければ十分です。

 

 

 

 

 

 

 

 

 

 

 

J.G.ストークスの存命中、彼の科学研究はM.ファラデー、J.C.マックスウェル、D.P.ジュール、H.R.ヘルツ(彼らはそれぞれ1867年、1879年、1889年、1894年に他界)、W.トムソン、W.ラムジー、J.W.ストラット、そして他の同僚たちによって続けられました。彼らとの会話や議論の中で、彼は新しいアイデアを得て、豊かになり、インスピレーションを得て、創作活動の中でさらなる発見をするきっかけを得ました。

彼の発見は、ストークがいなくなった後も科学者たちの想像力をかきたて、新たな成果へと導きましたが、今度は量子論と相対性理論の観点からです。H.A.ローレンツ、M.K.E.L.プランク、A.アインシュタイン、N.ボーア、A.A.マイケルソン、R.E.ミリカン、A.H.コンプトン、A.F.ヨッフェ、Y.I.フレンケル、S.I.バビロフなどの20世紀の科学者たちが、J.G.ストークスの思想の発展に貢献してきました。

ストークスは研究に関する本を書かなかったが、王立協会、英国科学振興協会(1869年に会長に就任)、ヴィクトリア研究所などの科学団体の論文発表数では、最も多作であった。彼の研究の成果は論文に反映され、各国の同僚との文通の対象となった。

ストークスの著作は、『数学・物理学論文』(1880-1905)の5巻に集められて出版されたが、そのうちの最初の3巻は彼自身が編集したものである。最後の2巻は1905年に彼の死後に出版されたもので、ストレットが書いた死亡記事が掲載されています。

1907年には、ストークスの簡単な伝記と、J.ラーモアが作成した彼の科学的な書簡が2巻で出版されました。また、若い才能を奨励するためにストークス財団(英語や外国人科学者による講演講座)も設立されました。

 

 

 

 

 

 

 

 

ジョージ・ガブリエル・ストークスは1903年2月1日、ケンブリッジで83歳で死去した。ミルロード墓地に埋葬されている。残念なことに、彼の墓は妻と二人の子供の墓とは違って保存されていません。ストークスの名誉を冠して命名されたのは:CGS単位系の粘度単位、月と火星のクレーター、鉱物ストークサイトです。


Литература
1. Клейн Ф. Лекции о развитии математики в XIX столетии. Т. 1. М., 1989.
2. Столетов А. Г. Собрание сочинений. Т. 1. М.; Л., 1939.
3. Погребысский И. Б. От Лагранжа к Эйнштейну. М., 1996.
4. Стрэтт Дж. В. (лорд Рэлей). Волновая теория света. М., 2015.
5. Эйнштейн А. Собрание научных трудов. Т. III. М., 1966.
6. Творцы физической оптики: Сборник статей. М., 1973.
7. Эйнштейн А. Собрание научных трудов. Т. I. М., 1965.
8. Кирхгоф Г. Избранные труды. М., 1988.
9. Вейль Г. Математическое мышление. М., 1989.
10. Лебедев П. Н. Собрание сочинений. М., 1963.
11. Капица П. Л. Эксперимент. Теория. Практика. М., 1981.
12. Тимошенко С. П. История науки о сопротивлении материалов. М., 1957.

1 Ротор векторного поля показывает, насколько и в каком направлении закручено поле в каждой точке.

2 Луи Мари Анри Навье (1785–1836) — французский математик и механик, один из основоположников теории упругости, с 1824 г. член Парижской академии наук.

3 Кинематическая вязкость — отношение динамической вязкости плотности среды к жидкости, дает понятие о ее вязкости под действием силы тяжести (измеряется вискозиметром по времени вытекания из калиброванной емкости).

4 Аберрация света — изменение видимого положения светила в небесной сфере, обусловленное конечностью скорости света и движением наблюдателя вследствие вращения Земли.

5 Михаил Сергеевич Молоденский (1909–1991) — советский геофизик, гравиметрист и геодезист. Разработал теорию использования измерений гравитационного поля Земли для целей геодезии. Предложил метод астрономо-гравиметрического нивелирования, новый метод определения.

6 Николай Павлович Неклепаев (1886–1942), ученик П. Н. Лебедева, исследовал вместе с ним поглощение акустических волн, преподавал в Московском университете, затем был ассистентом при кафедре физики Саратовского университета.

7 Институт Виктории (или Философское общество Великобритании) был основан в 1865 г. как ответ на публикацию книги Ч. Дарвина «О происхождении видов...». Институт Виктории пользовался значительным успехом в конце XIX в., когда Дж. Г. Стокс был его президентом (с 1886 г. до своей смерти). Максимальное число членов — 1246 человек — было в 1897 г., но быстро упало до менее чем трети от этого количества в первые два десятилетия XX в. Дж. К. Максвелл неоднократно приглашался для вступления в институт, но, хотя он и был набожным евангелистом-христианином, он отказался от приглашений из-за узости тематики и консерватизма института.

ストークス-19世紀の数理物理学(3) 光の波動理論,偏光の記述

ストークスの光の波動理論の研究
ちょうどこの頃の科学の世界では、物理学の機械化や弾性理論の基礎とともに、光の波動説が生まれ、O.J.フレネルの「準固体エーテルは動く物体に部分的に付随する」という仮説が出て、エーテルの数学的な理論も登場してきました。このような展開の中で、ストークスは重要な役割を担い、特に光学の発展に大きく貢献しました。ストークスは生涯にわたって光の波動理論の支持者であり続け、適切な数学的装置を使用し、実験はニュートンとほぼ同じ条件で行われました。[訳注)ニュートンは光の粒子説でした]

 

 

 

上図は,ストークスシフトの概念図.これは、吸収スペクトルと放出蛍光スペクトルのずれを示しています.横軸は波長です.蛍光スペクトルは吸収スペクトルより波長が長い.

 

 

 

 

 

 

ストークス(彼の多くの同時代人と同様に)は光の収差、ニュートンリング、光の干渉と偏光、および媒質を通過する波動、スペクトルなど光学現象を研究しました。ストークスの波動理論への貢献は非常に大きい。彼の学生であるストレットは論文「波動光学理論」で、J.G.ストークスを(O. J.フレネルに次ぐ)引用数2位としました。 [ 4、p.206]

1852年、ストークスは電磁波の偏光ベクトルを表す量を提案しました。彼によって導入されたパラメータは、列ベクトルであり、光強度の次元を持つています。詳細なパラメータは、総強度、偏光度、および楕円偏光度を使って、インコヒーレント光や部分偏光を記述できます。

ストークスは、蛍石(フルオライト)の観察中に発見した発光も扱っています。同じ1852年に、ストークスは、フルオライトによって放出された光線は吸収された光線よりも屈折が少ないという結論に達しました(後にE.K.J. vonロンメルとS.I.バビロフによって一般化された)。蛍光の波長は励起光の波長より長い。ストークスにちなんで名付けられたこの規則は、蛍光(フォトルミネッセンス)の量子性を示すものだったのです。

1879年、ロンメルは、スペクトルの一部で放射周波数が励起光の周波数よりも高いことを発見しました。ストークスの法則と矛盾するスペクトルのそのような部分は、反ストークス線と呼ばれていました。ストークスは、ニュートンが提案したクロスプリズムの方法に続き、クロスフィルターの方法による発光の観測を導入し、発光を利用した近紫外領域の検出・研究方法を提案しました。

1905年、アインシュタインは彼の記事「光の出現と変換に関する発見的観点について」で次のように述べています [ 5、p.103]。光が量子で構成されている場合、ストークス規則からの逸脱は2つの理由で可能です。1つは、単位体積あたりの量子の数が多い場合(励起された光の量子は多くの励起された量子からエネルギーを受け取ることができます)。第二に、発光中に放出された量子のエネルギーが励起量子のエネルギーよりも大きい場合。

ストークスの時代には、発光に関する研究は偶然の性格を持つものでした。バビロフはその基礎研究に人生の30年を捧げました。ストークスの法則の限界を決定し、熱力学の第二法則の始まりとストークスの法則を関連付け、発光の絶対収量を定式化し、その種類を分類し、放射体の性質に関連づけたのは彼でした。そして1950年には「光の微細構造」にまとめている。その少し後にバビロフは、主にストークスのルールを含むいくつかの一般的な法則を発見したにもかかわらず、発光は物理学の人里離れた島のままであると書いた。アインシュタインがストークスの法則の意味を説明できたのは、1905年の量子論に基づいてのことです。1913年にはボーアの原子構造の量子論によって、発光の全分野、そのすべてのセクションの主要な特徴が明らかになりました[6, p.335, 338]。


エーテル理論のどれが正しいと考えられていますか?
ストークスは長寿だったので、エーテルのいくつかの理論の変遷を見ました-エーテルとは、その振動が可視光を含む電磁波として現れるような一種の万能媒体です。O. J.フレネル、O.L.コーシー、W.トムソン、H.A.ローレンツ、J.A.ポアンカレ、M.C.E. L. プランク、等がエーテルの解釈を提案しました。ストークスも関心がありました。

異なる科学者の考えにおけるエーテルは、均質性、圧縮性などの程度、および軌道上を移動するときに地球によって運び去られる程度が異なっていました。エーテルの特性についての理解に応じて、科学者はマクスウェルの方程式をさまざまな方法で解釈しました。ご存知のように、ストークスとトムソンはそれを抑制して扱いました。エーテルの否定は、アインシュタインによる相対性の理論の後です。

特に、フレネルはエーテルが非圧縮性であるという仮説を提唱しましたが、それは物質中を透過するのが困難である横方向のせん断を可能にします。ストークスは、樹脂のように、エーテルは急速な変形の間は剛体のように振る舞い、惑星が動くときはプラスチックのように振る舞うという事実によってこの困難を説明しました。1839年、コーシーは収縮するエーテルの理論を作りこのモデルを改善、これは後にトムソンによって洗練されました。

1845年に収差の理論(ある基準座標系から別の基準座標系に移るときの光の伝播方向の変化)を作りました。ストークスは、地球が移動するときに周囲のエーテルも運び去ると仮定して、その結果、地球表面のエーテルの速度は惑星の速度に等しくなります。科学者は、いっしょに運ばれるエーテルの動きが、惑星を取り巻く空間とそれが静止している領域の両方で渦なしの特徴を持っていることを認めました。ストークスによれば、エーテルは硬くも柔らかくもあり、通常は液体媒体のような振る舞いをします。

 

 

 

銀河のエーテル風の流れによる地球表面の流れの架空図(左)(1- エーテル圧力が上昇したゾーン; 2- エーテル圧力が低いゾーン; 3- 海からの水分捕捉のゾーン; 4- エーテルのトロイダル渦が冬に大気を捕捉する)、および、科学者が自然界にエーテルを探せなかったことの風刺画。

 

ストークスは、収差効果について次のような説明を提案しました。地球の表面から一定の距離になると、エーテルの巻き込み部分とエーテル全体の速度差が現れるはずで、この差により、光学素子に当たる光波の前面が回転してしまう。これが収差を惹き起こします。ストークスは、エーテルの運動が渦なしの速度ポテンシャルの形であることを証明する計算で説明を補足しました。その後、プランクはストークスの理論を肯定的に捉え、それを救おうとしたが、役に立たちませんでした。

ストークスは、エーテルの巻込み程度が、その密度の違いだけに依存するのではないことも指摘しました。エーテルは物質の中に入ると圧縮され、離れると希薄化して物質の粒子に引き寄せられることが予想されます。弾力性のあるエーテル論は、非常に長い間、科学界に根付いていました。実際、ストークスをはじめとする当時の著名な物理学者たちは皆、その性質や本質を一般的に解明することに取り組んでいました。

1846年、ストークスは次のように書いています:我々は、よほどの理由がないと、エーテルが地球の固体質量の中を完全に妨げられずに移動するのを信じることができません。しかし、それを正しいと考える理論をチェックする決定的実験は非常に有用であろう[7, p.235]。1881年、A.A.マイケルソンは、J.G.ストークスが仮定したように、エーテル風が地球によって運び去られることを実験で確立したように見えた。しかし、エーテル否定の結論はまじかに迫っていました。

ストーク自身も、エーテルの概念に固執した彼の同僚も、その本格的な理論を作ることができません。I.フィゾーの発言によると、1851年に提示されたエーテル仮説の中には多かれ少なかれ可能性はあるが、どれも証明されたとは考えられません[6, c.214]。10年後のストークスは、仮説の長所と短所について議論を続けたが、彼自身はこれが成功するとは期待していませんでした。

ストークの死後、1905年には、アインシュタインは、相対性理論と光速不変を提唱しました。その結論によると、これらの前提条件は単純で矛盾のない移動体の電磁気学を構築できる。光を運ぶエーテル」の導入は、余計なものに見えます[7, с. 8]。この瞬間から、ストークスの理論だけでなくエーテルに関する数多くの理論がその価値を失うことになりました。


■今回の節では,ストークスの研究のうち,光の波動論とエーテル仮定を扱います.前者は成功しましたが,後者は無意味でした.

偏光状態を表示するストークス・パラメータ,反ストークス線については,
訳者が別稿で解説する予定です.

ストークス-19世紀の古典数理物理学(2) ベクトル解析,粘性流体

科学者であるストークスは、数学から美的快楽と実用的満足感を得た。半収束級数の指摘、完全収束または限定的収束の無限級数の研究、整数列と級数の一様収束の概念の導入、ベクトル解析に取り組んだ。彼が提案した最も重要な公式の一つは、彼の名が冠されたストークスの公式です。

[訳注]
ベクトル場の回転を閉曲面上で面積分したものは、ベクトル場を閉曲面の縁で周回線積分したものに一致するというものです。

 

 

 

ベクトル場A(x,y,z)とは、平面あるいは空間の各点でベクトルが定義されているものです。例えば、天気予報で風の向きと強さが矢印で描き込まれたマップをよく目にすることがあるでしょう。
ベクトルの回転は,上の式でrotAと書かれているものですが,ベクトル解析は別の稿にまわします。話をもとに戻します。



1849年には友人のトムソンがストークスからこの公式を入手しています。ストークス自身は、1849年から1882年まで毎年行っていた数学の試験にこれを含めることが有用であると考えていました。 1910年には、ドイツの理論物理学者A.I.W. Sommerfeldがストークスの結論を4次元空間に一般化しました。J.C.マクスウェルは、彼の論文 "On Faraday Force Lines" (1885-1886)で、ストークスの結論をベクトル解析の重要な定理として、C.F.ガウス、J.グリーン、M.W.オストログラドスキ、W.トムソン、そしてもちろん、J.G.ストークスの名を冠した。

 

 

当初、科学者たちは、液体や気体の力学と固体の力学には共通点がないと考えていました。しかし、1845年、ストークスは固体と粘性液体の共通の性質を発見しました。固体物質の可塑性が高まると弾性が低下し、固体は液体状態になっていくという結論です。ストークスの考えは価値あるものであることが証明され、その後の一連の科学的研究を刺激しました。

フランスの科学者L.M.A. ナビエ, O.L. コーシー, S.D. ポアソンなどが粘性流体の研究に成功しました。ストークスは1849年に彼の論文「移動する流体の内部摩擦の理論と弾性固体の平衡と運動について」で、粘性流体と気体の微分方程式を導出することによって、ナヴエの理論を補完しました(分子の概念とは無関係です)。これらは今日ではナビエ・ストークス方程式として知られています。この科学者に敬意を表して、CGS単位系で動粘度の単位は、後にストークス(ロシア語表記:St、国際St)と呼ばれるようになりました。国際単位系では、粘度のSI単位はm^2/sです。

 

 

ストークスは層状境界層の理論も構築しました。彼は乱流における層流の遷移の事実を確立した - 最初は液体の流れる水道管や物体に対して(研究は抵抗の値に境界層の剥離の影響を研究するために実施された)。時を経て、船、航空機、タービン、蒸気機関の高速化に起因する乱流の理論が大きく発展しました。


科学史家 I.B. Pogrebyskii が定義したような、物理的側面への注目、実験結果の考察、運動の明確な運動学的描写、オリジナルの動的原理の網羅的な定式化、これらすべてが、理論の成功した応用と組み合わされて、ストークスの研究は粘性流体の理論に関する更なる研究の主要な出発点となりました [3, p.127]。

分子間の距離や分子間の相互作用による液体速度の不規則な成分を無視して、ストークスは液体粒子の近傍での液体の平均的な規則速度のみで計算しました。彼が粘性流体の運動方程式を導出することを可能にしたのは、流体粒子のひずみ速度の6つの成分に対する応力の6つの成分の線形依存性に基づくと仮定したからです。

流体を連続的な媒体として考えたストークスは、「内部摩擦」の概念を採り入れ、その計算に基づいて、円柱内の粘性流体の回転に関して、ニュートンの解析を修正した。ストークスが示したように、ニュートンの間違いは、液体中の隔離された各層の外部表面と内部表面に作用する摩擦力のモーメントの代わりに、力そのものを考慮したことである。ニュートンは、流体粒子の1回転の時間が円筒状の層の半径に線形に依存することを発見し、ストークスの結果から、時間は半径の2乗に比例することがわかりました。その結果、円筒管内の定常流における粘性非圧縮性流体の流量についても、ハーゲン-ポワズイユ式を理論的に説明できるようになった。やがてストークス自身も、速度の時間変化の法則を記述した微分方程式を得ました。

1851年、科学者は、束縛されていない粘性流体の中で、そのゆっくりとした均一な運動の間に小さな固体球に作用する抗力Fの公式を導出しました。ストークスの公式はF=6πRηu形です。ここでRとuは球の半径と速度、ηは流体の動的粘性係数で、この法則は非常に小さな半径でも真であることが判明し、A.アインシュタインは後に糖分子の半径を測定するためにこれを使用しました。

ストークスの法則は、新しい研究で広く使われました。私は、A.アインシュタインによるブラウン運動の計算、J.J.トムソンによるイオンの電荷の決定、R.ミリカンによる電子電荷の決定を思い出します。ミリカンの実験と自身の実験を分析した結果、ミリカンがストークスの公式で誤って空気粘度の値を使ったので、素電荷を正確に決定することができなかったことがわかりました。このチェックの結果は、ストークスの法則の正しさの確認になりました。

論文 "移動する流体の内部摩擦の理論について" (1845) で、ストークスは物体が等時性振動を起こすのは、小さな変形範囲では、物体に生じる応力が変形量に比例するという事実によることを示し [4, p. 116]、橋梁のたわみについても研究しました。ウェールズの鉄道橋の崩壊を知り、変形したときの鋳鉄の脆さが原因であると解明しました。ストークスの橋梁の動的たわみに関する研究は、工学的な応用研究に近いものです。
弾性の理論を扱い、弾性体と塑性体を考察し、自然界では弾性と塑性は切り離せないものであり、実際には両者の間には急激な変化はないと考えました。

ストークスはまた、液体の中での音の吸収についても研究した。しかし、彼は粘性を散逸(散逸)メカニズムと考えながらも、熱伝導率を考慮に入れていなかったため、彼の分析は不完全なものでした。しかし、J. R. von マイヤー、J. P. ジュール、H. L. F. von ヘルムホルツがエネルギー保存法則を発見(当初は不信感を持って科学界に受け入れられていた)をするまでは、これを解決できませんでした。

ストークスは科学活動の初期の頃から、主要な力学者、流体力学者としての地位を確立していました。F. E. ノイマン、J.A.ポアンカレ、P.M.M. デュエム、T.レヴィ=チヴィタ、M.V.オストログラドスキー、P.L.チェビシェフのように、彼は力学の理論的基礎の開発に貢献しました。同時に、弾性理論は、彼によって開発されました。 1860年代までに。若いジョージ・ストークスは、ケンブリッジの科学界で、理論力学、数理物理学、水力学の熟練した研究者として、光学の専門家として、同時に新世代の科学者たちの辛抱強く親しみやすい教育者としても知られるようになりました。

ストークス-19世紀の数理物理(1)

ジョージ・ガブリエル・ストークスの生誕200周年の節目に
«ПРИРОДА» №1, 2020,ロバート・シュチェルバコフより,
教育学博士(エストニア,タリン)

https://elementy.ru/nauchno-populyarnaya_biblioteka/435633/Dzhordzh_Gabriel_Stoks_klassik_matematicheskoy_fiziki_KhIKh_veka

J.G.ストークス(1819-1903)は、アイルランド出身の英国の数学者、機械工学者、物理学者:理論力学、流体力学、弾性理論、振動理論、光学、数理物理学、数理解析。彼はロンドン王立協会の会員であり、その秘書兼会長を務め正確な科学を推進した。

19世紀のイギリスでは、数学的分野とともに物理学的分野も発展しました。伝統的な自然哲学(当時は自然科学と呼ばれていた)から、独自のアプローチと方法を持つ独立した科学、物理学が誕生し、最初の物理研究所が誕生しました。

彼の同胞の多くと同様に、J.G.ストークスは、19世紀の自然科学の中心地であったケンブリッジの伝統を大切に守り発展させました。理論的な力学と光学の問題を解くために、まず第一に数学的方法を用いることです。研究に実験を適用することはごくまれでした。

科学者としてのストークスの形成

プロテスタント福音司祭ガブリエル・ストークスの6人の子供の末息子であるジョージは、1819年8月13日にアイルランドの村で生まれました。

 

 

 

 

 

 

 

 

 

 

 

 

家族は宗教的であり、彼の兄の3人は後に司祭になりました。そして彼自身、科学に専念し、生涯を通じて世界に対する彼の宗教的な世界観を保持しました。

1835年には 16歳のジョージはイギリスに渡り、ブリストルカレッジに入学しました。2年間の見習い生活は、彼の数学的能力の開発に重要な瞬間であり、ケンブリッジでの彼の研究のために自分を準備するのに役立ちました。1841年、ストークは大学で教育を受け、ケンブリッジでは教職にも就き、1849年には数学のルーカス・チェア(世界で最も権威のある学術的地位であるルーカス数学教授を、記録的な54年間務めた)を受けました。当時はJ.ニュートンが会長を務めていました。

 

 

 

 

 

 

 

 

ストークスは66年間の科学的活動において、機械工学と光学の古典的な研究から、地球の重力場、仮想エーテル、スペクトル分析の応用まで、彼の世紀の物理学のほぼすべての分野をカバーしました。ただし、電磁気学だけは彼の興味の外になりました。これらの科学分野では、ストークスは、数学的方法のエキスパートだったので非常な成功を収めました。

F.クラインが強調したように、イギリスの数理物理学は、ストークスとウィリアム・トムソン[訳注)やはりアイルランド出身で同時代の物理学者]がケンブリッジの若い才能に現れて以来、途切れることなく華麗な上昇を続けました。ストークスは1837年から死までの66年間、最初は研究者として、次に教育者および管理者として、ケンブリッジに住みました。優しい個性で、彼の広範で継続的な非常に有益な活動を行いました [1, p. 259]。

ストークスは、ケンブリッジのペンブローク大学の部屋で数学を応用して実験を開始しました。1871年から1872年にかけて、イギリスの科学者たちがオックスフォード研究所や(J.C.Maxwellの努力により)ケンブリッジ大学のキャベンディッシュ研究所などの物理学研究所を設立したのは、正確な体積測定の必要性が高まってきたからに他なりません。52歳のストークスにとっては残念ながら、少し遅かった。

開所当時、J.K.マクスウェルの研究室を訪れたA.G.ストレトフによると、当時、物理学の研究は長い間、数学のコースに含まれており、物理学のための特別な学科の存在は、その用語自体と同様に新しいものでした。1871 年までケンブリッジでは数学の一部としての光学と化学の一部としての熱の章だけが教えられていました。電気と磁気の広範な科学は全く教えられていませんでした [2, p. 342]。

おそらく、このことが、数学、理論力学、光学、仮想エーテルなどの科学活動の方向性と、そのような英国の科学者(ストークスを含む)の選択ができたのでしょう。ストークスは時折、今日の基準では最も単純な実験的調査を用いて、彼が既に行った理論的な結論を徹底的にチェックしました。


ストークスの研究における力学と流体力学
J.G.ストークスは、J.グリーン、W.トムソン(ケルビン卿)、W.J.M.ランキン、O.レイノルズ、J.W.ストラット(レイリー卿)らとともに、数学的手法の開発に成功した。- 数学的方法の開発に成功し、古典的な数学物理学の発展に貢献し、当時の物理学や工学の問題に数学を適用した。その世代の科学者のおかげで、熱伝導、拡散、弾性と運動の安定性の理論、振動と波動の過程、光学、電位理論と電気力学の多くの問題を解決するために数理物理学の方法が開発されました。これらの方法は、現代の物理学、工学、産業界に関連しています。

 

J.G.ストークスの親しい同僚、教え子、友人たち。
左から、J.C.マックスウェル、J.W.ストラット(レイリー公)、W.トムソン(ケルビン公)。

エンペドクレスの4要素説

コンスタンチン・ボグダノフ
「クォンタム」2014年第4号、第5号、第6号、第7号、第8号

エンペドクレスは、2500年前にシチリア島に住んでいた古代ギリシャの哲学者、医師、司祭でした。

 

エンペドクレスは、万物は土、空気、火、水の4つの要素で構成されていると考えました。愛と憎しみ、あるいは好きと嫌いという二つの対立する力は、これらの要素に影響を与え、それらを統合しあるいは分離し無限の様々な形を作る。

私たちの時代は、物質は原子と分子で構成されていることを誰もが知っており、エンペドクレスの推論は、笑われてしまいますが、エンペドクレスが語った無限の多様な自然は、分子および原子の化学反応に置き換えることができます。

そして、愛と憎しみ、共感と反感はどのような関係があるのでしょうか?
例えば、一枚の紙がコップ一杯の水を愛したり、マッチが石けんを憎んだりすることは、どのようにしてできるのでしょうか?

有名なレオナルド・ダ・ヴィンチが言ったように、真実を判定する唯一の基準は実験であるから、これらの質問に答えるために、簡単な実験を設定しましょう。

実験1.一枚の紙は水の入ったグラスを好むのか?

厚手の紙から一辺15cmの正方形を切り取ります。壁のカレンダーのカバーはこの目的に最適です。水道水の入ったグラスを取り、それを四角い紙で覆い、そっと裏返し、紙をグラスにしっかりと押し付けます。

グラスを裏返し、水の動きが止まったら、紙の保持をやめて手を横に離します。私たちがすべてを正確に行えば、一枚の紙は水の入ったグラスからはがれず、いわばそれに引き付けられます(下の写真を参照)。エンペドクレスは正しい。一枚の紙が水の入ったグラスに恋をしました?なぜこのようなことが起こるのでしょうか?

 

 

 

 

 

 

実験2.なぜマッチは石鹸を嫌うのか?

大きな容器(料理やゼリーの下ごしらえ用のトレー、直径30cm以上の深鍋や鍋、バケツや湯船でもOK)を持っていく。石鹸液の残りを洗い流し、冷たい水道水で満たしておきましょう。次にマッチを持って、その頭を任意のシャンプーに一瞬だけ浸してから、このマッチを水面にそっと置いて離します。マッチの頭が水に触れた「石けんスポット」からすぐに離れるのがわかります(下の写真)。それはまるでマッチがエンペドクレスの言葉を借りれば、石鹸液を嫌って純粋な水に寄り添うかのようだ。なぜ?

 

 

 

 

 

 

 

 

 

実験1と実験2を説明するためには、まず、エンペドクレスの要素の一つである空気が何であるかを知る必要があります。人間は空気なしでは生きられないことを誰もが知っています。私たちの体は空気中に含まれる酸素を必要としています。空気の存在を検出するのは非常に簡単です。これを行うには、あなたが紙のシートを持ち、団扇のようにそれを振ると、移動する空気を顔に感じるでしょう。

 地球の表面の上にある空気の層の厚さ-約100キロ。この地球の空気層は大気と呼ばれています。空気は水の約1,000倍の軽さですが、大気はかなり大きな力で私たちの体の表面のあらゆる部分を押しています - 1平方センチメートルあたりの力は、1kgの重さに等しいのです。この圧力を大気圧といいます。

 

 

 

山上の大気の厚さは海上よりも薄いので、山上の高いところの空気は圧縮されておらず、気圧が低いということになります。例えば、エルブルス山の頂上では、気圧がソチの半分になっています。

気圧は登山時だけでなく、気温や湿度の変化でも変化します。モスクワの気圧がトゥラ[訳注)モスクワの南100kmにある]よりも低くなると、トゥラからの圧縮された空気がモスクワに向かって移動し始め、南風が吹きます。そのため、気圧を測定することで、天気予報に役立ちます。

フランスの有名な科学者ブレイズ・パスカルは、登山中に気圧の存在を証明し、その低下を実証した最初の科学者です。さらに、パスカルは最初の機械式計算機を設計しました。圧力測定の単位(1パスカル=1N/m^2)とプログラミング言語の一つにパスカルの名前がついています。

 

 

 

 

実験3.水から空気を作る方法は?
これは大人の目の前で行うのが一番です。ビニール袋に少量(30ml)の水を入れ、空気を絞り、上部でしっかりと縛ります。そして、袋を電子レンジに入れてスイッチを入れます。数秒後に袋が膨らみ始め、約1分後には電子レンジのほぼ全容量を占めるほど膨らみます。

 

 

袋がかなり熱くなることがあるので注意が必要です。2つの質問に答えてください。
1.密閉された袋の中の空気はどこから来たのか?
2. 密閉された袋の中に水を入れていない場合、電子レンジはスイッチを入れたらどうなるでしょうか?

この実験と実験1の説明("一枚の紙はコップの水が好きなのか?") の動画があります。

 

 

 

実験3「水から空気を作るには」では、エンペドクレスの一つの要素(水)から別の一つの要素(空気)が生まれました。実験では、水と空気は熱したり冷やしたりするとお互いに変化し、なんとなく似たような感じになることがわかりました。電子レンジで加熱すると密閉された水の入った袋が膨らんでしまう理由がわからなかった方は、こちらで解説しています。


実験4.グラスはなぜ歌うのか?

 

 

 

この実験は、大人の目の前でやった方がいいと思います。実験には2つの同じグラスが必要です。片方は半分を水で満たし、もう片方は空けておきます。空のグラスの足(スタンド)を左手でテーブルの表面に押し付けます。次に右手の人差し指を水で湿らせ、空になったグラスの上端に沿ってゆっくりとまわしながら、端の指の圧力を少しずつ高めていきます。圧力が十分であれば、この指の円運動で音が出ます。次に、半分が水で満たされたグラスで同じことをします。水の入ったグラスが低い音を出すのが聞こえてきます。

2つの質問に答えてください。
1. なぜグラスが歌い始めるのか?
2. 歌うグラスに水を入れると音程が下がるのはなぜ?

この実験の動画は、Quanticsのウェブサイトに掲載されています。https://old.kvantik.com/files/materials_2014_06.html

イギリスの科学者ロバート・フック(1635-1703)は1660年に、力とそれが引き起こす固体の変形を結びつける法則を発見しました。この法則は、現在ではフックの法則と呼ばれていますが、身体の弾性変形は力の大きさに正比例するというものです。ラテン語では、フックはこの法則を次のように記しています。"Ut tensio, sic uis" 文字通りの意味は "力と同じくらい伸びも同じくらい" 当時、科学者たちは、他人に流用されることを恐れて、発見を暗号化することがありました。フックは彼の法律のラテン語の言葉からアナグラムを作った - アルファベット順に文字を並べ替えた。"ceiiinosssttuu". 彼は1676年にこのアナグラムを発表し、1678年に解読しました。

 

 

 

 

 

 

 

 

 

フックが残した多くの発見や発明の中でも、彼の最も重要な技術的発明である、当時としては前例のない精度を持つ懐中時計について言及しなければなりません。1日1分の誤差を達成しました。このような高い精度を確保するために、フックはアンカー機構(図1)とスパイラルスプリング(図2)を時計のデザインに取り入れました。フックの発明以前は、時計は15分以上の誤差で進んだり、遅れたりするので、毎日巻かなければなりませんでした。19世紀末までにフックのゼンマイ時計は改良され、その精度はさらに10倍に向上し、船乗りは正午の時刻を確定し、海上での経度を0.5度の精度で知ることができるようになりました。

 

実験4「グラスはなぜ歌うのか」では、ガラスの縁に沿って濡れた指を動かすとガラスが鳴りました。ガラスは川の砂でできており、他の岩石(花崗岩、大理石、石灰岩など)とともに地球の地殻の一部であることが知られています。このように、ほとんどすべての固体は、エンペドクレスの「土」の要素と考えることができ、そのすべてが音源となりうる。では、なぜ固体の接触が音の発生につながるのか、その疑問に答えてみましょう。


実験4 "グラスはなぜ歌うのか?"

グラスがなぜ歌うのかを理解するためには、まず音とは何かを理解する必要があります。これは別の記事で取り上げますが、今のところは「音は空気の振動である」と言っておけば十分です。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

固体の振動を伝達して、空気が振動することがよくあります。例えば、人が話すと声帯が喉の中で振動して声が出る。人がギターを弾くとき、弦を揺らしたり、捻ったり、指で叩いたりして音を出します。少し違うのは、バイオリンを弾いた時の音です。ミュージシャンが弓で弦をこすると、摩擦で弦が引っ張られている状態になりますが、弾性力はそれを引き戻す傾向があり、この力が摩擦力を超えるとすぐに、弦は戻り繰り返され、音が聞えます。

歌うグラスは、バイオリンとほとんど同じです:グラスの縁に沿って指を走らせると、皮膚の小さな凹凸がグラスにまとわりついて、グラスが振動します。バイオリンの弦との違いは、これらの振動がミクロなもので、目で見ることができないことです(指で感じることはできますが)。しかし、グラスの中に水がある場合は、グラスの水面に波が現れるのを見ることができます。これは、ガラスが本当に振動していることを意味します。

実験を成功させるためには、ガラスと指が油っぽくないことが重要です(摩擦力がここで働くので)。

水の入ったグラスの方が水の入っていないグラスよりも低い音がするのはなぜでしょうか?
正確な説明は簡単ではありませんが、おおよその現象は次のように説明できます。
空気の振動をゆっくりとさせるような音が、私たちには低く見える。
ここで、バネ振り子で、バネに重りをつけたものを想像してみましょう。Kvantikのサイトに投稿された動画では、プラスチック製のバネとミカンで作れるバネ振り子の振動を確認することができます。経験上、ミカンのあるバネは、ない場合に比べて、はるかに振動数が小さいことがわかります。実際、荷重が大きくなるほど、バネが元の位置に戻るまでに時間がかかります。グラスに水を入れると質量が増えるので、ミカンをくっつけたときのバネのように振動数が小さくなります。

http://kvantik.com/files/materials_2014_07.html

ーーー

2つのフォークを取り、それらを組み合わせ、それらの間の隙間に木製のつまようじを刺します。次に、この構造をガラスのゴブレット(または背の高いグラス)に置き、つまみでガラスの端にのみ触れるようにします(右の写真を参照)。同時に、構造物が落ちないように、端にしっかりとぶら下がるようにしてください。これが実際に実行できるという事実は、Kvantik Webサイトのビデオに示されています。

 

次に、2つの質問に答えましょう。
1.  2つのフォークと1つのつま先の構造が非常に安定しているのはなぜですか?
2. この構造の重心はどこにありますか?

 

 

 


古代ギリシャの有名な科学者アルキメデス(紀元前287~212年頃)は、彼の2世紀前に世界の根源を4つの要素としたエンペドクレスがいたアクラガス(現在のアグリジェント)の町から100キロ離れたシラクーサ(シチリア島)に住んでいました。アルキメデスは幾何学が好きだったので、いくつかの物理法則を発見し、そのうちの1つには彼の名前が付けられています。

 

 

 

 

 

 

 

 

 

 

アルキメデスの法則は次のように述べています:液体(または気体)の中に沈められた身体は、身体によって変位された液体(または気体)の重量に等しい力を受けます。紀元前1世紀に生き、ユリウス・シーザーの時代にローマの水道橋を設計したローマの建築家ヴィトルヴィウスの書物から、世界は初めてアルキメデスの法則を知った。ヴィトルヴィウスによると、アルキメデスは入浴中に自分の法則を発見し、その直後に裸で家から飛び出し、ギリシャ語で「見つけた!」という意味の「ユリイカ!」と叫び始めたという。

 

アルキメデスが発見した同じように有名な法則に「てこの法則」があります。古代ギリシアの作家プルターク(45-127)は、アルキメデスが「てこの法則」を利用しようとした珍しい方法を伝えます。アルキメデスは、友人でもあり身内でもあるギエロン王に、与えられた力でどんな重さでも動かすことができると書いたことがあります。要するに「支点をくれたら世界をひっくり返す」ということです。

 

 

 

 

 

 

 

 

 

 

アルキメデスは、物体の重心の概念を最初に導入し、三角形や平行四辺形の形をした平たい物体の重心の位置を求めた。忘れてしまった方のために、物体の重心とは、その物体の重力の力(地球に引き寄せられる力)が集まる点です。覚えておきましょう。

壁に打たれた釘に物体を吊るすと、数回の振動の後、物体は静止し、その重心は懸垂点の下、つまり懸垂点から垂直に下っていく線上にある。この重心の性質を利用して、図に示した図形の重心の位置を求めてみましょう(Kvantikのサイトの動画も参照してください)。まず、A点から物体を吊り下げ、落ち着いたらA点を通って赤い線を縦に引きます(右図のように)。次に、同じようにB点から物体を吊り下げて青い線を引きます(右図のように)。この図の重心であるC点で線が交差していることがわかります。多くの場合、物体の重心がこの物体の外にあることもあります。Kvantikのサイトに掲載されている動画を見ると、2つのフォークを繋いだ時の重心が2つのフォークの間にあることがわかります。

 

 

 

 

 

 

 

 

 

 

 

実験5  なぜフォークは落ちないのか?

 

2本のフォークをつまようじで固定した構造が、ガラスの端に置いたときに非常に安定していることを示しています。安定している理由は、構造物の重心が支点の下にあるからです(左の図で重心が青、支点が赤で表示されています)。この説明が本当なのかどうかは、もう一回実験してみると(Kvantikのサイトの動画を見てください)わかると思います。

 

 

 

実験6 ボールはどうしてグラスの中に入るのか?

 

 


卓球のボールとグラスを持って、テーブルの上にあるように置きます。手などでボールを触らずにグラスに入れることは可能でしょうか?ボールをテーブルの端に押し付けて、グラスでキャッチするなどは禁止です。実際にこれが可能であることは、Kvantikのウェブサイトに掲載されている動画でも紹介されています。

 

では、2つの質問に答えてください。
1.  グラスの中にボールを引きあげ保持する力は何か?
2.  この実験は、グラスの壁が上に伸びている形状でも可能でしょうか?

実験6  ボールはどうやってグラスの中に入ったか?
グラスを逆さにしてボールにかぶせ、グラスを回転させる。ボールがグラスの中で回転するようにグラスの壁をボールに押し付け続けます。グラスの口(首)の近くでは壁が先細りになっていて、その傾斜のために横だけでなく上にもボールを押し上げます。ボールの立場で見た場合、それは、遠心分離機や回転木馬のように、ガラスの壁に強く押し付けられ、グラスの軸から最も遠い領域(グラスの壁)に押し出されます。(動画を見るとよくわかります)https://old.kvantik.com/files/materials_2014_08.html

口(首)が拡大しているグラスの場合、この方法は適していません:ボールはグラスから排除されます。


アーティスト アルチョム・コシュチュケヴィッチ

参照
コンスタンチン・ボグダノフ氏による大衆科学講演会「私たちの中の物理学」,2007年12月13日,モスクワ,ФИАН

 

http://video.elementy.ru/fian/Bogdanov-fpff.mp4

https://elementy.ru/nauchno-populyarnaya_biblioteka/izbrannoe/432676/Chetyre_stikhii_Empedokla

複屈折

https://elementy.ru/kartinka_dnya/53/Dvoynoe_lucheprelomlenie?from=rxblock
2016年5月11日 • Pavel Plechov 
この記事は簡単なので入門にはよいのですが,あまり正確ではありません.結晶光学については,物の記事で解説します.

 

 

 

 

 

 

 

 

 

 

岩塩haliteと方解石calciteの結晶
写真は、岩塩とアイスランドスパー(方解石)の結晶の大きな断片を示しています。外見上、それらは類似していますが、光学特性が大きく異なります。

岩塩結晶は立方晶系に属します。光は方向に関係なく同じ速度で結晶を通過します。このような結晶は、光学的に等方性と呼ばれます。

一方、方解石結晶は顕著な光学的異方性を持っています。結晶に入った光線は2つの互いに垂直に電場が振動する光線に分かれ、異なる速度で結晶内を移動します。一方の光線の速度は、もう一方の光線の速度より11.5%高速です[訳注:光軸に垂直に伝播する異常光のこと]。このため、複屈折、または複屈折の光学現象が発生します。各光線には独自の屈折率があり、結晶内で異なる方法で屈折します。結晶のある点に入った光線は、結晶内で異なる経路をたどり異なる場所に出て、そのうちの1つは遅れて現れます。写真は、方解石の後ろにある「кальцит」の刻印が二重に見えるのに対し、岩塩の後ろにある「Галит」の刻印では何も起こらないことを示しています。

-----
[訳注]もう少し正確に言うと,方解石の結晶構造は,3方晶系(光学的には1軸性です).光軸方向に進む2つの偏光は同じように進む(分かれません).それ以外の方向に進む光線は複屈折を示します.複屈折の大きさは,光軸に垂直な方向に進む光で最も大きくなります.
結晶内を伝搬する2つの偏光は,通常光と異常光と呼ばれます.通常光の伝播速度は結晶内のどの方向に伝播しても同じです.
ここで,使われている光の速度とは伝播する光の位相速度のことで,物質の屈折率をnとすれば,物質内で光の速度は1/nになります.
-----

 

 

 

 

 

 

一枚の紙にカルサイト結晶
箱の中の紙の上に横たわる方解石結晶による複屈折。
en.wikipedia.orgからの写真

 

 

 

 

 

 

 

 

偏光面を回転させて方解石の複屈折を見る
結晶の方位に対する偏光面の方向によって方解石の複屈折の大きさが変わります:en.wikipedia.orgからの描画

 

 

複屈折の効果は、1669年にデンマークの科学者エラスムスバルトリン(1625-1698)によって最初に説明されました。彼はそれをアイスランドからの船員によって運ばれたアイスランドスパーの結晶で見つけました。E.バルトリンの出版は、「神は1つの無生物を創造したので、それだけでは2つになることはできない」という同時代の人々からの大きな批判を引き起こしました。方解石の複屈折の現象そのものが、アイザック・ニュートン、クリスチャン・ホイヘンス、ジョージ・ストークスなどの科学者を悩ませました。19世紀初頭、トーマス・ヤング(1801)とオーガスティン・ジャン・フレネル(1820)による光の理論に関する研究により、アイスランドのスパーの効果が理解できるようになり、開発の可能性が開かれました。結晶光学の誕生です。

ウィリアムニコールは、1829年に最初の偏光器を設計し(したがって、偏光器はしばしばニコルプリズムまたは略してニコラと呼ばれます)、1851年から1854年にヘンリークリフトンソルビー卿は最初の偏光顕微鏡の設計を提案し、多くの分野で科学的革命を引き起こしました。偏光顕微鏡を使用すると、さまざまな鉱物や合成材料の複屈折など、物質の多くの光学定数を定量的に測定できます。[訳注:岩石を構成する鉱物の同定に使われたのが歴史的な用途です]

写真©アレクサンダーSigachev commons.wikimedia.org
サンプルはAEFersman MineralogicalMuseum

 

ステルス技術の父ウフィムツェフ

 

 

 

 

 

 


「回折の物理理論におけるエッジ波の方法」
Konstantin Bobrov, "Popular Mechanics" No. 9,2020 に,
「ロシアが起源の重要な発見と発明」という記事が載っていました.
ここには,医学・生物学,物理学,材料デバイスなどの現在発展し実用化されている科学技術で,ロシア発祥の研究が12例紹介されています.
その中で私の興味を惹いたものの第一位は,ステルス・テクノロジー(1962)の起源です.そこで,少し調べてみました.
ステルス戦闘機の技術は軍事研究ですが,1962年のUfimtevの論文は「回折の物理理論におけるエッジ波の方法」ウフィムツェフ(1962年出版)という,基礎的な電磁波回折散乱方程式で,X線散乱の論文と同程度にたいへん地味な装いです.
この論文の著者の,Peter Yakovlevich Ufimtsev(1931年生まれ),電波工学者,物理学者,数学者です.彼はさまざまな形状の航空機に対するレーダビームの散乱面積を計算できる方程式を作りました.散乱面積(レーダー反射断面積RCS)とはレーダ反射が作る飛行機の像がどのくらいの大きさかというもので,現在最新鋭のステルス機F-35などでは,野球ボールや雀位の大きさと言います.1960年代初頭に、彼が開発したエッジ波法は、推測がまだ多かったことと,散乱面積を小さくする構造は、空気力学の原理と両立せず,戦闘機の運動性能を低下させるので実用性はないと考えられていました.

したがって、Ufimtsevの論文はソ連では重要とは見なされず,世界に公開されました.この論文に注目したのは,デニスDenis Overholzerです.
1970年代初頭にロッキード社のオフィスで働いていた若いデニスは,ロシア語ができたので,ソビエト連邦で出版された技術出版物を調べることが仕事でした.デニスは高度な工学教育を受けていたため,Peter Ufimtsevの科学的研究に興味を持ち,深く掘り下げ英語に翻訳しました.
「回折の物理理論におけるエッジ波の方法」ウフィムツェフ(1962年出版)

デニスはこの論文の重要性を上級管理職に訴えましたが取り上げられず,その後,デニスはエンジニアリングスタッフに直接渡しました.その分野の真の専門家であるエンジニアリングスタッフは,Ufimtsevの仕事の重要性を理解しました.

Ufimtsevによって発見されたアルゴリズムは,ステルス技術を使用して製造された最初の航空機であるF-117ナイトホークの設計に使用され,これは1981年に離陸しました.

 

 

 

 

 

 

 

 

 

 

 

Ufimtsevの論文は,防空レーダーから飛行機を事実上見えなくする方法を説明しています.翻訳者のデニス・オーバーホルツァーは,技術的に有能な人物で米国の偉大な愛国者でありました.彼は,Ufimtsevの仕事がアメリカ空軍に前例のない機会をもたらすことにすぐ気づきました.ソビエト連邦は,この論文を秘密にしなかったので,アメリカは完全に合法的に技術を手に入れたのです.

ソビエト連邦がステルス技術の利点を認識したのは,米国がすでにナイトホーク航空機を完全に使用していた1980年代の終わりになってからでしたが,それはすでに手遅れでした.さらに,ミハイル・ゴルバチョフの時代の冷戦雪解けになり,ステルス機は不要になりました.

1990年はソビエト連邦の存在の最後の年でした.Peter Yakovlevich Ufimtsevにとっても1990年は転機で,当時ソビエト連邦科学アカデミーの無線電子工学研究所で働いていた彼は,カリフォルニア大学の客員教授として,アメリカ合衆国に招待を受けました.

 

彼がアメリカに到着したとき,デニス・オーバーホルツァーは彼に会いに来ました.しかし,Ufimtsevは,ロッキードの競合-ノースロップグラマンとの契約になり,アメリカのB-2爆撃機の戦闘能力の改善に取り組み始めました。

Peter Yakovlevich Ufimtsevの生涯と運命,そしてステルス技術の歴史全体は,科学者に対する国家の不注意がもたらす深刻な結果の典型的な例です.1990年代,ソビエト後のロシアでは「頭脳流出」が深刻な問題となりました.何万人もの有望な科学者,エンジニア,技術者が,お金だけでなく,より注意深く敬意を払う態度を求めてロシアを去りました.

残念ながら,この問題は今のところ解決されていません.国内科学への資金提供には多くの要望が残されています.そのため,若い科学者たちは西側に,そして今では東側にも向けて出発しています.米国,そして中国にも,彼らの知識は需要があります.

以下のサイトを参照しました
https://en.topwar.ru/162805-russkij-stels-kto-razrabotal-tehnologiju-samoleta-nevidimki.html>


補足
レーダーの仕組み:
電波が機体に当たり、機体表面に誘導電流が発生する.
誘導電流から電波が発生する(これは反射波となる)
見えなくするには:
電波が来た方向へ電波を反射しなければ良い(あらぬ方向へ受け流す).
金属は電波を反射し易いので,電波を反射し難い・吸収する物質に換える.
厚さ1/4波長の表面と裏面から反射させて,反射波同士を打ち消し合わせることも可能である.
ステルス機の形は多面体を思わせるが,どちらから見ても来た方向に電波を戻さず横に受け流すにはこのような形が良いのだろう.

光学的ステルス
可視光で見えなくなる隠れ蓑のような衝立が2019.12にカナダの企業から発表されたのを覚えている方もおられるだろう.可視光に対するステルスも研究されている.

科学の発明:科学革命の新しい歴史★

Алексей Левинのエッセイ(ИСТОРИЯ НАУКИ,14.10.2016)
http://www.csmonitor.com/Books/Book-Reviews/2015/1209/The-Invention-of-Science-tells-the-story-of-the-shaping-of-the-modern-world

ウートン著 科学の発明:科学革命の新しい歴史

ヨーク大学の歴史教授,デビッド・ウートンが表題の著書を出版しました.
この著書についてのアレクセイ・レビンのエッセイ(ИСТОРИЯ НАУКИ • 14.10.2016)から抜粋編集。

■ウートンは、科学革命の開始と終了の正確な日付を提唱しました:1572年と1704年

ニコラウス・コペルニクスの モノグラフ「天球の回転について」が、ニュールンベルクの出版社 Johann Petraeusから出版されたのが1543年です。ウートンは2つの理由から、コペルニクスの1543年を科学革命の開始とする従来の見解に異を唱えています。
第一の理由は、太陽を不動中心とする(地動説のこと)コペルニクスモデルは、ケプラーとガリレオの後の17世紀の初めになってから、革命の要因になれるからです。16世紀の主要な天文学者は、コペルニクスモデルが天体の動きの計算を容易にすることは認めましたが、その物理的な基盤が不確かだと思いました。たとえば、砲弾がどの方向にも同じ距離を飛ぶという当時の事実は、地球回転の仮説を反駁するに十分でした。1580年代と90年代には、天文学界のコペルニクス信者は3人以下でした。しかも、そのうちの1人、ドイツのクリストフ・ロスマンは、最終的に敵の陣営に移りました。第二の理由は、コペルニクスのモデルが、アリストテレスと古代の天文学者から受け継いだ、地上世界とは全く異なる月以遠(天上界)の世界の絶対不変の概念をそのまま保持したからです。ご存知のように、この概念は17世紀に完全に拒否されました。
コペルニクス前後の近代初期のヨーロッパの天文学は、非常に安定した研究対象で、すべての天体は大空で周期的な動きをし、それは永遠の世界秩序の現れと考えられていました。星は、毎晩、天で同じ経路をたどり、明るさも変化しません。彗星は唯一の例外で、アリストテレスに続く科学者たちは、彗星を純粋に大気中の現象であると考えました。

このパラダイムは、1572年11月11日に最初の打撃を受けました。その夜、未来の偉大な天文学者になるティコ・ブラーエは、カシオペア星座の明るい星に気づきました。彼は、1574年3月にこの星が完全に消滅するまで、輝きが徐々に薄れていくのを追跡しました。彼は1573年に、ヨーロッパ中に衝撃を与えた本「DenovaetnulliusavimemoriapriusvisaStella」を出版し、彼の観察を説明しました。そのため、ブラーエはヨーロッパの科学者として初めて、星に予期しない変化が発生する可能性があることを発見しました(現在知られているように、彼は超新星爆発を見たのです。この現象は、11月6日に韓国、2日後に中国で記録されました。これより古い1054年の超新星観察は明月記や中国,アラビアで記録されましたが、ヨーロッパでの記録はありません。

その数年後、彼は、彗星は月以遠の世界に属していることを証明しました。これらの発見により、ブラーエは天体の動きの膨大な量の正確な測定をすることを目的とした研究プログラムを創始しました。デンマークの王フレデリック2世の寛大さのおかげで、ブラーエはエーレ海峡のヴェン島にウラニボルグ天文台を建設し、ユニークな観測器具とアシスタントの助けを借りて、21年間、星、惑星、月と太陽の観測の膨大なアーカイブを蓄積しました。これは、品質と幅の点で、ヨーロッパだけでなく、中国やイスラム教徒の最高の天文台でこれまでに行われたすべての観測をはるかに上回りました。惑星が楕円軌道で太陽の周りを回転することを、ケプラーが厳密に証明できたのはこれらの材料を用いてであり、それによってコペルニクスモデルの弱点が修正されました。これらの状況を考慮して、ウートンは新しい星の発見とティコ・ブラーエの天文学的研究の始まりを科学革命の出発点として宣言します。
この年代学は、コペルニクスの英国の支持者で、天文学者、数学者のトーマス・ディッグスの活動とよく合っています。彼は1576年に、宇宙空間が無限に広がり、星が地球から任意に遠く離れている可能性があることを最初に認めた人(ただし、ディッグスは依然として太陽を宇宙の中心と見なしていました)。ウートンが提案する科学革命の最後の瞬間は、ニュートンの「光学」(反射、屈折、屈折、光の色の扱い)の出版された1704年です。
科学革命がヨーロッパの文化に与える影響の規模を明確に示すために、ウートンは、さまざまな時代の住民の知識と認識を比較します。 16世紀の終わりの、典型的な高学歴のヨーロッパ人(英国の紳士)は、ほぼ確実に魔女と狼狼の存在を認め、錬金術と占星術の信頼性を疑うことはありませんでした。彼らは、自然は真空を恐れ、磁石はニンニクの影響でその力を失い、殺人者の存在下で死体が出血し、彗星は災害の前兆であり、正しく解釈された夢は未来を予測すると信じていました。彼らは、地球は動かず、宇宙の中心にあるという公理を受け入れました(おそらく、彼らはコペルニクスについて何か聞いていたと思われますが)。彼らはアリストテレスを人類の歴史全体の中で最大の知的権威と見なし、彼らの自然に関する知識は、プリニー・ザ・エルダー、ガレン、プトレマイオスの著作、または、おそらくそれらのポピュラー書に限定されていました。 彼らは、個人的な図書室に、2~3ダースの本を持っていました。

1730年頃までの150年間を早送りで見ます。当時、同じ社会的および教育的地位を持つ英国人は、フランス、イタリア、ドイツ、さらにはオランダの同時代の人よりもはるかに優れた科学的知識を持っていました。おそらく、彼らはすでに望遠鏡と顕微鏡を通して見る機会があり、太陽系の機能がどのようなものかを知っていました。彼らは良い時計や、おそらく水銀気圧計を持っていて、それを使って天気を追跡していました。彼らは魔女、狼狼、魔法使い、または彗星関連の前兆を信じていませんでした。彼らは、虹が神の啓示ではなく、雨滴が日光を屈折させる結果であることをよく理解していました。彼らは蒸気エンジンについて聞いたり読んだりしていて、おそらく仕事でそれらを観察していました。彼らは目に見えない生物がたくさんいること、心臓は機械式ポンプのように血液を送り出すことを知っていました。彼らは未来を予測する可能性を否定し、おそらく聖書の奇跡を詩的な比喩と見なしました。彼らはニュートンを世界で最も偉大な科学者であり、進歩と科学への熱狂的な信念であると考えました。彼らの図書室は数百、さらには数千冊にのぼり、現代人類があらゆる点で古代世界をはるかに超えたことを疑いませんでした。

ウートンは科学の発明(この本のタイトル)を可能にした知的道具立ての出現と進化をたどります。さまざまなヨーロッパ言語による発見と出現の重要なアイデアから始めます。このプロセスの開始は、彼の意見では、クリストファーコロンブスや他のスペインの航海士の旅が、中国ではなく巨大な新大陸への大西洋横断ルートを開拓したことを、ヨーロッパが知った16世紀初頭です。「アメリカ発見が幸せな偶然だったとしたら、それはさらに驚くべき偶然、つまり発見の発見につながりました」(p.61)。この結論は奇妙に思えるかもしれません。結局のところ、最大の地理的発見は以前にあり、アフリカ沿岸のポルトガル人の航海ではないでしょうか。しかし、彼らの旅は、新しいルートに沿っているとはいえ、すでに知られ予想されている目標への旅と認識されていました。そして、これは決して地理分野に留まりません。コロンブス以前の時代のルネッサンス精神の著名人は、失われた古代の文化的価値を取り戻そうとしましたが、新しい知識の誕生には至りませんでした。さらに、「カトリックの宗教、ラテン文学、アリストテレスの哲学は、新しい知識がまったく存在しないということを共通認識にしていました」(p.74)。知ることができるすべてはすでに知られており、時間の経過とともに蓄積された破損したテキストと誤解釈の修復が研究対象となりました。繰り返す循環過程としての歴史認識が支配していたのが16世紀です。華麗なイタリアの歴史家でマキャヴェリの友人であるフランチェスコ・ギチャルディーニは、「過去に起こったことはすべて、将来も繰り返されるだろう」と書いています。当然のことながら、そのような態度は、17世紀の初めにフランシス・ベーコンを始めとする、磁気学の研究者ウィリアム・ヒルベルト、ヨハネス・ケプラー、ガリレオ・ガリレイの発見が影響を与えるまで、知識の絶え間ない進歩の可能性を考慮する余地を締め出していました。

発見のアイデアを「育てる」ことは多くの結果をもたらしました。それは、16世紀の前半に、3次方程式、4次方程式の解法の探求に関連し始まり、その後、数学以外の研究にも広がり、誰が先に発見したかの議論が活発になりました。「このような論争は、知識が公になり、進歩的で、発見指向になったことを明確に示しています」(p.96)。17世紀には、個々の著者を発見に帰属させ、それに応じて、その著者の名前を認定された発見に冠するという伝統が生まれました。たとえば、ボイルの法則として知られている理想気体の法則は1708年にこの名前を受け取り 、ニュートンの重力の法則は1713年にこの名前を受け取りました。

----------------------------------------------------------------------------------------------------------------------------------------------

前号から始まったデビッド・ウートン(ヨーク大学の歴史教授)の表題の著書の紹介の続きです.
アレクセイのエッセイ(ИСТОРИЯ НАУКИ, 14.10.2016)より抜粋編集しています.
今回は17世紀あたりまでの科学の流れを概観します.

http://www.csmonitor.com/Books/Book-Reviews/2015/1209/The-Invention-of-Science-tells-the-story-of-the-shaping-of-the-modern-world

まず,前号のレジメから
■ウートンは、科学革命の開始と終了の正確な日付を提唱しました:1572年と1704年

ニコラウス・コペルニクスの モノグラフ「天球の回転について」が出版されたのは1543年です。
ウートンがこの年を科学革命の開始とする従来の見解には,賛成しません。前号ではその2つの根拠を述べました。

このパラダイムは、1572年11月11日に最初の衝撃を受けました。その夜、ティコ・ブラーエは、
カシオペア星座の明るい星に気づきました。彼は、1574年3月にこの星が完全に消滅するまで、毎日観測を続けました。
ブラーエは、彗星の軌道は天球の運動とは異なるので、彗星は地球の大気圏内の現象とした当時の説を否定し、
彗星も月以遠の宇宙世界に属していることを証明しました。
ウートンは新しい星の発見とティコ・ブラーエの天文学的研究の始まりを科学革命の出発点と宣言します。
ウートンが提案する科学革命の最後の瞬間は、ニュートンの「光学」(反射、屈折、屈折、光の色の扱い)
の出版された1704年です。

ウートンは科学の発明(この本のタイトル)について,
その発明者の名を冠して呼ぶようになったヨーロッパの歴史にも言及します。
それは、17世紀のことです。たとえば、ボイルの法則として知られている理想気体の法則は1708年に、
ニュートンの重力の法則は1713年にこの名前を受け取りました。

■15世紀後半から16世紀初頭にかけての地理的な発見は、もう1つの重要な結果をもたらしました。
コペルニクスは、すでにプトレマイオス世界を改訂しました(具体的には1514年)。
地球を固体の球と見なし、その表面には海と海が点在するものです。地軸の周りを1日に1回転します。
この視点は当時非常に新しく、まだ共有できいませんでした。
たとえば、15世紀には、地球はより大きな半径の水球の表面に浮かぶ球と見られました。
居住地は丸い島のようにこの表面から突き出ており、その形は半球で、決して球ではありませんでした。

何世紀にもわたって、このような地球の「モデル」は、当時の地理的概念と概ね一致していました。
アメリゴ・ベスプッチが赤道を越え南緯50度のブラジルの海岸に航海した後で初めて現実になりました。
この旅の説明は、ベスプッチの手紙「Mundus novus」(「新世界」)が1503年に出版され、
ヨーロッパで知られるようになりました。この手紙はわずか4年で29版になりました。
それに基づいて、地図製作者のマーティン・ヴァルトゼーミュラーとマティアス・リングマンが
地球の表面を完全な球とした新しい地図を描きました(1507年に公開されたWaldseemullerの地図では、
コロンブスによって発見された大陸を、アメリカと名付けられました)。
ウートンが書いているように、「コペルニクスの世界観はベスプッチなしでは起こらなかったでしょう」。

コペルニクスの素晴らしい業績に加えて、ウートンは科学革命に重要な役割を果たしたさらに2つのモノグラフをあげます。
これらは、1543年にオランダの医師AndreasVesaliusによって発行された解剖学の教科書「Dehumanicorporisfabrica」と、
前年に発行された植物のリファレンスブック「DescriptionofPlants」(「Dehistoriastirpiumcommentariiinsignes」)です。
TubingenLeonhartFuchs大学の医学教授によって作成されました(彼の名誉は、フクシア属の植物に名前が付けられています)。

彼らは、人間の臓器と植物界を研究し、ガレンと他の古代の古典の多くの間違いを訂正しました。
どちらの本にも高品質のイラストが多数含まれています(ベサリウスは250、フックスは512)。
当時のグラフィック印刷技術の向上があって出版が可能になりました。
フックスが、根や茎から葉、花、種子、果物に至るまで、そのすべての部分の綿密なスケッチで、
各植物が彼の本のページに描かれていると考えたのは偶然ではありません。
これもまた、ヨーロッパの科学の形成におけるグーテンベルクの偉大な発明の非常に重要なことを示しています。
実際のところ、それははるかに早く現れ始めました。たとえば、13世紀にヨハネスカンパヌスによって作成され、
中世に手書きのコピーで知られているユークリッドの原論のラテン語の翻訳は、
早くも1482年にヴェネツィアで最初に印刷されました。ウートンが書いているように、
共通の利益と共通の価値観を共有する国際的な科学コミュニティの出現を可能にしたのは印刷媒体でした。

科学革命はまた、数学の可能性と課題の新しい理解によって準備されました。
15世紀半ば、イタリアの偉大な建築家であり芸術研究者でもあるレオンバティスタアルベルティは、
幾何学的な視点の理論を構築しただけでなく、芸術と科学の両方の基盤としての数学の主要な役割を宣言しました。
視覚芸術の問題に幾何学を適用する彼の方法は、ピエロ・デッラ・フランチェスカ、
特にアルブレヒト・デュラーによって使用され、開発されました。
彼らの仕事は、17世紀に数学の一分野として出現した射影幾何学の創造への道を開きました。
しかし、すでに16世紀になると、地図製作者、土地調査員、エンジニア、金融業者、そしてもちろん天文学者が数学を習得し始めました。
彼らはますます数学化された物理学の出現への道を開き、17世紀に至ります。

ウートンはさまざまな発見の説明と分析に言及しています。観察と実験に基づいて得られた新しい知識の価値認識は、
初期の科学界の集団心理学の基礎となりました。
彼は、望遠鏡で行われるガリレオガリレイの天文学的研究に多くのスペースをさいています。
1609年の春の終わりに、ガリレオはオランダの眼鏡技師によって発明された望遠鏡について学びました。
そして8月初旬、彼はオランダ人がそのような鏡筒をヴェネツィアに売りに出そうとしていると聞き、
ガリレオはワークショップに駆け込み、吹きガラスで作る凸型と凹型のレンズの実験を開始しました。
彼の回想によれば、数週間後、彼は8倍の鏡筒を手に入れ、8月25日にヴェネツィアの貴族に仕事でデモンストレーションを行いました。
その中にはDoge Leonardo Donato自身が含まれていました。
上院はすぐにガリレオに2倍の給料とパドヴァでの生涯にわたる教授職を提供した。

その後、ガリレオは天文学に熱心に取り組みました。秋の初めに、彼は月の観察を始め、
彼が彼自身のワークショップで組み立てた20倍の望遠鏡を用いて続けました。
数か月以内に、ガリレオと彼の助手は約100個の望遠鏡を作りましたが、高品質の画像が与えられたのは12個以下でした。
この巨大な作品は、最も価値のある成果をもたらし、ガリレオは月の海、山、火口を見て、
天の川が多くの星と星の塊で構成されていることを発見しました。これらの発見の中で最も有名なのは、
ガリレオが木星の近くにある4つのかすかな星に気づいた1610年1月7日に起こりました。
最初は普通の星と間違えましたが、翌週、木星に対してずれているのを見て、
1月15日、これらは木星の周りを回っていることに気づきました。この真に革命的な突破口に達した彼は、
木星が太陽周回軌道に沿って動くときも、静止しているときと同じように周回する衛星を運んでいると結論付けました。
彼の発見により、彼はコペルニクスの理論に対する当時の広範な異議を弱体化させました。
コペルニクスの理論は、太陽を周回する地球に月がどのように追いついているかの説明の説得力がありませんでした。
これは、地球が軌道運動の唯一の中心とは見なせないことを示し、プトレマイオスの宇宙にとって不都合な驚きでした。

ガリレオはそのような注目に値する発見で彼の優先順位を固めることを急ぎ、3月に550部ほどヴェネツィアで印刷された本
「SidereusNuncius」に掲載しました。 それはトスカーナのコジモ2世の大公に捧げられ、ガリレオはその庇護を得ました。
同じ理由で、彼はトスカーナを統治したメディチ王朝に敬意を表して、
新しく発見されたジュピターの衛星をメディチの星と名付けました。

新作はヨーロッパのセンセーションを巻き起こし、その作者を望遠鏡の唯一の父として有名にしました。
英国人のトーマス・ハリオットは1609年7月末に月の望遠鏡による観測を開始し、
ドイツ人のサイモン・マリウスは11月に空を見始め、おそらく1、2か月後に独立して木星の衛星を発見しました。
しかし、ハリオットは彼の結果をまったく公表しませんでしたし、
マリウスが公表したのは1614年のみでした。そのため、ガリレオは、光学天文学に関する世界初の出版物の著者として、
科学の歴史に名を残しました。 Johannes Keplerは、すでに4月に、プラハ、次にフィレンツェとフランクフルトで発行された「Dissertatio cum Nuncio Sidereo」という手紙で、
ガリレオの結論を支持しました。ガリレオは惑星運動のケプラーモデルの支持者ではなかったので、これは注目に値します。

ガリレオの新たな名声により、彼は故郷への帰還を首尾よく交渉できました。
1610年7月に「トスカーナ大公の哲学者兼数学者であり、ピサ大学の主任数学者」に任命され、9月にフィレンツェに移りました。
その少し前に、彼はトリプルスターの形で土星を観察しました。それは彼が緊急に発表されたアナグラムで概説しました。
実際、彼は望遠鏡の力が不十分なために見ることができなかった土星の輪の反射を見ました。
6年後、彼は2つの半楕円で囲まれた球の形で土星をスケッチしましたが、そこまででした。
(惑星の輪についての最初の明確な声明は、1655年にChristian Huygensによって行われました)
1612年12月28日と1613年1月28日、ガリレオは、現在私たちが知っているように、
実際には太陽系の8番目の惑星であるネプチューンを星座Virgoの恒星(固定星)と思いました。

新月近くの三日月に似た薄い三日月。ガリレオは、金星のそのような段階が単にプトレマイオスの宇宙では
存在できないことを完全に理解していました。それらは、太陽中心理論(地動説)によって自然に説明されました。
プトレマイオスモデルでは、金星の軌道は太陽軌道の内側にあるか、太陽軌道の外側にあり、当時の観測では、
これらのオプションの間で明確な選択はできませんでした。
前者の場合、金星の円盤の明るい部分はその半分を超えることはできず、
後者の場合、円盤は常にほぼ完全に照らされたままでなければなりません。
対照的に、コペルニクスのシステムでは、金星は地球の軌道の内側で太陽の周りを回転するため、
月の円盤のように、円盤を完全に照らし、完全に暗くすることができます。
ガリレオが観察したのはこの段階の変化であり、12月にケプラーと有名な天文学者クリストファークラビウス、
ローマのコッレジオロマーノイエズス会アカデミーの教授,そしてグレゴリア暦の創設者の1人に知らせました。
これらの観察が1611年5月にClaviusの同僚であるOdovan Maelkotによって確認された後、
「有能な天文学者はプトレマイオスのシステムを守ることができなかった」。
ウートンが指摘するように、天文学界からのそのような反応は、科学革命がどこまで進んだかを非常に明確にしています。

*************************************

ウートンは、すべての追加補充された発見のアイデアをヨーロッパの文化分野に含めることが、科学発明の基礎となった体系的な認知革新の重要な要因になったと結論付けています。歴史的に、彼らの最初の製造業者は、新しい土地を説明した地図製作者でした。このプロセスでは、数学者がすぐに参加し、次に解剖学者、植物学者、天文学者、物理学者、化学者が加わりました。彼らは皆、印刷機を利用して、テキストや図を正確かつ大量に再現することを可能にしました。「その結果、革新的で批判的で競争力のある新しいタイプの知的文化が出現しましたが、同時に正確さと信頼性に重点が置かれました」(p.107)。この文化は科学的活動の基礎を形成しました。

15世紀後半から16世紀初頭にかけての地理的な発見は、もう1つの重要な結果をもたらしました。コペルニクスは、すでにプトレマイオス世界の改訂を開始(具体的には1514年まで)していました。地球を固体の球と見なし、その表面には海と海が点在するものです。この球は、両方の極を結ぶ軸の周りの空間空間で回転し、1日に1回転します。この視点は当時非常に新しく、誰もがまだ共有できいませんでした。たとえば、15世紀には、地球はより大きな半径の水球の表面に浮かぶ球と見られました。居住地は丸い島のようにこの表面から突き出ており、その形は半球に近づいていますが、決して球になることはできません。

何世紀にもわたって、このような地球の「モデル」は、当時の地理的概念と概ね一致していました。彼女は、アメリゴ・ベスプッチが赤道の南50度を離れてブラジルの海岸に航海した後で初めて、彼らと実際に衝突しました。この旅の説明は、ベスプッチの手紙「Mundus novus」(「新世界」)が1503年に出版された後、ヨーロッパで知られるようになりました。この手紙はわずか4年で29版になりました。それに基づいて、地図製作者のマーティン・ヴァルトゼーミュラーとマティアス・リングマン地球の表面が完全な球の表面のように見える新しい地図を描きました(1507年に公開されたWaldseemullerの地図では、コロンブスによって発見された大西洋横断の土地は最初に大陸として表され、アメリカと名付けられました)。コペルニクスはこの概念に精通しており、彼の反省の中でそれを信頼していました。したがって、この場合の新しい地理は、新しい天文学の誕生の前提条件になりました。ウートンが書いているように、「コペルニクスの世界観はベスプッチなしでは起こらなかっただろう」。(p.143)

 

コペルニクスの素晴らしい業績に加えて、ウートンは科学革命に重要な役割を果たしたさらに2つのモノグラフをあげます。 これらは、1543年にオランダの医師AndreasVesaliusによって発行された解剖学の教科書「Dehumanicorporisfabrica」と、前年に発行された植物のリファレンスブック「DescriptionofPlants」(「Dehistoriastirpiumcommentariiinsignes」)です。 )、TubingenLeonhartFuchs大学の医学教授によって作成されました(彼の名誉で、フクシア属の植物に名前が付けられています)。

画像1

彼らは、人間の臓器と植物界を研究し、ガレンと他の古代の古典の多くの間違いを訂正しました。どちらの本にも高品質のイラストが多数含まれています(ベサリウスは250、フックスは512)。当時のグラフィック印刷技術の向上により出版が可能になりました。フックスが、根や茎から葉、花、種子、果物に至るまで、そのすべての部分の綿密なスケッチで、各植物が彼の本のページに描かれていると考えたのは偶然ではありません。これもまた、ヨーロッパの科学の形成におけるグーテンベルクの偉大な発明の非常に重要なことを示しています。実際のところ、それははるかに早く現れ始めました。たとえば、13世紀にヨハネスカンパヌスによって作成され、中世に手書きのコピーで知られているユークリッドの原論のラテン語の翻訳は、早くも1482年にヴェネツィアで最初に印刷されました。ウートンが書いているように、共通の利益と共通の価値観を共有する国際的な科学コミュニティの出現を可能にしたのは印刷媒体でした。

画像2

科学革命はまた、数学の可能性と課題の新しい理解によって準備されました。 15世紀半ば、イタリアの偉大な建築家であり芸術研究者でもあるレオンバティスタアルベルティは、幾何学的な視点の理論を構築しただけでなく、芸術と科学の両方の基盤としての数学の主要な役割を宣言しました。視覚芸術の問題に幾何学を適用する彼の方法は、ピエロ・デッラ・フランチェスカ、特にアルブレヒト・デュラーによって使用され、開発されました。彼らの仕事は、17世紀に数学の一分野として出現した射影幾何学の創造への道を開きました。しかし、すでに16世紀になると、地図製作者、土地調査員、エンジニア、金融業者、そしてもちろん天文学者が数学を習得し始めました。彼らはますます数学化された物理学の出現への道を開き、17世紀に至ります。

ウートンはさまざまな発見の説明と分析に言及しています。観察と実験に基づいて得られた新しい知識の価値認識は、初期の科学界の集団心理学の基礎となりました。彼は、望遠鏡で行われるガリレオガリレイの天文学的研究に多くのスペースをさいています。1609年の春の終わりに、ガリレオはオランダの眼鏡技師によって発明された望遠鏡について学びました。そして8月初旬、彼はオランダ人がそのような鏡筒をヴェネツィアに売りに出そうとしていると聞き、ガリレオはワークショップに駆け込み、吹きガラスで作る凸型と凹型のレンズの実験を開始しました。彼の回想によれば、数週間後、彼は8倍の鏡筒を手に入れ、8月25日にヴェネツィアの貴族に仕事でデモンストレーションを行いました。その中にはDoge Leonardo Donato自身が含まれていました。上院はすぐにガリレオに2倍の給料とパドヴァでの生涯にわたる教授職を提供した。

その後、ガリレオは天文学に熱心に取り組みました。秋の初めに、彼は月の観察を始め、彼が彼自身のワークショップで組み立てた20倍の望遠鏡を用いて続けました。数か月以内に、ガリレオと彼の助手は約100個の望遠鏡を作りましたが、高品質の画像が与えられたのは12個以下でした。この巨大な作品は、最も価値のある成果をもたらし、ガリレオは月の海、山、火口を見て、天の川が多くの星と星の塊で構成されていることを発見しました。これらの発見の中で最も有名なのは、ガリレオが木星の近くにある4つのかすかな星に気づいた1610年1月7日に起こりました。最初は普通の星と間違えましたが、翌週、木星に対してずれているのを見て、1月15日、これらは木星の周りを回っていることに気づきました。この真に革命的な突破口に達した彼は、木星が太陽周回軌道に沿って動くときも、静止しているときと同じように周回する衛星を運んでいると結論付けました。彼の発見により、彼はコペルニクスの理論に対する当時の広範な異議を弱体化させました。コペルニクスの理論は、太陽を周回する地球に月がどのように追いついているの説明の説得力がありませんでした。これは、地球が軌道運動の唯一の中心とは見なせないことを示し、プトレマイオスの宇宙にとって不都合な驚きでした。

ガリレオはそのような注目に値する発見で彼の優先順位を固めることを急ぎ、3月に550部ほどヴェネツィアで印刷された本「SidereusNuncius」に掲載しました。 それはトスカーナのコジモ2世の大公に捧げられ、ガリレオはその庇護を得ました。 同じ理由で、彼はトスカーナを統治したメディチ王朝に敬意を表して、新しく発見されたジュピターの衛星をメディチの星と名付けました。

画像3

新作はヨーロッパのセンセーションを巻き起こし、その作者を望遠鏡の唯一の父として有名にしました。英国人のトーマス・ハリオットは1609年7月末に月の望遠鏡による観測を開始し、ドイツ人のサイモン・マリウスは11月に空を見始め、おそらく1、2か月後に独立して木星の衛星を発見しました。しかし、ハリオットは彼の結果をまったく公表しませんでしたし、マリウスが公表したのは1614年のみでした。そのため、ガリレオは、光学天文学に関する世界初の出版物の著者として、科学の歴史に名を残しました。 Johannes Keplerは、すでに4月に、プラハ、次にフィレンツェとフランクフルトで発行された「Dissertatio cum Nuncio Sidereo」という手紙で、ガリレオの結論を支持しました。ガリレオは惑星運動のケプラーモデルの支持者ではなかったので、これは注目に値します。

ガリレオの新たな名声により、彼は故郷への帰還を首尾よく交渉できました。 1610年7月に「トスカーナ大公の哲学者兼数学者であり、ピサ大学の主任数学者」に任命され、9月にフィレンツェに移りました。その少し前に、彼はトリプルスターの形で土星を観察しました。それは彼が緊急に発表されたアナグラムで概説しました。実際、彼は望遠鏡の力が不十分なために見ることができなかった土星の輪の反射を見ました。 6年後、彼は2つの半楕円で囲まれた球の形で土星をスケッチしましたが、それで終わりです(惑星の鳴動についての最初の明確な声明は、1655年にChristian Huygensによって行われました)。 1612年12月28日と1613年1月28日、ガリレオは、現在私たちが知っているように、実際には太陽系の8番目の惑星であるネプチューンである星座Virgoで「固定星」を観察しました。

新月近くの三日月に似た薄い三日月。ガリレオは、金星のそのような段階が単にプトレマイオスの宇宙に存在できないことを完全に理解していましたが、それらは、太陽中心理論(地動説)によって自然に説明されました。プトレマイオスモデルでは、金星の軌道は太陽軌道の内側にあるか、太陽軌道の外側にあり、当時の観測では、これらのオプションの間で明確な選択はできませんでした。前者の場合、金星の円盤の明るい部分はその半分を超えることはできず、後者の場合、円盤は常にほぼ完全に照らされたままでなければなりません。対照的に、コペルニクスのシステムでは、金星は地球の軌道の内側で太陽の周りを回転するため、月の円盤のように、円盤を完全に照らし、完全に暗くすることができます。ガリレオが観察したのはこの段階の変化であり、12月にケプラーと有名な天文学者クリストファークラビウス、ローマのコッレジオロマーノイエズス会アカデミーの教授、そしてグレゴリアンカレンダーの創設者の1人に知らせました。これらの観察が1611年5月にClaviusの同僚であるOdovan Maelkotによって確認された後、「有能な天文学者はプトレマイオスのシステムを守ることができなかった」(p.226)。ウートンが指摘するように、天文学界からのそのような反応は、科学革命がどこまで進んだかを非常に明確にしています。

画像4

金星の段階の発見と分析は、ウートンが科学の相対論的歴史学の支持者、特にトーマス・クーンとの論争において重要な位置を占めることを可能にします。それらのすべては、科学的知識がその生産に関与する特定のコミュニティの信仰の対象であると考えています。このことから、科学的信念のさまざまな「シンボル」のキャリア(Kuhnによると、代替パラダイムの支持者)はコンセンサスに達する可能性がほとんどないことがほぼ自動的にわかります。したがって、パラダイムの変化は、クーンが科学革命と呼んでいる科学コミュニティ内の対立に関連しています。ウートンが書いているように、「クーンの科学革命の構造の後、科学の歴史家は科学内紛争の研究に焦点を合わせてきました。この傾向は、そのような論争は事実上すべての主要な科学的発見によって必然的に生じ、科学理論を競合する概念に置き換えることは決して避けられないという仮定から生じた」(p.246)。しかし、金星の相(変化段階)の発見はまさに望遠鏡の発明の必然的な結果となり、そのおかげで、天文学界は遅滞なく、ほぼ完全にそして多くの議論なしに、プトレマイオスの理論を放棄しました。ウートンが強調するように、そのような状況は典型的です。これは、科学の歴史学における相対論的イデオロギーとは対照的に、経験が科学の進歩的な進化における決定的な要因になる可能性があることを意味します(そして、原則として役立ちます!)。これはウートンの主要な結論の1つであり、本全体で何度も繰り返され、他の多くの例で確認できることは簡単にわかります。

 

科学の発明:科学革命の新しい歴史・3

コペルニクスの素晴らしい業績に加えて、ウートンは科学革命に重要な役割を果たしたさらに2つのモノグラフをあげます。 これらは、1543年にオランダの医師AndreasVesaliusによって発行された解剖学の教科書「Dehumanicorporisfabrica」と、前年に発行された植物のリファレンスブック「DescriptionofPlants」(「Dehistoriastirpiumcommentariiinsignes」)です。 )、TübingenLeonhartFuchs大学の医学教授によって作成されました(彼の名誉が、フクシア属の植物に名前が付けられています)。

 

彼らは、人間の臓器と植物界を研究し、ガレンと他の古代の古典の多くの間違いを訂正しました。どちらの本にも高品質のイラストが多数含まれています(ベサリウスは250、フックスは512)。当時のグラフィック印刷技術の向上により出版が可能になりました。フックスが、根や茎から葉、花、種子、果物に至るまで、そのすべての部分の綿密なスケッチで、各植物が彼の本のページに描かれていると考えたのは偶然ではありません。これもまた、ヨーロッパの科学の形成におけるグーテンベルクの偉大な発明の非常に重要なことを示しています。実際のところ、それははるかに早く現れ始めました。たとえば、13世紀にヨハネスカンパヌスによって作成され、中世に手書きのコピーで知られているユークリッドの原論のラテン語の翻訳は、早くも1482年にヴェネツィアで最初に印刷されました。ウートンが書いているように、共通の利益と共通の価値観を共有する国際的な科学コミュニティの出現を可能にしたのは印刷媒体でした。

 

科学革命はまた、数学の可能性と課題の新しい理解によって準備されました。 15世紀半ば、イタリアの偉大な建築家であり芸術研究者でもあるレオンバティスタアルベルティは、幾何学的な視点の理論を構築しただけでなく、芸術と科学の両方の基盤としての数学の主要な役割を宣言しました。視覚芸術の問題に幾何学を適用する彼の方法は、ピエロ・デッラ・フランチェスカ、特にアルブレヒト・デュラーによって使用され、開発されました。彼らの仕事は、17世紀に数学の一分野として出現した射影幾何学の創造への道を開きました。しかし、すでに16世紀になると、地図製作者、土地調査員、エンジニア、金融業者、そしてもちろん天文学者が数学を習得し始めました。彼らはますます数学化された物理学の出現への道を開き、17世紀に至ります。


ウートンはさまざまな発見の説明と分析に言及しています。観察と実験に基づいて得られた新しい知識の価値認識は、初期の科学界の集団心理学の基礎となりました。彼は、望遠鏡で行われるガリレオガリレイの天文学的研究に多くのスペースをさいています。1609年の春の終わりに、ガリレオはオランダの眼鏡技師によって発明された望遠鏡について学びました。そして8月初旬、彼はオランダ人がそのような鏡筒をヴェネツィアに売りに出そうとしていると聞き、ガリレオはワークショップに駆け込み、吹きガラスで作る凸型と凹型のレンズの実験を開始しました。彼の回想によれば、数週間後、彼は8倍の鏡筒を手に入れ、8月25日にヴェネツィアの貴族に仕事でデモンストレーションを行いました。その中にはDoge Leonardo Donato自身が含まれていました。上院はすぐにガリレオに2倍の給料とパドヴァでの生涯にわたる教授職を提供した。


その後、ガリレオは天文学に熱心に取り組みました。秋の初めに、彼は月の観察を始め、彼が彼自身のワークショップで組み立てた20倍の望遠鏡を用いて続けました。数か月以内に、ガリレオと彼の助手は約100個の望遠鏡を作りましたが、高品質の画像が与えられたのは12個以下でした。この巨大な作品は、最も価値のある成果をもたらし、ガリレオは月の海、山、火口を見て、天の川が多くの星と星の塊で構成されていることを発見しました。これらの発見の中で最も有名なのは、ガリレオが木星の近くにある4つのかすかな星に気づいた1610年1月7日に起こりました。最初は普通の星と間違えましたが、翌週、木星に対してずれているのを見て、1月15日、これらは木星の周りを回っていることに気づきました。この真に革命的な突破口に達した彼は、木星が太陽周回軌道に沿って動くときも、静止しているときと同じように周回する衛星を運んでいると結論付けました。彼の発見により、彼はコペルニクスの理論に対する当時の広範な異議を弱体化させました。コペルニクスの理論は、太陽を周回する地球に月がどのように追いついているの説明の説得力がありませんでした。これは、地球が軌道運動の唯一の中心とは見なせないことを示し、プトレマイオスの宇宙にとって不都合な驚きでした。


ガリレオはそのような注目に値する発見で彼の優先順位を固めることを急ぎ、3月に550部ほどヴェネツィアで印刷された本「SidereusNuncius」に掲載しました。 それはトスカーナのコジモ2世の大公に捧げられ、ガリレオはその庇護を得ました。 同じ理由で、彼はトスカーナを統治したメディチ王朝に敬意を表して、新しく発見されたジュピターの衛星をメディチの星と名付けました。

 

新作はヨーロッパのセンセーションを巻き起こし、その作者を望遠鏡の唯一の父として有名にしました。英国人のトーマス・ハリオットは1609年7月末に月の望遠鏡による観測を開始し、ドイツ人のサイモン・マリウスは11月に空を見始め、おそらく1、2か月後に独立して木星の衛星を発見しました。しかし、ハリオットは彼の結果をまったく公表しませんでしたし、マリウスが公表したのは1614年のみでした。そのため、ガリレオは、光学天文学に関する世界初の出版物の著者として、科学の歴史に名を残しました。 Johannes Keplerは、すでに4月に、プラハ、次にフィレンツェとフランクフルトで発行された「Dissertatio cum Nuncio Sidereo」という手紙で、ガリレオの結論を支持しました。ガリレオは惑星運動のケプラーモデルの支持者ではなかったので、これは注目に値します。


ガリレオの新たな名声により、彼は故郷への帰還を首尾よく交渉できました。 1610年7月に「トスカーナ大公の哲学者兼数学者であり、ピサ大学の主任数学者」に任命され、9月にフィレンツェに移りました。その少し前に、彼はトリプルスターの形で土星を観察しました。それは彼が緊急に発表されたアナグラムで概説しました。実際、彼は望遠鏡の力が不十分なために見ることができなかった土星の輪の反射を見ました。 6年後、彼は2つの半楕円で囲まれた球の形で土星をスケッチしましたが、そこまでです(惑星の輪についての最初の明確な声明は、1655年にChristian Huygensによって行われました)。 1612年12月28日と1613年1月28日、ガリレオは、現在私たちが知っているように、実際には太陽系の8番目の惑星であるネプチューンを見つけましたが、星座Virgoの恒星(動かぬ星)と思いました。


新月近くの三日月に似た薄い三日月。ガリレオは、金星のそのような段階が単にプトレマイオスの宇宙に存在できないことを完全に理解していましたが、それらは、太陽中心理論(地動説)によって自然に説明されました。プトレマイオスモデルでは、金星の軌道は太陽軌道の内側にあるか、太陽軌道の外側にあり、当時の観測では、これらのオプションの間で明確な選択はできませんでした。前者の場合、金星の円盤の明るい部分はその半分を超えることはできず、後者の場合、円盤は常にほぼ完全に照らされたままでなければなりません。対照的に、コペルニクスのシステムでは、金星は地球の軌道の内側で太陽の周りを回転するため、月の円盤のように、円盤を完全に照らし、完全に暗くすることができます。ガリレオが観察したのはこの段階の変化であり、12月にケプラーと有名な天文学者クリストファークラビウス、ローマのコッレジオロマーノイエズス会アカデミーの教授、そしてグレゴリアンカレンダーの創設者の1人に知らせました。これらの観察が1611年5月にClaviusの同僚であるOdovan Maelkotによって確認された後、「有能な天文学者はプトレマイオスのシステムを守ることができなかった」(p.226)。ウートンが指摘するように、天文学界からのそのような反応は、科学革命がどこまで進んだかを非常に明確にしています。

 

金星の段階の発見と分析は、ウートンが科学の相対論的歴史学の支持者、特にトーマス・クーンとの論争において重要な位置を占めることを可能にします。それらのすべては、科学的知識がその生産に関与する特定のコミュニティの信仰の対象であると考えています。このことから、科学的信念のさまざまな「シンボル」のキャリア(Kuhnによると、代替パラダイムの支持者)はコンセンサスに達する可能性がほとんどないことがほぼ自動的にわかります。したがって、パラダイムの変化は、クーンが科学革命と呼んでいる科学コミュニティ内の対立に関連しています。ウートンが書いているように、「クーンの科学革命の構造の後、科学の歴史家は科学内紛争の研究に焦点を合わせてきました。この傾向は、そのような論争は事実上すべての主要な科学的発見によって必然的に生じ、科学理論を競合する概念に置き換えることは決して避けられないという仮定から生じた」(p.246)。しかし、金星の相(変化段階)の発見はまさに望遠鏡の発明の必然的な結果となり、そのおかげで、天文学界は遅滞なく、ほぼ完全にそして多くの議論なしに、プトレマイオスの理論を放棄しました。ウートンが強調するように、そのような状況は典型的です。これは、科学の歴史学における相対論的イデオロギーとは対照的に、経験が科学の進歩的な進化における決定的な要因になる可能性があることを意味します(そして、原則として役立ちます!)。これはウートンの主要な結論の1つであり、本全体で何度も繰り返され、他の多くの例で確認できることは簡単にわかります。

 

 

科学の発明:科学革命の新しい歴史・2

ウートンの著作を紹介したアレクセイのエッセイを読んでいます(続きです).1730年頃までの150年間を早送りで見ます。当時、同じ社会的および教育的地位を持つ英国人は、フランス、イタリア、ドイツ、さらにはオランダの同時代の人よりもはるかに優れた科学的知識を持っていました。おそらく、彼らはすでに望遠鏡と顕微鏡を通して見る機会があり、太陽系の機能がどのようなものかを知っていました。彼らは良い時計や、おそらく水銀気圧計を持っていて、それを使って天気を追跡していました。彼らは魔女、狼狼、魔法使い、または彗星関連の前兆を信じていませんでした。彼らは、虹が神の啓示ではなく、雨滴が日光を屈折させる結果であることをよく理解していました。彼らは蒸気エンジンについて聞いたり読んだりしていて、おそらく仕事でそれらを観察していました。彼らは目に見えない生物がたくさんいること、心臓は機械式ポンプのように血液を送り出すことを知っていました。彼らは未来を予測する可能性を否定し、おそらく聖書の奇跡を詩的な比喩と見なしました。彼らはニュートンを世界で最も偉大な科学者であり、進歩と科学への熱狂的な信念であると考えました。彼らの図書館は数百、さらには数千冊にのぼり、現代人類があらゆる点で古代世界をはるかに超えたことを疑ったりしませんでした。

ウートンは科学の発明(この本のタイトル)を可能にした知的道具立ての出現と進化をたどります。さまざまなヨーロッパ言語による発見と出現の重要なアイデアから始めます。このプロセスの開始は、彼の意見では、クリストファーコロンブスや他のスペインの航海士の旅が、中国ではなく巨大な新大陸への大西洋横断ルートを開拓したことを、ヨーロッパが知った16世紀初頭です。「アメリカの発見が幸せな偶然だったとしたら、それはさらに驚くべき偶然、つまり発見の発見につながりました」(p.61)。この結論は奇妙に思えるかもしれません。結局のところ、最大の地理的発見は以前にあり、アフリカ沿岸のポルトガル人の航海ではないでしょうか。しかし、彼らの旅は、新しいルートに沿っているとはいえ、すでに知られ予想されている目標への旅と認識されていました。そして、これは決して地理分野に留まりません。コロンブス以前の時代のルネッサンス精神の著名人は、失われた古代の文化的価値を取り戻そうとしましたが、新しい知識の誕生には至りませんでした。さらに、「カトリックの宗教、ラテン文学、アリストテレスの哲学は、新しい知識がまったく存在しないということを共通認識にしていました」(p.74)。知ることができるすべてはすでに知られており、時間の経過とともに蓄積された破損したテキストと誤解釈の修復が研究対象となりました。繰り返す循環過程としての歴史認識が支配していたのが16世紀です。華麗なイタリアの歴史家でマキャヴェリの友人であるフランチェスコ・ギチャルディーニは、「過去に起こったことはすべて、将来も繰り返されるだろう」と書いています。当然のことながら、そのような態度は、17世紀の初めにフランシス・ベーコンを始めとする、磁気学の研究者ウィリアム・ヒルベルト、ヨハネス・ケプラー、ガリレオ・ガリレイの発見が影響を与えるまで、知識の絶え間ない進歩の可能性を考慮する余地を締め出していました。

発見のアイデアを「育てる」ことは多くの結果をもたらしました。それは、16世紀の前半に、3次方程式、4次方程式の解法の探求に関連し始まり、その後、数学以外の研究にも広がり、誰が先に発見したかの議論が活発になりました。「このような論争は、知識が公になり、進歩的で、発見指向になったことを明確に示しています」(p.96)。17世紀には、個々の著者を発見に帰属させ、それに応じて、その著者の名前を認定された発見に冠するという伝統が生まれました。たとえば、ボイルの法則として知られている理想気体の法則は1708年にこの名前を受け取り 、ニュートンの重力の法則は1713年にこの名前を受け取りました。

ウートンは、すべての追加補充された発見のアイデアをヨーロッパの文化分野に含めることが、科学発明の基礎となった体系的な認知革新の重要な要因になったと結論付けています。歴史的に、彼らの最初の製造業者は、新しい土地を説明した地図製作者でした。このプロセスでは、数学者がすぐに参加し、次に解剖学者、植物学者、天文学者、物理学者、化学者が加わりました。彼らは皆、印刷機を利用して、テキストや図を正確かつ大量に再現することを可能にしました。「その結果、革新的で批判的で競争力のある新しいタイプの知的文化が出現しましたが、同時に正確さと信頼性に重​​点が置かれました」(p.107)。この文化は科学的活動の基礎を形成しました。

15世紀後半から16世紀初頭にかけての地理的な発見は、もう1つの重要な結果をもたらしました。コペルニクスは、すでにプトレマイオス系の改訂開始(具体的には1514年まで)した。地球を固体の球と見なし、その表面には海と海が点在するものです。この球は、両方の極を結ぶ軸の周りの空間空間で回転し、1日に1回転します。この視点は当時非常に新しく、誰もがまだ共有できいませんでした。たとえば、15世紀には、地球はより大きな半径の水球の表面に浮かぶ球と見られました。居住地は丸い島のようにこの表面から突き出ており、その形は半球に近づいていますが、決して球になることはできません。

何世紀にもわたって、このような地球の「モデル」は、当時の地理的概念と概ね一致していました。彼女は、アメリゴ・ベスプッチが赤道の南50度を離れてブラジルの海岸に航海した後で初めて、彼らと実際に衝突しました。この旅の説明は、ベスプッチの手紙「Mundus novus」(「新世界」)が1503年に出版された後、ヨーロッパで知られるようになりました。この手紙はわずか4年で29版になりました。それに基づいて、地図製作者のマーティン・ヴァルトゼーミュラーとマティアス・リングマン地球の表面が完全な球の表面のように見える新しい地図を描きました(1507年に公開されたWaldseemüllerの地図では、コロンブスによって発見された大西洋横断の土地は最初に大陸として表され、アメリカと名付けられました)。コペルニクスはこの概念に精通しており、彼の反省の中でそれを信頼していました。したがって、この場合の新しい地理は、新しい天文学の誕生の前提条件になりました。ウートンが書いているように、「コペルニクスの世界観はベスプッチなしでは起こらなかっただろう」。(p.143)

 

 

 

wikiより拝借