掲示板

note.com投稿記事

理論結晶学の予備知識(谷)

1.結晶空間群.結晶点群

結晶は周期的な内部構造を持ちます.周期的な離散空間を<結晶空間>と言い,
その対称性は<結晶空間群>で記述します.結晶空間群の種類は,3次元では230種類です.
3次元の周期構造の幾何学的な表現を<格子>と言ったり,その数学的な表現を<並進群>と言ったりします.
結晶空間の中で,格子分だけ移動しても,周囲の状況は移動する前の状況と全く同じなので,無限に繰り返す結晶の中で自分がどこにいるか区別できません.そこで,格子分だけ移動した点はすべて同値とみなして,
無限に広い結晶空間を1つの単位胞の中に畳み込んでしまうことができます.
あたかも,無限に続く時間を,時計の文字盤(12時間)に畳み込んでしまうのと同じです.
<単位胞>(有限図形)の対称性は<点群>で記述でき,3次元の<結晶点群>は32種類です.

(注)<結晶点群>の対称操作は周期性と両立しなければならないので,ただの点群とは異なり,
回転対称は2,3,4,6回軸に限定されます.

格子を法として(あるいは,並進群を核として)準同型写像をすると,結晶空間群の230種類を,結晶点群の32種類に還元できます.

 $$\mit\Phi /T \cong G$$ ,     $$T \vartriangleleft \mit\Phi $$    ($$\mit\Phi $$結晶空間群,$$T $$並進群,$$G$$結晶点群)

2.双対空間.コンボリューションのFourier変換.Curieの原理(因果律)

結晶格子をFourire変換すると逆格子が得られます.結晶格子($$r-$$空間)と逆格子($$R-$$空間)は,Fourier変換で移り変わる互いに双対な空間です.結晶の電子密度関数$$ρ(r)$$とそのFourier変換F(R)は,1:1に対応し,両者の対称性は同じです.

電子密度分布$$ρ(r)$$により散乱されるX線の散乱振幅は$$F(R)$$で,$$ρ(r)$$のFourier変換にほかなりません.観測される散乱強度は$$|F(R)|^{2}$$で散乱振幅$$F(R)$$の位相情報は失われます.

 $$Tr[\rho (r)]=F(R)$$,     $$Tr[\rho (r)*\rho (r)]=|F(R)|^{2}$$

結晶の対称心の有無にかかわらず,観測されるX線散乱強度には,対称心が生じます:$$|F(-R)|=|F(R)|$$,これをFriedel則と言います.

Friedel則は,もっと大きい次のCurieの原理の一部です.

原因である「結晶構造の対称性」は,結果である「その結晶で生じる現象の対称性」に反映される.

(例1)結晶構造に,4回対称性が存在すれば,X線回折像の対称性に,少なくとも4回対称性は反映される.しかし,X線回折像に4回対称性が存在しても,結晶に必ずしも4回対称性が存在するわけではない.
これを回折対称の上昇という.

(例2)X線回折像に10回対称(5回対称⊗Friedel則)があったとしても,その原因たる結晶構造に5回対称性があるとは限らない.結晶構造の5回対称性は周期性(結晶の定義)と矛盾するのであり得ない.しかし,周期性を外せばあり得る.準結晶のモデルは,非周期のペンローズ・タイリングで実現できる.

3.点集合とベクトル集合.ホモメトリック

結晶構造(点集合)の対称性と,回折強度像(点集合のベクトル集合が作るスター)の対称性の関係を考察しましょう.両者の対称性では,回折強度像の対称性が高いわけで,与えられたベクトル集合から点集合を推理するのは,面倒な逆問題になる場合がある.

一般に,回折強度像の対称性から結晶構造の対称性は,一意に定まらず,同一の回折強度像を与える結晶構造が複数存在する可能性があります.これらをホモメトリック構造という.
下の2つの図は,1次元のホモメトリック構造の例[Patterson(1944)].
(注)この図の見方は,1次元の単位胞が全円周(長さ1)です.図中に描き込まれた長さは円弧に沿って測ります(弦の長さではない).円周(長さ1)のどこか1点で切って,線分(長さ1)に延ばします.この線分を1次元のタイルのように並べていくと1次元の周期的な図形になります.この図形には黒い点が並んでいますが,2つの図形で黒点の配列は異なります.それにもかかわらず,出現する黒点間の間隔の種類は2つの図形で同じになります.

PCR検査は何のためか

PCR検査の統計と論理               谷 克彦

(要旨)
◆PCR検査の感度と特異度は,遥かに1に近い確率でした.偽陰性や偽陽性を理由に検査数をコントロールする理由は成り立ちません.検査を拡大し有病者を発見し早期隔離しましょう(感染から5日目頃が最もウイルスを放出し,有病者の半減期は10日位です).◆日本の陽性率は7%と計算できますが,最近の変動の勾配(末尾に掲載)から見ると10%を越えたように見えます.このグラフがそのように見えるのは,検査数を抑制しているために陽性者数のオーバーフローが起きている証拠かもしれません.
---------------------------------

COVID-19パンデミックは,実効再生産数を1より低下させると鎮まります.この対策は,次の3つの数値を下げることです;①感染者が感染力を持つ期間,②感染者が接触する人数,③感染者との接触で感染する確率.そして,それぞれに対する施策は以下のようです;
①感染者を早期に発見し隔離する.このためにPCR検査の拡充が必要.
②効果的なロックダウンの期間,地域,方法を,シミュレーションで予測し戦略的に介入する.
③ワクチン接種で,感染感受性のある人の割合を減らす. 

COVID-19に感染すると,次のような経過になります. 

感染(陽性)→潜伏無症状期→発症期(無症状もありうる)→回復(陰性)or死亡
陽性の期間[潜伏無症状期+発症期(無症状もありうる)]は,「罹患者」が感染源となる有病状態なので「有病罹患」と呼ぶことにします.感染源となる「有病罹患」(症状の有無にかかわらず)を早く発見し隔離する必要があります.
有病罹患者の発見はPCR検査でなされます.検査の目的は蔓延率の推定だけではなく,感染源となる有病罹患者をできるだけ早期に探し出し隔離するという緊急な役割があります.検査対象を限定し,検査の陽性的中率を上げることが検査の目的になってはいけません.
実世界の現象は,多数の原因と結果が複雑に絡んだ因果関係をなし,数学(統計)で論理的に推論するのは,その一部を切り取った世界です.その範囲で得た数学(統計)的推論の結果を,系全体の中で解釈できる論理的な思考が必要です.
正しい数学(統計)推論で得られた結果でも,複雑な全体系で非論理的に利用されるとしたら,社会を誤った方向へ導く主張に,数学が加担してしまうことになります.PCR検査の規模拡大は有病率の低い集団ではすべきではないというのは正しい主張ではありますが,その主張の根底にあるPCR検査の性能から見直し,これを論理的に考察してみましょう.

■有病率とは
日本感染症学会の定義によると,有病率とは,「その疾患をもっている人数の全人口に対する割合」ですが,日々発表される厚労省の新規陽性者数と検査数のデータから,日本の有病率を計算できるように,有病率$$x_{0}$$の解釈を次のようにします.
(定義)$$有病率=有病罹患数/累積PCR検査数$$
        $$有病罹患数=累積検査陽性者数-累積回復退院者数-累積死亡者数$$
これにより,日時($$T=$$5月15日)の日本の有病率を求めると$$x_{0}=0.58$$%になります.
ここでは,陽性者=罹患者と見なしています.
この検査集団の陽性率($$T$$)と罹患率($$T$$)は,7日平均(8~15日)を用いて,
$$陽性率(T)=陽性者(T)/検査数(T)=6288/92167=0.068$$,
罹患率(*)$$(T) =陽性者(T)/累積検査数(T)=6288/13015244=0.0005$$

 

 

 

日時$$T$$の有病罹患数$$(T)$$を別の定義で表現してみましょう.有病罹患状態は,14日位で回復(陰性になる)します(運悪く死亡の場合もありますが,少数のため無視します).今日$$T$$の有病罹患者(感染源となる罹患)の中には,$$t$$日前に罹患した者も残っています.そこで,次の定義が成り立ちます:
有病罹患数$$(T)=\displaystyle \int_{0}^{T}$$罹患数$$(t)p_{a}(T-t)dt$$,
ここで,$$p_{a}(t)$$は,陽性保持確率(病気の減衰関数のような性質)で,(付録3)の大規模調査の結果に報告されています.病気の感染初日を推定するのは大変難しいのです.PCR検査で見つかった日が感染日という訳ではないでしょう.感染から5日目あたりが,感染者が最も多くウイルスを放出するので,その頃が最も発見され易いのではないかと思います.
病気減衰関数の半減期は約10日ですので,コンボリューション積分は次のように近似できます:
有病罹患数$$(T)=10×罹患数(T)$$.この集団の累積検査数で規格化すると.
$$有病率(T)=10×罹患率(T)$$が得られます.
注*)感染症学会の定義では,罹患率の分母は,「集団の感受性のある人数」ですが,ここでは「集団の人数」としています.

 

 

 

 

 

 

 

 

 

 

■PCR検査の感度と特異度
PCR検査の感度$a$とは,罹患者をPCR検査で陽性($$+$$)と正しく判定する確率のことで,真の罹患者でもPCR検査が陰性($$-$$)(偽陰性)と判定される確率は$$1-a$$程度あります.検査の特異度$$b$$とは,非罹患者を正しく陰性($$-$$)と判定する確率のことで,非罹患者を陽性($$+$$)(疑陽性)と判定する確率は$$1-b$$程度です.

 

 

 

 

確率$$a , b$$は1に近いほど,優秀な検査になります.従来の議論に用いられてきたこれらの数値は,$$a=0.70, b=0.99$$ですが,昨年の英国ONSによる大規模調査(付録3.)で判明した数値は,$$a=0.95(0.85 ~ 0.98)$$,$$b=0.9992$$です.
低い有病率の集団でPCR検査対象を拡大すると,莫大な偽陽性が出て医療崩壊につながるので,有症状者や濃厚接触者に限定して検査を行っているとの主張がありますが,英国ONS調査の感度と特異度を採用すると,この主張の根拠が覆えることを検証します. 

■ベイズ推定による有病罹患の内訳

 

 

 

 

 

 

 

 

 


この集団の罹患率を$$p(罹患)=x$$,とします.この集団で,PCR検査が$$+$$判定のとき,罹患者である確率$$p(罹患|+)$$,および,$$-$$判定のとき,罹患者である確率$$p(罹患| - )$$,などを推定しましょう.
$$p(罹患| + )=p( + |罹患)・p( 罹患) /p( +) =a・x/( a・x+(1-b)( 1-x)) $$,
$$p(罹患| - )=p\left( - |罹患 \right) \cdot p\left( 罹患 \right) /p\left( - \right) =\left( 1-a \right) x/\left( (1-a)x+b\left( 1-x \right) \right) $$, 
$$p(非罹患|+)=p\left( + |非罹患 \right) \cdot p\left( 非罹患 \right) /p\left( + \right) =(1-b)(1-x)/\left( (1-b)(1-x)+a \cdot x \right) $$,
$$p(非罹患| - )=p\left( - |非罹患 \right) \cdot p\left( 非罹患 \right) /p\left( - \right) =b\left( 1-x \right) /\left( b(1-x)+(1-a)x \right) $$,
下に$$x$$を変数とするグラフを示します.ベイズの定理は線形システムなので,重ね合わせができ,罹患状態を束ねた状態で定義される有病率$$x_{0}$$を入力にしても良いでしょう. 
■集団の有病率 $$x=0.006$$に対して,感度$$a$$,特異度$$b$$を変えて比較
(1)$$a=0.95, b=0.9992$$(英国ONS)を用いた場合 
 $$p(罹患|+):p(非罹患|+)=真陽性:偽陽性=0.9:0.1$$
 $$p(罹患|+):p(罹患|-)=真陽性:偽陰性=0.9:0.0003$$
(2)$$a=0.7, b=0.99$$(従来)を用いた場合 
 $$p(罹患|+):p(非罹患|+)=真陽性:偽陽性=0.3:0.7$$
 $$p(罹患|+):p(罹患|-)=真陽性:偽陰性=0.3:0.002$$
PCR検査が$$+$$判定であるときに,真陽性の確率$$p(罹患|+)$$と,偽陽性の確率$$p(非罹患|+)$$を比較すると,従来用いられている感度,特異度では,偽陽性確率が真陽性確率の$$2.3$$倍もありますが,英国ONSの数値では,逆に1/10になり,医療崩壊を懸念する根拠にはなりません.
いずれにしろ,陽性確定までにPCR検査は2度行われ,さらに,抗原検査の併用もありますから,偽陽性の誤判定リスクは回避可能です.積極的にPCR検査の対象を拡大し,感染源となる無症状の罹患者を拾い出し早期隔離する道を閉ざすべきではありません.

次に,真陽性の確率$$p(罹患|+)$$と偽陰性の確率$$p(罹患|-)$$を比較すると,
(1)では,$$1:3 \times 10^{-3}$$,(2)では,$$1:7 \times 10^{-3}$$で偽陰性は小さい確率です.これを人数で比較するには,陽性率$$y=0.07$$,陰性率$$1-y=0.93$$を,それぞれ,$$p(罹患|+)$$と$$p(罹患|-)$$に乗じます.
(1)では,$$真陽性人数:偽陰性人数=1:4 \times 10^{-2}$$,
(2)では,$$真陽性人数:偽陰性人数=1:9$$
この集団の陽性率は$$7$$%と低いので,陰性集団が大多数で,偽陰性の確率が小さくても偽陰性者数は多いとの主張もあります.確かに,従来の数値(2)を用いると,真陽性者の9倍もの偽陰性者がいます.しかし,数値(1)を用いると,偽陰性者の数は1/100で,PCR検査対象を拡大しない理由にはなりません.検査を拡大すれば,拾い出せる陽性者は検査数に比例して確実に増加します.

 

 

 

 

 

 

 

 

 

 

 

 

 

■PCR検査数は十分か
ここに引用した2つの図は,1日の$10^{6}$人あたりの(横軸)検査陽性数:(縦軸)検査数の散布図で,日本(上)と英国(下)の例です.英国の散布図スケールは日本のものより縦軸で25倍,横軸で16倍大きいのでご注意ください.散布図パターンを比較すると特徴的な違いがあります.時間経過とともに,右横あるいは右下がりに伸びる部分では,検査数が足りず陽性者の増加傾向を頭打ちにしている可能性があり,縦に伸びる部分では,陽性者を拾い出す十分な検査が行われているようです.英国の例を見ると,始めは,陽性者が多く検査数が間に合わないほどでしたが,現在みられる検査数を増しても陽性者が一定となる状態は,十分な検査数が確保されている証拠です.日本の例で,検査数と陽性者数の増減の比例が見られる傾向は,検査数を増やせば,陽性者数も増加する可能性があります.
これらの図は,2020.1.25~2021.5.25の期間のもので,赤細線は,日本の図では,陽性率5{\%}と10{\%}の勾配,英国の図では,0.5{\%}と20{\%}の勾配を示しています.
これらのグラフは,https://ourworldindata.org/coronavirus-testingから引用しました.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■付録-----
付録1.ベイズの定理
条件付き確率についての「ベイズの定理」とは次のように説明できます.
$$p(Y|X)p(X)=p(X \cap Y)=p(X|Y)p(Y)$$
ただし,記号の意味は例えば以下の様です.
$$p(X)$$:$$X$$が起こる確率 
$$p(Y|X)$$:$$X$$が起きる条件下で,$$Y$$が起こる確率
$$p(X \cap Y)$$:$$X$$かつ$$Y$$が起こる確率
ベイズの定理は,$$X$$(原因)が起きる条件下で$$Y$$(結果)が起きる確率$$p(Y|X)$$と,$$X$$と$$Y$$を入れ替えた確率$$p(X|Y)$$を結び付ける定理です.

付録2.PCR検査の原理
PCR(ポリメラーゼ連鎖反応)を利用して,わずか数分子のターゲットDNAから数ミリグラムのDNAに増幅する技術を,1983年にマリスが発見し1993年のノーベル化学賞を受賞しました.
RNAに対しても逆転写酵素によりDNAを合成し,DNAの複製反応が利用できます.ターゲットDNA鎖全体の複製ではなく,ウイルスを特徴づける断片の複製をします.これが,パウエル社が発表(1987)したRT-PCR技術です.PCR検査は,検体に含まれるCOVID-19ウイルスの微量なRNAから,逆転写酵素を用いて,cDNAを合成し,温度サイクル処理を40回程度繰り返し,cDNAを検出可能な濃度まで複製するというものです.このようなPCR検査の原理から,検体にわずかでもターゲットRNAが含まれていればいくらでも増幅できますが,含まれていなければ誤混入がない限り増幅物は全く生じません.すなわち,特異度の高い検査です.

付録3.英国ONSのcovid-19感染の大規模調査
英国国家統計局(ONS)によるcovid-19の大規模感染調査は,パイロット調査としてイングランド(2020.4末)で開始されました.7月以降,規模を拡大し,住所リストから世帯のランダム・サンプリングを行い,8月には,2週間ごとにテストされるサンプルを,イングランドで15万人,ウエールズ,スコットランド,北アイルランドで各1.5万人の規模に拡げました.調査は,小児の症候性および無症候性感染の有病率と発生率を知るため,2歳以上の子供を含みます(参照:covid-19学校感染調査).16歳以上の成人の20{\%}は血液サンプルの提供を求められました.2020.7.31~9.10の6週間で,208,730の検体調査を行いました.偽陽性は症状のない人で発生すると予想されましたが,調査研究のデータからは,症状の有無によらず同じでした.血液サンプルは,オックスフォード大学で,抗体検査,IgG免疫グロブリンのテストをしました.
PCR検査に関する知見は;その感度が,85{\%}~98{\%}(95{\%}である可能性が最も高い)にあり,特異度は,99.92{\%}でした.
綿棒スワブの検体採取は,適切な監督下で行えば,自己採取でも医療従事者が直接採取した場合と同様の正確な結果になることも報告されています.

引用データ

1)厚生労働省 
2) Coronavirus (COVID-19) Infection Survey, UK Statistical bulletins
3) Keeping up with COVID-19, Rachel Thomas;
https://plus.maths.org/content/keeping-covid-19
4) https://ourworldindata.org/coronavirus-testing

数学とコンピュータを結びつける

2021年3月に,2021年のアーベル賞の受賞者が発表されました.ラズロ・ロヴースLászló Lovász(ハンガリー科学アカデミー・レニェイ数学研究所)とアヴィ・ウィグダーソンAvi Wigderson(プリンストン高等研究所)です.
プレスリリースによると,「理論計算機科学および離散数学への基本的な貢献,および,これらの分野を現代数学の中心的な分野として確立するのに果たした主導的な役割」が評価されました.
アーベル賞は,2002年にノルウェー科学アカデミーによって設立された数学で最も権威のある賞の1つです.ノルウェーの天才数学者ニールス・ヘンリック・アーベル(1802–1829)にちなんで名付けられ,この分野の発展に多大な貢献をした科学者に毎年授与されます.

2021年の受賞者について,ステクロフ数学研究所,シカゴ大学(米国)の数学科アレクサンドル・ラズボロフ教授による解説記事を要約紹介します.
「トリニティオプション-科学」第6号(325),2021年3月23日号
https://elementy.ru/nauchno-populyarnaya_biblioteka/435811/Troitskiy_variant_Nauka_6_325_23_marta_2021_goda


離散数学は,有限の離散的オブジェクトの特性を研究します.その重要な部分は,伝統的には組み合わせ論と呼ばれ,「純粋」数学で生じる構造に動機付けられています.たとえば,組み合わせの観点から,トポロジーの基本である複体の概念は,複体の面に対応する有限集合の閉じたファミリーにすぎません.組み合わせの抽象化は顕著な結果をもたらし,「有用な」(つまり,基本的な数学に適用される)組み合わせ論は,数学界で常に重視されてきたのは当然です.

離散数学は,「ハンガリーの数学」と長い間関連しており,その最も活発な支持者および宣伝者は,ポール・エルデシュでした.ラズロ・ロバースは1948年にブダペスト(ハンガリー)で生まれ,この数学的文化の中で育ちました.特に,彼はかなり早い年齢でエルデシュに会いました.そしてこれは彼のその後のキャリアと展望に非常に大きな影響を与えました.ラズロ・ロバースは,ポール・エルデシュの直接の後継者と見なすことができます.

 

         ラズロ・ロバース

理論情報学の形成
理論計算機科学,または,コンピュータサイエンスは,一般に「計算の複雑さの理論」の基礎が築かれた1970年代頃に独立した分野として出現しました.この分野では,大まかに言えば,アルゴリズムの存在の問題,または多くの場合,それらの効率に与えられた制約を伴うアルゴリズムの非存在が研究されます.

その名称にもかかわらず,理論計算機科学は厳密に数理科学であり,そのすべての成果は,数学の他の分野と同様に,厳密な定義,定理,および補題の形で定式化されています.それにもかかわらず,開発の内部論理とともに,理論情報学もまた,実際のアプリケーションによって大部分が導かれ,時には非常に具体的であります.他の「半応用」分野と同様,それに対する「純粋」数学者の態度は,穏やかではあるが長い間警戒していたことは明らかです.

アヴィ・ウィグダーソンは,1956年にハイファ(イスラエル)で生まれました.彼の学生時代は,理論計算機科学,特に独立した分野としての計算の複雑さの理論の形成に費やされました.プリンストンでの大学院での研究中,アヴィは,複雑性理論の創設者の1人である彼の学術顧問Richard JayLiptonの影響を大きく受けました.ロバースの場合と同様に,理論計算機科学が彼の人生の仕事になりました.

 

         アヴィ・ウィグダーソン

両受賞者の主な成果の1つは,数十年にわたる両方の分野の成熟と形成の過程で,彼らの科学的研究と国際的な教育および普及活動が大きな貢献をしたことです.
理論計算機科学は,コンピュータが操作する対象のほとんどが離散的であるという自然な理由から,離散数学の成果,アイデア,概念を積極的に利用しています.その多くは「純粋な」数学では需要がありませんでした.一方,理論計算機科学のニーズは,離散数学の全く新しい分野の創造につながっており,これは科学の歴史の中で最も成功した共生関係の一つであると思います.この分野から他分野への「アイデアの移転」における最大の功労者は,今年のアーベル賞受賞者なのです.
「純粋」数学者や数学者との関係も,より良い方向に変化しました.たとえば,ラズロ・ロバース(ちなみに,ロシア科学アカデミーの外国人会員)は4年間(2007〜 2010年)国際数学連合の会長を務め,プリンストン高等研究所(IAS)でのアヴィ・ウィグダーソンの役職は数学学校に属しています.この道を歩み始めた当初は,どちらも考えられないことでした.これは,抽象数学の多くの分野に密接に関連する問題,アイデア,定式化が両分野に蓄積され,多くの場合,抽象数学自身の発展に影響を与えることによって,多かれ少なかれ自然な形で起こったことです.この点において,ラズロとアヴィは誰もが認めるリーダー的存在です.

離散性から連続性へ
離散数学の特徴として,連続的ではなく有限的な対象への関心が高まっていることを前述しました.ラズロ・ロバースは,正反対の仮定に基づいた非常に重要なプロジェクトの創設者の一人であり,おそらく主人公です.その結果,非常に大きなグラフやその他の組み合わせ対象物は,10進法の分数が無理数の近似値とみなされるのとほぼ同じ意味(ロバースのアナロジー)で,幾何学的または代数的な性質を持つ自然な連続構造の近似値とみなすことができることがわかりました.その結果,美しく一貫した理論が生まれ,当然のことながら組合せ論だけでなく,代数学,解析学,測度論,統計力学,エルゴード理論など,数学や物理学のさまざまな分野と驚くほど関連していることがわかりました.

ラズロ・ロバースは,優れたモノグラフのLarge Networks and Graph Limitsを書き,すぐにこの分野の古典的なテキストになりました.興味のあるすべての読者にお勧めします.

 

 

 

 

 

 

 

 

 

 

 

 

 

 


疑似乱数理論
アヴィ・ウィグダーソンに最も関連するトピックに名称を付けると,疑似ランダム性の理論でしょう.最初の動機から始めると,最も重要なアルゴリズムの多くが本質的に確率的なことです.つまり,作業で乱数検出器を使用します.ただし,絶対的なランダム性はまれであり,実際には,いわゆる疑似乱数発生器がほとんどの場合使用されます.これは,アルゴリズムがそのような置換に「気付かない」ことを期待して,決定論的手順によって生成されたランダムビットとして渡されます.

擬似乱数理論とは,大まかに言えば,この希望に理論的根拠を与えようとするもので,さまざまなアーキテクチャやパラメータを持つ発生器を構築し,それらが必要な特性を持つことを数学的に証明することができ,同時に,これらの対象や概念は,計算複雑さの理論において,まったく独立した別の用途があることや,対応する構造が,たとえば代数幾何学のような,数学のきわめて古典的な分野に関連していることも,すぐに判明しました.アヴィ・ウィグダーソンは,この分野で誰もが認めるリーダーです.特に,最も重要な構成要素(Nisan-Wigderson発生器)と,複雑さの理論における顕著な影響(Impagliazzo-Wigderson定理)の両方があります.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kneser仮説
ラズロ・ロバースは,クネーザー予想の証明があります.クネーザーグラフは,代数的組み合わせ論で発生する非常に自然な有限グラフで,タスクは,その色数を計算することです.つまり,エッジで接続された頂点が常に異なる色になるように頂点に色を付けることができる最小の色数を計算します.

 

おそらく,最適な着色を作成するのは簡単です.問題は,それを改善できないことを証明することです.この問題は,25年近くの間,組合せ学的な努力を必要としていましたが,1978年にロバースが発表したエレガントな論文で,厳密に離散的な絵全体を多次元の球体に浸し,実数位相幾何学の基礎的な結果の1つであるBorsuk-Ulamの定理を適用することで解決されました.この証明から,今日では位相幾何学的組合せ論と呼ばれる学問全体が発展し,その方法によって,他のアクセスできない問題の数々が解決されました.

解の系

証明の複雑さの理論では,数学の定理や,あるグラフが与えられた数の色に着色できないという主張,あるコードにエラーが含まれていないという主張など,さまざまな自然な主張の効果的な証明が可能かどうかを研究します.最も重要な証明系は,いわゆる解の系であり,それに基づくアルゴリズムが最も広く実用化されているからです.

解の系を研究する方法はかなり昔から知られていましたが,2001年にEli Ben-SassonとA. Wigdersonが研究するまでは,せいぜい私的なものでした.本研究では,このような証明を分析するための驚くほど簡単な一般的手法を,幅と呼ばれるもう一つの複雑さの尺度の関与に基づいて提案しました.この論文は,証拠の複雑性に関する理論のパラダイムとなり,多くの新しいアイデアやコンセプトを生み出しました.

イベルメクチン

イベルメクチンは,北里大学特別栄誉教授の大村智博士が1974年,静岡県・川奈のゴルフ場近くで発見した微生物が生み出す「アベルメクチン」をもとにした化合物(誘導体)で,アメリカの製薬会社のメルク社との共同研究で,もともとは家畜やペットの寄生虫,回虫などの治療薬として1981年に開発されました.イベルメクチンは,家畜の寄生虫や皮膚病,イヌのフィラリア症などの特効薬となり,動物抗生物質として20年以上にわたって売上高世界トップを維持する記録的なヒット薬剤です.

人間のオンコセルカ症 (アフリカ・中南米・中東などの河川流域で蔓延していた河川盲目症)に効果があっただけではありません.その作用の範囲は驚くほど広いことが判明しました.線虫,ほとんどの昆虫,ダニに効果があります.そして,多くの寄生虫(またはそれらが運ぶ病気)は動物から人間に伝染するので,寄生虫のペットを取り除くことも重要な仕事です.そして,人々はオンコセルカ症や他のフィラリア症に苦しんでいるだけでなく ,1億人以上が桿虫症に感染しており,私たちが忘れていた疥癬とアタマジラミは世界のどこでも消えていません.イベルメクチンはこれらすべての病気に適応されます.イベルメクチンはノーベル賞を受賞した英雄的な薬です.

ーーー

■以下のサイトより引用します

イベルメクチンはコロナ治療に有効か無効か 世界的論争の決着に日本は率先して取り組め : NEWS特集 : 記事・論考 : 調査研究POINT ■北里大学の大村智博士が発見した抗寄生虫病の特効薬イベルメクチンが、コロナウイルス感染症(COVID−19)にwww.yomiuri.co.jp
 河川に生息するブユ(ブヨ、ブト)がヒトを刺した際に,ミクロフィラリア(回旋糸状虫)という線虫をうつし,それが体内で繁殖して失明する人が多数出ていた.この治療に役立てようと,1975年に大村博士がメルク社のウィリアム・キャンベル博士と共同研究を進め,オンコセルカ症や脚のリンパ腺に線虫がはびこって太いむくみが出るリンパ系フィラリア症(象皮症)の特効薬としてイベルメクチン(薬剤名はメクチザン)を開発した.世界保健機関(WHO)の研究者は「これまで出てきたどの熱帯病薬剤と比較しても,けた外れに優れた効果を持つ」とイベルメクチンを高く評価し,メルク社と北里大学に協力を求め,1987年から熱帯地方の住民に無償で配布することにした.何よりも年に1回,錠剤を水で飲むだけという簡単な服用法がWHOの評価を高めたポイントだった.この特効薬が出てきたため,盲目になる人が続出していたオンコセルカ症は急速に減少し,コロンビア,メキシコなどでは,オンコセルカ症を撲滅したと宣言している.その後,ダニによる疥癬かいせん症や糞線虫症など重篤な風土病の予防・治療薬になることもわかり,イベルメクチンは世界中に広がった.臨床現場では,副作用がほとんど報告されないことも評価を一層高めた.大村・キャンベル両博士は,この業績を評価され,2015年にノーベル生理学・医学賞を受賞した.

■COVID-19の大流行で浮上したイベルメクチン
 イベルメクチンは今,新型コロナ(COVID-19)のパンデミック(世界的大流行)で再び世界中の注目を集めている.試験管レベルの研究で,新型コロナウイルスがヒトの細胞内で増殖する際に,ウイルスのたんぱく質の核内移行を妨害し,増殖を抑制することがわかったからだ.

 WHOは2020年3月11日,COVID-19のパンデミックを宣言し,世界中に厳戒態勢を求めた.しかし,感染が拡大しても有効な治療薬がないことから,中南米・中東諸国を中心に,イベルメクチンをCOVID-19治療に投与する事例が広がった.

 最初に臨床試験の結果が発表されたのは,アメリカ・南フロリダの4病院での臨床試験だった.20年6月に発表された試験結果によると,イベルメクチン投与患者173人の死亡率は15.0%で,非投与群107例の25.2%と比べて有意(p=0.03)に優れているというものだった.


ーーー

■北里大学病院の治験

新型コロナウイルスに対するイベルメクチンの現状・世界的の状況と北里大学の取り組み


■以下は,セルゲイ・グラゴレフによる記事から抜粋

Герой и злодей • ЗадачиБезопасное для животных и людей лекарство от паразитов —elementy.ru

 

 

 

 

 

 

 

 

 

 

日本の科学者大村智が伊東・川奈で土壌を採取

土壌から 分離した放線菌Streptomyces avermitilisの二次代謝産物である 8つの成分を発見しました.45年間,森林は伐採されていません.
長い間,この種のバクテリアは他の場所では見つけることができなかったようです.これは生物多様性の保全を支持する大きな根拠です.ジャイアントパンダや ミンククジラだけでなく,土壌や植生がある場所ならどこでも重要です.

アベルミクチンは,マクロライド系抗生物質に関連する 16員の大環状ラクトンで,それらの品種の多くは,この放線菌と密接に関連する種の放線菌から得られ,次にそれらから多くの半合成誘導体が得られ,そのうちの約5つが駆虫薬として使用されました.

詳細は,Andy Crump(2017)のレビューを参照ください.
Ivermectin: enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations

https://www.nature.com/articles/ja201711.pdf

 

数学の未解決問題

数学の未解決問題は無数にあります.
未解決の数学の問題のリスト(書ききれないので以下をご覧ください)

Открытые математические проблемы — Википедияru.wikipedia.org
このリストに挙がっているものだけでも,あまりにたくさんあるので驚くでしょう.
挑戦してみたくなるものもあるかもしれません.

実際に,数学上の未解決問題は,無数に存在します.そのうちから,ここには,リーマン予想のようにその証明結果が数学全域と関わりを持つような命題,P≠NP予想のようにその結論が現代科学,技術のあり方に甚大な影響を及ぼす可能性があるような命題,問いかけのシンプルさ故に数多くの数学者や数学愛好家達が証明を試みてきたような有名な命題を7つ列挙します:


以下の7つの問題はミレニアム懸賞問題と呼ばれ,クレイ数学研究所によってそれぞれ100万ドルの懸賞金が懸けられています.
P≠NP予想
ホッジ予想
ポアンカレ予想(解決済み)
リーマン予想
ヤン-ミルズ方程式と質量ギャップ問題
ナビエ–ストークス方程式の解の存在と滑らかさ
バーチ・スウィンナートン=ダイアー予想(BSD予想とも)