掲示板

平面群

koptsik-ch12-4

例として,対称性$$\mit\Phi=R\overline{3}c$$の$$\alpha-Fe_{2}O_{3}$$型の磁気結晶を考察しよう.図222a,c,とe(カラー挿入頁)に,結晶化学的胞と一致する磁気的胞を示す.Fe原子は点群$$3$$の席対称$$12c$$,6方座標で,$$ (0,0,0),(0,0,\displaystyle \frac{1}{2}),(\displaystyle \frac{1}{3},\displaystyle \frac{2}{3},\displaystyle \frac{2}{3}),(\displaystyle \frac{1}{3},\displaystyle \frac{2}{3},\displaystyle \frac{1}{6}),(\displaystyle \frac{2}{3},\displaystyle \frac{1}{3},\displaystyle \frac{1}{3}),(\displaystyle \frac{2}{3},\displaystyle \frac{1}{3},\displaystyle \frac{5}{6}),(0,0, \pm z) $$を占める.
対称性$$2$$の$$18e$$の位置を占める酸素O原子は,図に描かれていない.図222b,d,fに,磁気配置に対応するShubnikovあるいはBelov群の投影の,$$z=\displaystyle \frac{1}{12}$$と$$z=\displaystyle \frac{1}{6}$$のものが示されている.図222cの配置は,$$z=\displaystyle \frac{1}{12}$$と異なる群($$R\overline{3}^{(3)-}c$$と$$R_{1'}\overline{3}^{(3)-}c$$)により表現される.他の配置に対し,群は$$z=\displaystyle \frac{1}{6}$$と$$z=\displaystyle \frac{1}{12}$$に対するものと同一である.図222(c),(e)での構造の一致に対し,弱い(ferromagnetic)相$$R\overline{3}^{(3)-}c=R\overline{3}^{(3)}c \cap $$(図222f)3色群を得る.この3色群は,$$z=\displaystyle \frac{1}{6}$$で温度範囲-20°<t<675°Cで,ヘマタイト(hematite)で実際に実現される.Belov群とそれらの投影の一般化は,原理的にnoncollinear umbrellaとspiral型を含む結晶のすべての可能な磁気構造を記述する.

これらの群は,電子的構造理論や分子振動理論の分野で広く応用されている.分子結合を担っている波動関数の線形結合(いわゆる分子軌道)は,分子の対称群既約表現により変換される.分子振動の座標,すなわち,分子内の平衡位置点からの原子変位をあらわすベクトルで作られるある種の線形結合は,同一の表現で変換される. 

結晶群の既約表現や反対称群や色付き対称群の既約表現には直接的な関係があるので,これらの主張は,分子軌道と分子の振動座標が,対応するシュブニコフ群とベロフ群の対称性を持っていることと等価である.

 電子の放射遷移の選択則は,赤外やラマンスペクトル構造と同様に,分子の対称群の表現の組み合わせ,すなわち,対応する反対称群や色対称群に関連している.
電子構造論,振動論,結晶の構造解析などでは,さらに対称性の手法が有効である.
もし,結晶に並進対称性がなければ,1cm^3あたり10^23個もの粒子を含む原子系の物性を解析することは極めて困難である.
しかし,結晶構造は,通常は少数の粒子からなる単位胞のモチーフが3次元周期的に繰り返されできており,このモチーフ(単位胞)は,結晶構造における「分子」のような役割を担っている.
したがって,結晶の物性を研究するには,単位胞内の粒子の集合体の挙動を調べればよく,全体の性質は部分の性質から判断できる.
固体の量子論では,Blochの定理やそれに相当する定理によって,全体の性質が並進周期をもつ部分の性質に反映される.
ここでは,結晶の電子構造を記述する波動関数や,同じく,原子の基準振動座標が,空間群の規約表現により変換される.すなわち,これらの関数の系が,反対称やや色付き空間群により記述される.
同じことが,電子密度の変換特性 とパターソン関数(構造解析の基本)で言及できる.これは,回折パターンを結晶構造に関係付ける.

koptsik-ch12-5

 

複合系(составные системы; composite systems)

対称群の重ね合わせの原理
変化の法則と対称性の保存

 完全系(целостные системы; integral systems)を構成する自然物を扱うときに,まず第一に気づくのは,その構造の複雑な複合性である.どのような物質対象も,部分構造の相互貫入,特定の配向や従属によって特徴付けられる.
例えば,現代物理学の最大関心事である「素粒子」の内部構造もそうである.原子(かつては「不可分」と考えられていた)は,原子核(核子で構成)と殻に分布した電子からなる.
原子やイオンは,分子,結晶,生体高分子の構造などの次の構造レベルを形成する.惑星系,恒星系,銀河系,超銀河系に至るまで,多種多様な巨視的物体の構造は複合的である.原子・分子型から始まり,完全な生物体や生物社会に至るまで,生物系には複雑な複合性が見られる.社会システムはそれ自体が複合的な構造を持っている.

   完全系組織の複合性(сложный композиционный; cpmplex composite)は,系ごとに分離し,それらの構造的なサブレベルを分離するという方法論を刺激するものである.これは,系そのものの科学的研究にも,他系との関係や部分系(subsystems)間の関係を明らかにするためにも不可欠である.
統合するために分割せよ(Разделить для того, чтобы объединить; Divide to unite),これが科学研究のモットーである. 本質的でない関係を切り離し,注目する関係に係わる分離された系の性質のみに興味を集中する.科学は,現実系の単純化したモデルを構築し,これをその後の研究の対象とするのである.
これが,外部とエネルギーや物質の交換可能な開放系に対して,閉鎖系や孤立系という科学的抽象化をする原点である.系の詳細な分類や,その一般的な性質の提示は省き[例えば,Structure and Forms of Matter (1967) and Problems of Methodology in System Study (1970)参照],この章の残る部分で,本書の中心課題である系の対称性と,構造,特性との関係について研究を続けることにする. 

   我々はすでに多くの幾何学的な例により,構造は対応する自己同型変換群(групп автоморфных преобразований; automorphic transformations)の不変量であることを立証している.物質系の幾何学的構造の対称性は(正しい定義に従えば),当該構造がもつ性質や関係の最小限の対称性でもある.系のすべての部分構造に,その部分構造の中で要素を互いに変換する独自の自己同型群を結びつけることができる. 
系を部分構造レベルに分離する妥当性は,その部分構造の要素に同値関係*を成立させる変換群が存在するかどうかで確認できる.ここでは,複合材料系の特性モデル化としての複合幾何図形を考察することで,部分構造の対称群と系全体の対称群との関係を検討する. 

   いくつかの例に目を向けよう.図8は,五芒星と正方形の重ね合わせによる複合図形である.構成する2つの図形は,運動や相似変換によって互いに変換することができないため,幾何学的に異なる.正方形[単面平面(на односторонней плоскости; on a one-sided plane)上にある]は,$$G_{1}=4mm$$の対称性を持ち,五芒星は$$G_{2}=5$$の対称性を持っている.形成された複合図形全体は,この2つの群の唯一の共通部分群である$$G=1$$の対称性を持っている.2つの群の与えられた配置における,それらの共通な部分群を求める操作を交叉(пересечением; intersection)といい,記号$$ \cap$$と書く :$$G=G_{1} \cap G_{2}$$,例えば,$$1=4mm \cap 5$$で標記される.同値関係で結ばれていない部分構造の対称性は,全体としての系の対称性より低くはないことがわかる:$$G_{i} \supset G (i=1, 2)$$.
非等価な部分から複合図形を形成する過程は,部分の対称性に比べて全体の対称性が低下し系の非対称化(диссимметризацией; dissymmetrization)を伴う.一方,等価な部品から複合系を形成する場合には,逆の過程,対称化(симметризации; symmetrization)が起こる.
図5bは,正3角形で構成された図形(正6角形)である.正3角形の固有対称性は$$G_{i}=3m$$であり,系全体の対称性は$$G=6mm$$である.系の対称性$$G$$は,この場合,群$$G_{i}$$の交叉$$( \cap _{i=1}^{6}G_{i}=G_{1} \cap G_{2} \cap \cdots \cap G_{6})$$にならない:  $$\cap _{1}^{6}3m=1$$.
------------------------------------------------------------------------------------------------------------------------------------
* 定義によれば, $$a, b, c$$の要素に対する二項関係($$ \sim $$で表す)は, $$a \sim a$$(反射性),$$a \sim b$$なら$$b \sim a$$(対称性),$$a \sim b$$と$$b \sim c$$なら$$a \sim c$$(推移性)の三つの性質を満足すれば, 同値関係である. 例題では, 図形の計量的性質を保存する同値関係に興味がある. 
------------------------------------------------------------------------------------------------------------------------------------
一方,群の合併(объединением; union)($$ \cup _{1}^{6}G_{i}=G_{1} \cup G_{2} \cup \cdots \cup G_{6}$$,これには,対称要素の与えられた空間配置をもつ6つの群のすべての変換を含む)とも一致するわけでもない.
集合$$ \cup _{1}^{6}3m$$は,6つの3角形の各中心に生じた3回軸,6角形の中心を通らない6枚の鏡映面$$m$$,中心を通る3つの鏡映面$$m$$よりなり,この集合は群をなさない.図形の中心を通る2枚の鏡映面は群$$G_{i}^{*}=3m \subset 6mm=G$$を生成する.$$G_{i}^{*}$$は$$G_{i}$$と同型で,6角形の中心を3角形の中心に一致させる平行移動演算$$S$$で,$$G_{i}^{*}$$に還元される:$$G_{i}^{*}=SG_{i}S^{-1}$$

群$$G_{i}$$の合併も交叉も,考察中の複合系(составной системы; composite system)の対称性を記述できない.その理由は,全体の中で3角形間に成り立つすべての同値関係が含まれていないためである.
一般に,配向平面上の任意の2つの図形は,合同で等しいか鏡像で等しい場合,すなわち,2次元連続体$$p_{00} \infty mm$$の運動群の変換$$S$$作用で互いに一致するとき,計量的に等価であるとされる.ある固定図形に,すべての変換$$S \in p_{00} \infty mm$$を適用すると,幾何学用語でいう「体」を形成する等価図形の連続体が得られる.等価図形の有限系は,この包含群(охватывающей группы; embracing group)または基本群(фундаментальной ;  fundamental group)$$p_{00} \infty mm$$の部分群の対称性を持つことになる. 
   部分群$$G_{i}$$が,1つの固定された基本群あるいは包含群$$G_{\textrm{emb } }$$に属するという事実は,空でない交叉$$ \cap G_{i} \neq \phi $$( $$\phi$$ は空集合)の存在を保証し,複合図形の対称性の概念を特定するに十分である.例えば,正6角形(図5b)で,交互の3角形を黒(共通の辺を持たない3つの三角形を黒)く塗り,黒-白図形を得る.その反対称群$$\left( 6'mm' \right) $$は拡張された包含群$$p_{00} \infty mm1'$$に属する.
   考察中の例を一般化して,定義により,部分を決定している対称群$$G_{i}$$の交叉$$ \cap G_{i}$$は,固定した包含群$$G_{\textrm{emb } } \supset G_{i}$$のレベルで,部分が図形の正則系( правильной системы; regular system)を形成していなければ,異種混成(гетерогенного ; heterogeneous)幾何学対象の対称群$$G$$である.
もし,一様(гомогенного; homogeneous)な幾何学対象の部分が図形の正則系を形成するなら,その対称群$$G$$は部分群の拡大(расширение; extension)$$ \cap G_{i} \subset G$$である.ただし,剰余類(添え字$$S$$は対称化(symmetrization)の意)の代表系$$G^{S}=\left\{ g_{1},g_{2}, \cdots ,g_{j} \right\} $$は,同一の包含群$$G_{\textrm{emb } } \supset G_{i}$$に属し,あるいは,何らかの同型な,例えば,色付きなどの一般化包含群$$G_{\textrm{emb } }I^{(p)}$$に属する$$G^{(p)S}=\left\{ g_{1},g_{2}^{(p)}, \cdots ,g_{j}^{(p)} \right\} $$:
$$G=\left( \cap G_{i} \right) g_{1} \cup \left( \cap G_{i} \right) g_{2} \cup \cdots \cup \left( \cap G_{i} \right) g_{j}= \cap G_{i} \odot G^{S}$$
[ここで,$$ \odot $$は対称化あるいは非対称化演算]
明らかに,もし,$$G_{i}$$,$$G^{S} \subset G_{\textrm{emb } }$$ならば,群$$G \subset G_{\textrm{emb } }$$;もし,$$G^{S}$$を$$G^{(p)S}$$で置き換えるなら,$$G$$は一般化(色付き)群になる.
   対称化演算(симметризации; symmetrization),すなわち,部分群$$H= \cap G_{i}$$から群$$G$$への移行は,部分集合の合併$$G=H \odot G^{S}= \cap G_{i}$$と解釈できる.ここで,$$ M=G\backslash H=Hg_{2} \cup \cdots \cup Hg_{j} $$は,$$G(g_{1}=e,g_{2}, \cdots ,g_{j} \in G^{S})$$に対する$$H$$の補集合(теоретико-множественное дополнение; set-theoretic complement )である. 
その逆演算の非対称化(диссимметризации; dissymmetrization)は,$$ H=G \odot G^{D}=H \cap M=G\backslash M $$で,拡大$$G$$から補集合$$M$$を除いた(сводится к отбрасыванию из расширения G дополнения М)ものである.対称化あるいは非対称化の演算子$$G^{S}, G^{D}$$を用いると,特定の群$$G_{i}$$を固定することで,交叉$$ \cap G_{i} \subset G_{i}$$を$$\cap G_{i}=G_{i} \odot G^{D*}$$と書ける.すなわち,$$G= \cap G_{i} \odot G^{S}$$は,$$ G=G_{i}\odot G^{D*} \odot G^{S} $$となる.他方,$$G=G_{i} \odot G^{S*} \odot G^{D**}$$,ただし,$$G_{i} \odot G^{S*}=G_{\textrm{emb } }$$,$$G=G_{\textrm{emb } } \odot G^{D**}$$である.その結果,
$$G=G_{i} \odot G^{D*} \odot G^{S}$$ および,$$G=G_{i} \odot G^{S*} \odot G^{D**}$$.ここで,対称化$$G^{S}, G^{S**}$$は,同型な色付き演算に置き換えられ,探していた全体と部分の対称関係(соотношения связи между группами симметрии целого и части)の記号的表現を得る.
これらは,図形の正則系を構成する部分よりなる複合幾何物体で成立するだけでなく,構成点が超幾何的性質(色)を付与されている一般化された幾何(物質)対象でも成立する.この結論は,群拡大の定理の結果に直接基づいている.複合物理系へ拡大し,対称群の重ね合わせの一般原理(複合系に対する対称性原理)となる.これは,一般に,群の交叉や合併にはならない.このことは,等式$$G=G_{i} \odot G^{D*} \odot G^{S}$$を,次の型に書き直すなら明瞭である.
$$ G= \cap G_{i} \cup M,  M=G\backslash\cap G_{i} \neq \phi $$         (11)
異種混成系の特別な場合は次のようになる. 
$$G= \cap G_{i} , M= \phi , G^{S}=e \in G$$       (12)
式(12)より,次のことがいえる.異種混成系物質(heterogeneous)では,部分の対称性は,全体の対称性より低くはならない:$$G_{i} \supset G$$.
部分と全体という概念に具体的な意味を持たせると,この原理は様々な言い換えができる.例えば論理の公理では,[ある理論の仮説が群Gに対して不変であるならば,結論についてもそう言える(G. Birkhoff, 1950)]
あるいは,物理的な因果律では,[ある原因がある結果を生むとき,原因の対称要素は結果に観測されるべきである(P. キューリー, 1894)].
もちろん,これらの新しい主張の正当性は,我々の幾何学的証明とは独立して確立される必要がある.

同時に,物質的に均質な系に対しては,式(11)から,系$$G$$の部分系の対称性について,式(11)から他の可能性が導ける.
$$G_{i} \supseteq G ,  G_{i} \subset G$$, あるいは,$$G_{i}\not \supset G ,  G_{i} \not\subset G$$
ここで,もし必要なら,$$G_{i}$$を同型な古典あるいは色付き群に置き換え:$$G_{i}^{*}=SG_{i}S^{-1}, S \in G_{\textrm{emb } }$$,あるいは,$$G_{\textrm{emb } }I^{(p)}$$(ここで,$$S$$は相似変換で,対称化演算で用いた上付添字$$S$$と混同しないように).このような場合に対応する因果律 は,後述する確率統計的な性格を持つようになる. 

koptsik-ch12-6

全体の対称性と部分の対称性の一般的関係を定式化するにあたり,全体や部分の概念を精査することは有用である.これらの概念の定義は 論理の公理:「全体はいかなる部分よりも小さくはない」により与えられる.点集合の場合の定義に適用すると,自分自身が要素である無限集合が存在することがわかる.そのような集合のべき乗は,その部分のべき乗と同じになる. 
ユークリッド空間における閉じた有限点集合を図形と呼ぶことにする.
図形Fの任意の2点をMとNとし,それらの間の距離を$$\rho \left( M,N \right) $$とする.関数$$\rho \left( M,N \right) $$の連続性から考えて,我々は常に図の2点A,Bで,すべてのM,Nに対し,$$\rho (A,B) \ge \rho (M,N)$$となるような2点を見出せる.このような[最小の]2点間の距離$$d=\rho \left( A,B \right) $$を集合Fの直径と呼ぶ.
図形をより小さな部分に分割することによって(Boltyanskii, Gokhberg, 1971参照),集合Fをいくつかの部分集合の合併union(被覆covering)の形に表現することができる.
$$F=H_{1} \cup H_{2} \cup \cdots \cup H_{m}$$
部分集合の直径はFの直径より等しいか小さい(図形$$H_{i}$$は互いに重ならない場合もある).
対称性の概念が図形Fで定義されれば,その部分でも定義されることは明らかであり,対応する群$$G$$と$$G_{i}$$の関係の問題は,対称群の重ね合わせの原理を一般化することで解決できるかもしれない.
読者は,この節と次節で多くの方程式を提示されても動揺する必用はない.それは,ほとんどの場合,基本関係(11)を特殊化したもので,次のような形に書き換えることができ,
$$G=G_{i} \cdot G^{D*} \cdot G^{S}=G_{i} \cdot G^{S*} \cdot G^{D**}$$                                  (11*)
(11)から生じる結果は(345頁も参照):$$G_{i} \supseteq G, G_{i} \subset G$$あるいは,$$G_{i} \not\supset \not\subset G$$である.
後者の場合,$$G_{i}$$から$$G$$への移行は,これらの群の共通部分群の対称化$$G_{i} \cap G=G \cdot G^{D}$$,または,これらの共通上位の包含群$$G_{\textrm{emb } } \supseteq G_{i} \cup G$$の非対称化のいずれかによって行われる可能性がある. 
群$$G$$と$$G_{i}$$の基本的な関係を変えることなく,幾何学空間から幾何的物理学(物質的)空間へ移行しても,完全系の各部分間の相互作用の問題は残る. 
さらに,ある(有限または無限)数の部分から構成される形成物の組織的完全性という新たな困難も出現する.これらのことは,幾何学レベルでは実現できた関係の一部しか,幾何物理学レベルでは実現できないことを意味する.

例えば,部分と全体との関係は,原因と結果との関係より広く,部分は全体と因果関係がない場合があることを忘れてはならない(Свечников; Svechnikov, 1971).
他方,完全系の考察中の固定状態を,許容された状態集合の一部と考えると,その状態の対称性は,重ね合わせの原理から生じる関係によって,その系の定常対称群に結ばれることがわかる.この場合,一般化原理は,例えば量子力学の特徴である状態の因果関係の媒介形式を記述するものであり,古典的決定論の原理の枠内には入らない.

式(11)と式(12),あるいはそれに先立つ式は,合わせて対称群の重ね合わせの原理を表している.式(11)は,系の対称化(拡大)または非対称化(縮小)の過程を,いくつかの対称化因子(集合$$M$$の要素)の包含または排除に結びつける.逆に,式(12)では,系の対称化は,いくつかの群$$G_{i}$$を交叉$$ \cap G_{j}$$から除外した結果であり,非対称化は,系にいくつかの新しい非等価の部分構造を系に含めた結果である:この場合,それらに対応する群$$G_{i}$$が系の非対称化因子として機能する.

群$$G$$と$$G_{i}$$の変換の作用下で,系全体とそれを構成する部分構造が保存されるということは,繰り返し指摘したように,その構造と部分構造に結びついたすべての性質と関係が同時に保存されるということである.したがって,対称群の重ね合わせの原理は,純粋幾何学の世界だけでなく,物質系や図形の世界でも成立つ.

群$$G$$と群$$G_{i}$$(または表現の空間で作用するそれらと同型の色群)は,構造または部分構造の要素の幾何学的配置の対称性だけでなく,対応する物理量の変換特性,例えば,物質系の物理特性を記述する一様なテンソル場,および物理場相互や,物質との相互作用で生じる現象も記述する. 

幾何学的な非対称性の原理(12)を物理現象に拡張したのは,ピエール・キュリー(1894)に属するものである.それは,彼の有名な言葉「非対称性が現象を生む」であり,彼自身の言葉を借りれば,次のように理解する必要がある."現象は,特性の対称性($$G_{i}$$),または,特性の対称性の部分群の1つの対称性($$G \subseteq G_{i}$$)を有する媒体舞台で存在し得る.つまり,ある現象にはある対称性の要素が共存していてもかまわないが,対称性のある要素を欠くが必要である.この非対称性が現象を生み出している.原理(12)の定式は,


幾何学的な非対称性の原理(12)を物理現象に拡張したのは,ピエール・キュリー(1894)によるものである.つまり,「ある現象は,その現象が持つ特徴的な対称性($$G_{i}$$),あるいはその特徴的な対称性の部分群($$G\subseteq G_{i}$$)のいずれかの対称性を持つ媒体の中に存在することがある」と理解される.つまり,ある現象にはある対称性が共存していてもよいのだが,その必要はない.しかし,ある対称性の要素が存在しないことは必要である.これが現象を作る非対称性である」 原理 (12) の定式化は次のようになる

 $$G_{\textrm{phenomena }i} \supseteq G_{\textrm{medium } }= \cap G_{\textrm{phenomena }i}$$ または,
$$G_{\textrm{property }i} \supseteq G_{\textrm{object } }= \cap G_{\textrm{property }i}$$                (13)
これを,Newman-Minnigerode-Curie(NMC)原理と呼ぶ.キュリーの定式化は,先人の結果の基礎の上にあり,19世紀の物理学の蓄積した事実を一般化したものである.ここで,この原理の形成の歴史を物語る他の定式を年代順に挙げてみよう.

В. Vivell (1830): 「光学的対称性は幾何学的対称性に正確に対応する」.F. Neumann (1850 - 1885): 「物理的性質に関して,ある材料はその結晶形と同じ種類の対称性を持っている」.W. Minnigerode (1884): 「結晶の対称群は,この結晶で起こりうるすべての物理現象の対称性の部分群である」.ここからキュリーの定式化に移ると,「結晶」という言葉を「媒体(舞台)」という言葉に置き換えればよいことになる.
キュリー自身は,もちろん先人たちも,残念ながら,20世紀の物理学に豊かに存在する構造研究の急速な開花を目撃することはできなかった.したがって,キュリー自身は,「生み出される作用は,原因よりも対称的であるかもしれない」という独創的な推測をしているが,観測された群$$G$$と$$G_{i}$$群間の関係のすべての形態,特に対称化効果(11)を予見することはできなかったのである.
ピエール・キュリーによる複合系の対称性の見つけ方(「自然界の異なるいくつかの現象が重なり合って一つの系を形成するとき,それらの非対称性が積み重なる.その結果,各現象に共通する対称性の要素だけが残る」),現在明らかになったように,異質な系に対してのみ有効である.キュリーの発言の多くが曖昧で矛盾していることから,研究者は繰り返しこれらの発言を批判し,因果関係の原則や十分根拠の原則に基づく他の発言に置き換えてきた(Birkhoff, 1950, 1954; Shubnikov, 1956; Koptsik, 1957-1971; Spassky and Krindatch, 1968, 1971).
このテーマに関する多くの文献があるにもかかわらず,NMCの原理を物理学に応用することは困難であった.例えば,流体力学において,原因の見かけ上の対称性が,それによって引き起こされる作用の対称性を伴わない場合,いわゆる対称性のパラドックスがある(Birkhoff, 1954参照).これは,一般に系の対称性が構成要素の対称群の交叉に還元されないため,式(12),(13)のNMC原理は適用範囲が限定されるためである.また,物理実験の結果決定された系の対称群は,幾何学的な群$$G$$と間違われることがあるが,実際は色群$$G^{(p)}$$である.
例えば,X線回折により2色群$$P4/mm'm'$$を持つ強磁性立方体結晶は,$$\mit\Phi =Pm3m \supset P4/mmm \longleftrightarrow P4/mm'm'=$$; 部分群,$$\mit\Phi ^{*}=\mit\Phi \cup P4/m \subset \mit\Phi $$
のみが,ここでは純粋に幾何学的な変換の群となる.このような場合,(12), (13)では幾何学的な部分群$$G^{*} \subset G^{(p)}$$のみを系の幾何学的対称性としてとらえる必要がある.もう一つの難点は,対称条件はその抽象的な性質上,現象の実現に必要なだけで,十分ではないことだ.系の対称性から予測される現象が観測されなかったり,不安定になったりすることがある.
強調すべきは,対称性の条件を形式的に分析しても,実際の物理現象を注意深く研究し,物理系に対称化または非対称化の要因として実際に作用する物質的要素を見つける必要性から,研究者は解放されないということである.

(12)に加えて対称化原理(11)を用いることで,先に述べた困難の1つが解消される.幾何学系の対称化の例は,本書の初版で紹介した(Shubnikov, 1961も参照).

対称群の重ね合わせの原理の分析を終えるにあたって,孤立系内の構造的なサブレベル間の相互作用と,系同士の相互作用の問題を忘れてはならない.物質系とそのサブシステムは,思考でしか分離できない.現実には,構造や対称性は,孤立した状態系あるいはそのサブレベルとは異なり相互作用がある.

 

 

koptsik-ch12-7

式(12)において,$$G_{i}$$, $$G$$ を,(仮想の)孤立状態にある与えられた物体に対して定義される定常状態の対称性群を表すのに使うことにする.また,相互作用のある状態での同じ対象物の群を$$G_{i}'$$,$$G'$$とする.

固定レベルにおいて,異質な部分系$$G_{i}$$の堆積そのもの(これが,交差$$G=\cap G_{i}$$の対称性を決定する;$$G$$は完全で外部作用から孤立)は,それらの相互作用の十分な原因になるが,この相互作用は,別の構造レベルにおいて要素間の新たな同値関係の確立につながらないとすれば,相互作用の無い対象の交叉$$\cap G_{i}$$の対称群は,相互作用のある交叉$$\cap G’_{i}$$の対称群と同じでなければならない.元の状態が対称的であれば,なぜそれが変化しなければならないのか?系の対称化因子(仮説)は登場しないのだろうか?

$$G'= \cap G_{i}'= \cap G_{i}=G$$                 (14)
相互作用が,要素間の新しい同値関係に導くなら,(11)に従い相互作用系の対称化に出会う:
$$G'= \cap G_{i}' \cup M' \supseteq \cap G_{i} \cup M=G , M' \neq \phi , M= \phi $$                 (15)
関係式(15)は,初期状態(11)の場合にも書くことができ,その場合,$$M \neq \phi $$(対称化因子の集合は空ではない). 
式(12)の初期状態$$ \cap G_{i}$$,または,式(11)の$$ \cap G_{i} \cup M$$が,それ自体で,相互作用の十分な基礎となるのであれば,相互作用によって孤立した系が非対称化されることはないだろう.
(12)において非対称化が起こるためには,非対称化因子が含まれていなければならない(新しい群$$G_{i}$$がその役割を果たす).
しかし,これらの因子が,群の初期の交叉により,孤立系に出現することがあらかじめ決まっているのであれば,なぜこれらの因子が交叉$$ \cap G_{i}$$を縮小するのか?系の非対称化のために (11)では,ある種の相互関係の要素を,集合Mから,排除しなければならない.もし,この合併 が対称的であり,相互作用を決定していたのであれば,合併$$ \cap G_{i} \cup M$$, から対称化因子が抜け落ちるのは何故か?

   これまでの議論は,$$\textbf{十分な理由の原理}$$*に基づき,$$ \textbf{定常状態の保存則の定式化} $$(以下に示す)を導き出した.相互作用の無い状態の対称性は完全に保存される(14).初期状態の対称性は, (増加することはあっても)減少することはない(15).
この観点から,この議論の根底にある前提条件を満たしていれば,$$\textbf{孤立した系の定常状態での対称性は,相互作用下では増大するのみ}$$である.非対称化が起こるためには,$$\textbf{系の孤立を破壊するような系の拡張が必要である}$$ : 固定された系の外部にある物質的舞台のみが,その定常状態の対称性を減少させることができる.

   対称性の保存の法則は,平衡状態の熱動力学や相転移の理論において重要な役割を演じる.次節では,これらの分野におけるいくつかの例について考えてみよう. 

koptsik-ch12-8 341-

    我々はすでに等式の対称性に言及し始めている.物理理論の分類が,これらの理論の基礎方程式を不変に保つような自己同型群に基づくことを強調するのは重要である.このような分類への道は,クライン(1872)の「エルランゲン計画」-幾何学から,等長,アフィン,射影の不変部分を分離する-,および,古典電磁気学と特殊相対性理論の方程式が許容する変換の分析に関するローレンツ(1895)とアインシュタイン(1905)の研究によって切り開かれたものである.基本群の変化は,常に理論構造を変える. 
したがって,ニュートンの古典力学は,ガリレオ・ニュートン変換, 
$$x_{i}^{'}=x_{i}+v_{i}t , x_{i}^{'}=x_{i}+a_{i} , x_{i}^{'}=D_{ik}x_{k} , t'=t+b , D_{ik}D_{kj}=\delta _{ij}$$
($$\delta _{ij}=1$$ for $$i=j$$, $$\delta _{ij}=0$$ for $$i \neq j$$, $$i, j, k=1, 2, 3$$)
の下で不変な命題の集合であり,均一で等方な幾何空間と均一な時間に対して,連続した10のパラメーターの対称群を形成している.
運動法則は、これらの変換によって関連づけられたすべての等価座標系において同一の(共変)形式をとり,これには一定速度$$v_{i}$$で相対運動する慣性系(ガリレオの相対性原理)も含まれる.
特殊相対性理論,(相対論的)量子力学,電磁気学の運動方程式は,ローレンツ変換のもとでは不変であり,最も単純な場合,
$$x'_{i}=\displaystyle \frac{x_{i}-vt}{\sqrt{1-\beta ^{2 } } }, x'_{2}=x_{2}, x'_{3}=x_{3}$$,
$$t'=\displaystyle \frac{t+(v/c^{2})x_{1 } }{\sqrt{1-\beta ^{2 } } }, \beta =\displaystyle \frac{v}{c}$$

これらの方程式は,光速$$c$$よりも小さな速度で$$x_{1}$$軸に沿って移動する相対論的に等価な(慣性)座標系を関係づけている(アインシュタインの相対性原理).
   上記理論の不変性は,幾何学的座標と時間からなる4次元空間$$\left\{ x_{1}, x_{2}, x_{3}, x_{4}=ict \right\} $$における均質性と等方性を反映している(虚数単位$$i$$の導入は時間座標を区別し,理論で空間を数学的対象として見ることを強調するものである).ローレンツ変換は,この空間の測度(4次元ベクトルの長さの2乗,$$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-c^{2}t^{2}$$)を保存し,したがって量$$c$$の不変性が導かれるのである. 
1918年,クラインKleinの後継者であるエミー・ノーザーEmmy Notherは,クラインの研究を用いて,有名な定理*を証明した.
----------------------------------------------------------------------------------------------- 
* この定理の歴史と参考文献については,V. P. Vizgin (1972)を参照.
-----------------------------------------------------------------------------------------------
「座標の連続的な変換と,それに伴う作用積分の変化を消滅させる場の関数の変換には,ある不変量,すなわち保存される場の関数とその導関数の組み合わせが対応する」.Notherの定理から,一般に,任意の孤立した物理系に対して,運動量の3成分,角運動量の6成分,エネルギーという10の保存される運動学的量が存在することが導かれる.これらはそれぞれ,平行移動,幾何学的空間の直交変換(およびガリレオ・ニュートン変換,ローレンツ変換),時間測定の原点の変位を表す変換に対応する不変量である. 
   保存則と物理法則の対称性の関係は,リチャード・ファインマンFeynmanの言葉を借りれば,「ほとんどの物理学者はいまだにどこか唖然としている......」という.これらの続ながりは非常に興味深く美しいものであり,物理学で最も美しく深遠なものの一つである(R. Feynman, R. Leyton, and M. Sands, 1965, pp.52-3, 52-4; A. A. Bogush and L. G. Moroz, 1968 も参照のこと).研究対象の現象に対する法則が微分方程式や代数方程式の言語で定式化されている物理理論であれば,全く同じ方法で対称変換群とそれに対応する不変量を求めることができる.結晶物理のテンソル方程式を例に,このことを説明しよう. 
その一例として,誘電体中の変位ベクトルと電場ベクトルの関係式,すなわち誘電体中の誘電分極現象を記述する式(p.314)がある: 
$$D=\varepsilon E$$ あるいは, $$D_{i}=\varepsilon _{uj}E_{j}$$,   $$i, j=1,2,3$$             (1) 
この例を一般化して,均一なテンソル「効果」場$$A_{pq \ldots r}$$と,「作用」場 $$B_{ij \ldots k}$$の関係式を書き下すと,
$$A=aB$$ あるいは,$$A_{pq \ldots rij \ldots k}=a_{pq \ldots rij \ldots k}B_{ij \ldots k}$$, $$p,q, \ldots ,r,i,j, \ldots ,k=1,2,3   $$(20) 
テンソル$$A, a, B$$を包含直交群$$ \infty \infty m$$で定義すると,それらの成分の変換方程式は次のような形になる.
$$A_{p'q' \ldots r'}=\chi (D)D_{pp'}D_{qq'} \cdots D_{rr'}A_{pq \ldots r}$$ $$p',q', \ldots r',p,q, \ldots r=1,2,3$$ (21)
テンソル$$a, B$$についても同様の式がある[式(2),p315と比較せよ].
式(20)は物理法則を表しており,テンソル$$A, a, B$$の関係は群$$ \infty \infty m$$で許容されるどの座標系でも保存されるはずである.すなわち,式(20)の左辺と右辺は,直交変換の影響を受けて同じように変化する(物理方程式の共分散(covariance)の原理). 
$$A=aB$$ (系$$X_{1} X_{2} X_{3}$$)$$ \Longrightarrow $$$$A'=a'B'$$(系 $$X'_{1} X'_{2} X'_{3}$$) (22)
しかし,テンソル$$A, a, B$$の成分は,一般的に言って,任意の変換に対して不変ではない.
テンソル$$A, a, B$$の行列が不変な直交群$$ \infty \infty m$$の最高位数の部分群は,テンソル$$A, a, B$$の対称群$$G_{A} , G_{a} , G_{B}$$となる (Shubnikov, 1949).
テンソルモデルを用いると、方程式の対称群とその解との間に有用な関係を確立することができる.
   ここで,交叉$$G_{a} \cap G_{B}$$ に属する任意の演算$$g$$を取り上げよう. 定義によれば,テンソル$$a, B$$は,この操作に対して不変である.したがって,この操作のもとで式(20)を変換すると,始めの形式になる,
$$A'=a'B' \Longrightarrow A=aB$$
および,$$g \in G_{A}$$. $$g$$は,$$G_{a} \cap G_{B}$$に属する任意の演算であるから, 
$$G_{A} \supseteq G_{a} \cap G_{B} \equiv G_{a \cap B}$$     (23)
群$$G_{A}=G_{aB}$$ および,$$G_{a \cap B}$$を,その解(これは,仮説により,物理的相互作用の効果を許容している),したがって相互作用のないテンソル場の交叉から決まる方程式の対称群と呼ぶことにする.もし,等式$$A=aB$$等価な解$$A_{i}=aB_{i}$$の集合$$ \{A}={A_{1}, A_{2}, \cdots , A_{i}, \cdots \} $$を認めるなら,
$$G_{(A)}= \cap G_{A_{i } } \cup M \supseteq G_{a} \cap G_{B}=G_{a \cap B} , G_{A_{i } } \supseteq , \subset $$ or $$ \not \supset G_{(A)} \supseteq G_{a \cap B}$$    (24)
ここで,$$G_{A_{i } }$$ または,その同型な類似物$$G_{A_{i } }^{(p)}=SG_{A_{i } }S^{-1}$$可能な解の1つの対称性を表現し,$$M$$は解系の対称化演算,$$G_{(A)}=G_{aB}=G_{a} \cap G_{(B)}; G_{(B)}= \cap G_{B} \cup M$$となる.
もし,$$A=aB$$に対応する方程式系が,非互換incompatibleであれば,解集合は空であるり,形式的に$$G_{(A)}= \infty \infty m \supseteq G_{a \cap B}$$と書くことができる.
これらの方程式に対して,関係式(23),(24)は,系の部分と全体の間に存在する一般的な関係(16),(17)を表現している. 
例えば,作用の同軸の二面体bicone$$\{E \}$$に対応する式(1)の同価解の二面体$$\left\{ D \right\} $$は,水晶の場合,方程式の対称性に一致する.
$$G_{(D)}= \infty /mmm= \infty /mmm \cap \infty /mmm=G_{\varepsilon } \cap G_{(E)}=G_{\varepsilon E}$$
(図220と比較せよ). 

koptsik-ch12-2

 

変換則と物理量の対称性(一様連続体の近似)
反対称と色付き対称の極限群 

   結晶のスカラー特性は,測定の方位によらないので,1つの数により定義される.例えば,均一で一様な結晶の温度・密度は,巨視的なサンプルに比べ十分小さい体積要素であるが,単位胞よりは遥かに大きいような"点" の全てで同一である.
   誘電体結晶(焦電性pyroelectric,強誘電性ferroelectricと呼ばれる)は,その構造に起因する自発分極(外部電場が存在しなくても分極している)を持つ.対称性$$1$$の結晶中の分極ベクトル$$P$$は,3つの独立なパラメータ:$$P_{1}, P_{2}, P_{3}$$で決定される(図219a).対称性$$m$$[z軸に垂直な鏡映面]の結晶では,生じるベクトル$$P$$は,2つの成分$$P_{1}, P_{2}$$で完全に決定される(図219b).成分$$P_{3}=0$$となる訳は,平面$$m$$内にない斜めのベクトルには,鏡映同価なベクトルが必ずあるからである.
軸性[回転]対称類$$2,3,4,6,mm2,3m,4mm$$の結晶では,生じるベクトル$$P$$は,1つのパラメータ$$P_{3}$$で記述される(図219c).$$\overline{1}$$ のように対称心のある結晶類では,焦電性はない;すなわち$$P=0$$である.
   極性ベクトルの変換則$$r'=\left[ D|0 \right] r=Dr$$ を思いだそう(P.204参照).この法則で,$$r$$ を$$P$$ で置き換え:$$P_{i}'=D_{ij}P_{j}$$ と行列形式で書く.例えば,軸性群$$2$$における2回軸$$//X_{3}$$の周りの180°回転を,行列$$D$$のあらわな形式を用い,対称操作の行列積を行うと,以下の結果を得る.
$$\left( \begin{array}{@{\,} c @{\, } }
P_{1}' \\[0mm]
P_{2}' \\[0mm]
P_{3}'
\end{array} \right) =\left( \begin{array}{@{\,} ccc @{\, } }
-1 & 0 & 0 \\[0mm]
0 & -1 & 0 \\[0mm]
0 & 0 & 1
\end{array} \right) \left( \begin{array}{@{\,} c @{\, } }
P_{1} \\[0mm]
P_{2} \\[0mm]
P_{3}
\end{array} \right) =\left( \begin{array}{@{\,} c @{\, } }
-P_{1} \\[0mm]
-P_{2} \\[0mm]
P_{3}
\end{array} \right) $$
軸対称のため,系の180°回転後, 
$$\left( \begin{array}{@{\,} c @{\, } }
P_{1}' \\[0mm]
P_{2}' \\[0mm]
P_{3}'
\end{array} \right) =\left( \begin{array}{@{\,} c @{\, } }
P_{1} \\[0mm]
P_{2} \\[0mm]
P_{3}
\end{array} \right) $$ ,すなわち,$$ \left\{ \begin{array}{@{\,} c @{\, } }
P_{1}'=-P_{1}=P_{1}=0 \\[0mm]
P_{2}'=-P_{2}=P_{2}=0 \\[0mm]
P_{3}'=P_{3}=const
\end{array} \right. $$

さらにもう1つ,2階の極性テンソルで記述される特性例:誘電体に誘起される分極現象(図220)を考察する.結晶中の変位ベクトル$$D$$は一般には印加される電場$$E$$方向と一致しない(等方媒質では一致する).これらの極性ベクトルの成分$$D_{i}とE_{j} $$との関係は,
$$D_{i}=\varepsilon _{ij}E_{j}$$  または,$$ \left\{ \begin{array}{@{\,} c @{\, } }
D_{1}=\varepsilon _{11}E_{1}+\varepsilon _{12}E_{2}+\varepsilon _{13}E_{3} \\[0mm]
D_{2}=\varepsilon _{21}E_{1}+\varepsilon _{22}E_{2}+\varepsilon _{23}E_{3} \\[0mm]
D_{3}=\varepsilon _{31}E_{1}+\varepsilon _{32}E_{2}+\varepsilon _{33}E_{3}
\end{array} \right. $$ (1)
係数$$\varepsilon _{ij}$$は,誘電率テンソルの形で,べクトル$$D$$と$$E$$を結び付ける.一般に,要素の対称性$$\varepsilon _{ij}=\varepsilon _{ji}$$ があり,9つではなく6つの独立なパラメータをもつ.
これから先は,テンソル$$\varepsilon _{ij}$$ の行列を,簡単化して,非ゼロの独立なパラメータのみの行か列の形式に書くことにする:
$$\left( \begin{array}{@{\,} ccc @{\, } }
\varepsilon _{11} & \varepsilon _{12} & \varepsilon _{13} \\[0mm]
\varepsilon _{12} & \varepsilon _{22} & \varepsilon _{23} \\[0mm]
\varepsilon _{13} & \varepsilon _{23} & \varepsilon _{33}
\end{array} \right) =\left( \varepsilon _{11},\varepsilon _{12},\varepsilon _{13},\varepsilon _{22},\varepsilon _{23},\varepsilon _{33} \right)     $$
$$\varepsilon _{ij}$$を係数とする2次の表面
$$\varepsilon _{11}x_{1}^{2}+\varepsilon _{22}x_{2}^{2}+\varepsilon _{33}x_{3}^{2}+2\varepsilon _{12}x_{1}x_{2}+2\varepsilon _{13}x_{1}x_{3}+2\varepsilon _{23}x_{2}x_{3}=1$$
は,対称テンソルに一意に関係づけられている;この表面は誘電率楕円体(ellipsoid),あるいは一般に,観察される効果の特性を明確にする物理特性の屈折率楕円体(indicatrix)である.結晶の対称群$$G_{k}$$ は,この表面の形(3軸あるいは1軸性の楕円体,あるいは,球)と結晶物理軸 $$X_{1}, X_{2}, X_{3}$$に対する楕円体の主軸$$X_{1}', X_{2}', X_{3}'$$ の方位を決定する.群$$G_{k}$$ は,実験的に決定しなければならない$$\varepsilon _{ij}$$ の独立な数も決定する.これを理解するために,テンソル成分$$\varepsilon _{ij}$$ の変換式を
$$\varepsilon _{i'j'}=\chi (D)D_{i'i}D_{j'j}\varepsilon _{ij}$$        $$i', j', i, j=1,2,3$$             (2) 
と書く,ここで,$$D_{i',i}=\textrm{cos}(X_{i}', X_{i})$$ ,$$\chi (D)$$ は極性テンソルでは+1,右辺の総和は繰り返される$$i,j$$ に対し,1から3で行われる.項の和を取り,6つの未知数を求めるのに9個の方程式の冗長系( 3つの方程式$$\varepsilon _{i'j'}=\varepsilon _{j'i'}$$は,この場合は成立しない;非対称テンソルの一般の場合には,成立しない)を得る.
   読者諸君にこの手順を実行するのを残しておき,上記の等式系の行列を導くのに他の手法を使う-3次元空間の座標変換の直交行列の(自分自身との)直積(p.241).行列$$D$$の自分自身との直積は,
$$D^{2}=\left( \begin{array}{@{\,} ccc @{\, } }
D_{11} & D_{12} & D_{13} \\[0mm]
D_{21} & D_{22} & D_{23} \\[0mm]
D_{31} & D_{32} & D_{33}
\end{array} \right) \times \left( \begin{array}{@{\,} ccc @{\, } }
D_{11} & D_{12} & D_{13} \\[0mm]
D_{21} & D_{22} & D_{23} \\[0mm]
D_{31} & D_{32} & D_{33}
\end{array} \right) =\left( \begin{array}{@{\,} ccc @{\, } }
D_{11}(D_{ij}) & D_{12}(D_{ij}) & D_{13}(D_{ij}) \\[0mm]
D_{21}(D_{ij}) & D_{22}(D_{ij}) & D_{23}(D_{ij}) \\[0mm]
D_{31}(D_{ij}) & D_{32}(D_{ij}) & D_{33}(D_{ij})
\end{array} \right) $$
ここで,$$(D_{ij})$$は$$3 \times 3$$行列で,例えば
$$D_{23}(D_{ij})=\left( \begin{array}{@{\,} ccc @{\, } }
D_{23}(D_{11}) & D_{23}(D_{12}) & D_{23}(D_{13}) \\[0mm]
D_{23}(D_{21}) & D_{23}(D_{22}) & D_{23}(D_{23}) \\[0mm]
D_{23}(D_{31}) & D_{23}(D_{32}) & D_{23}(D_{33})
\end{array} \right) $$ ,等々.
例えば,$$2 /\!\!/ X_{3}$$軸まわりの180°回転の行列$$D$$($$D_{11}=D_{22}=-1, D_{33}=1$$,残りの行列要素はゼロ)を知れば,テンソル$$\varepsilon _{ij}$$ の空間でのこの回転を記述する$$D^{2}$$を見出せる.すなわち,対称群$$G_{k}=2$$ に対して,変換式$$\varepsilon _{i'j'}=\chi (D)D^{2}\varepsilon _{ij}$$ は以下の形となる:
$$\left[ \begin{array}{@{\,} c @{\, } }
\varepsilon _{1'1'} \\[0mm]
\varepsilon _{1'2'} \\[0mm]
\varepsilon _{1'3'} \\[0mm]
\varepsilon _{2'1'} \\[0mm]
\varepsilon _{2'2'} \\[0mm]
\varepsilon _{2'3'} \\[0mm]
\varepsilon _{3'1'} \\[0mm]
\varepsilon _{3'2'} \\[0mm]
\varepsilon _{3'3'}
\end{array} \right] =\left[ \begin{array}{@{\,} ccccccccc @{\, } }
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\[0mm]
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\[0mm]
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\[0mm]
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\[0mm]
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\[0mm]
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\[0mm]
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\[0mm]
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\[0mm]
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array} \right] \left[ \begin{array}{@{\,} c @{\, } }
\varepsilon _{11} \\[0mm]
\varepsilon _{12} \\[0mm]
\varepsilon _{13} \\[0mm]
\varepsilon _{21} \\[0mm]
\varepsilon _{22} \\[0mm]
\varepsilon _{23} \\[0mm]
\varepsilon _{31} \\[0mm]
\varepsilon _{32} \\[0mm]
\varepsilon _{33}
\end{array} \right] $$

テンソルの置換対称性と結晶の2回対称性を考慮して,$$\varepsilon _{i'j'}=\varepsilon _{ij}$$,
$$\varepsilon _{1'1'}=\varepsilon _{11}$$
$$\varepsilon _{1'2'}=\varepsilon _{12}$$
$$\varepsilon _{1'3'}=-\varepsilon _{13}=\varepsilon _{13}=0$$
$$\varepsilon _{2'1'}=\varepsilon _{21}$$
$$\varepsilon _{2'2'}=\varepsilon _{22}$$
$$\varepsilon _{2'3'}=-\varepsilon _{23}=\varepsilon _{23}=0$$
$$\varepsilon _{3'1'}=-\varepsilon _{31}=\varepsilon _{31}=0$$
$$\varepsilon _{3'2'}=-\varepsilon _{32}=\varepsilon _{32}=0$$
$$\varepsilon _{3'3'}=\varepsilon _{33}$$

行列$$D^{2}$$の4,7,8行,4,7,8列を抜き取り,$$9 \times 9$$行列から,対称テンソルの変換則を完全に記述する$$6 \times 6$$行列に移行する.この行列を2つの行列の対称化積(あるいは対称化平方)と呼び$$D^{(2)}$$と標記する.
   群$$G=\left\{ g_{1},g_{2}, \ldots ,g_{j} \right\} $$ の同形な行列群$$\left\{ D_{1}(g_{1}),D_{2}(g_{2}), \ldots ,D_{j}(g_{j}) \right\} $$ は,行列表現$$G$$ を作る.この表現は,$$3 \times 3$$行列$$D_{j}$$が点の配置の変換のみでなく3次元空間のベクトル成分を変換するので,ベクトル表現と呼ばれる.
   群$$G$$の群$$\left\{ D_{1}^{2}(g_{1}),D_{2}^{2}(g_{2}), \ldots ,D_{j}^{2}(g_{j}) \right\} $$ による表現は,ベクトル表現の平方あるいはテンソル表現と呼ばれる.この術語を用いれば,誘電率テンソル$$\varepsilon _{ij}$$はベクトル表現 $$\left\{ D_{1}(g_{1}),D_{2}(g_{2}), \ldots ,D_{j}(g_{j}) \right\} $$の対称化された平方により変換される.テンソル量の定義自体は,成分の変換を支配する法則を特定すること,すなわち対応するテンソル表現の特定に基づいている.
   各32の結晶群に対する表現$$\left\{ D_{1}^{2}(g_{1}),D_{2}^{2}(g_{2}), \ldots ,D_{j}^{2}(g_{j}) \right\} $$ から,これらの群のどれに対しても,群$$G_{k}=2$$ に対して行ったのと全く同様に,テンソル$$\varepsilon _{ij}$$ の形を決定できる.テンソル$$\varepsilon _{ij}$$ の行列は,成分$$\varepsilon _{ij}$$ が対応する座標 $$x_{i}x_{j}$$の積と同様に変換されることに注目すれば,もっと速く決定できる.この方法を用い,方位$$m \bot X_{3} $$の群$$G_{k}=m $$に対し,テンソル$$\varepsilon _{ij}$$の行列の形を見出すことにする.この平面での鏡映により,座標$$x_{1}, x_{2}$$ は保存され,座標$$x_{3}$$は符号を変える: $$x_{1} \to x_{1}, x_{2} \to x_{2}, x_{3} \to -x_{3} $$
従って,座標の積は以下のように変化する: 
$$x_{1}x_{1} \to x_{1}x_{1}, x_{1}x_{2} \to x_{1}x_{2}, x_{1}x_{3} \to -x_{1}x_{3}, x_{2}x_{1} \to x_{2}x_{1}, x_{2}x_{2} \to x_{2}x_{2} $$
$$x_{2}x_{3} \to -x_{2}x_{3}, x_{3}x_{1} \to -x_{3}x_{1}, x_{3}x_{2} \to -x_{3}x_{2}, x_{3}x_{3} \to x_{3}x_{3} $$
この変換は対称変換であるので,変換の前後で,成分$$\varepsilon _{ij} \leftrightarrow x_{i}x_{j}$$ は等しい.従って,群$$m$$の行列$$\varepsilon _{ij}$$ が,群2に対するものと同じ形となる:$$(\varepsilon _{11}, \varepsilon _{12}, \varepsilon _{22}, \varepsilon _{33})$$
   以下のリストに,結晶学的な群に対する誘電率テンソルの一般形を与える:
三斜晶系$$G_{k}=1, \overline{1} :(\varepsilon _{11}, \varepsilon _{12}, \varepsilon _{13}, \varepsilon _{22}, \varepsilon _{23}, \varepsilon _{33})$$
単斜晶系 $$2, m, 2/m  :(\varepsilon _{11}, \varepsilon _{12}, \varepsilon _{22}, \varepsilon _{33})$$
直方晶系 $$2, 222, mmm :(\varepsilon _{11}, \varepsilon _{22}, \varepsilon _{33})$$
三方晶系,正方晶系,六方晶系$$:(\varepsilon _{11}, \varepsilon _{22}=\varepsilon _{11}, \varepsilon _{33})$$
等軸晶系 $$23, m\overline{3}, 432, \overline{4}3m, m\overline{3}m :(\varepsilon _{11}, \varepsilon _{22}=\varepsilon _{11}, \varepsilon _{33}=\varepsilon _{11})$$

全く同様に,軸性ベクトルに対するテンソル不変量(対応する群の変換により変わらない行列)を見出すことが出来る.テンソル成分の変換則で,第1種の変換(回転,並進)に対しては,$$\chi (D)=+1$$ ,第2種の変換(鏡映,反転)に対しては$$\chi (D)=-1$$ とする所が異なる.
   テンソル本来の直方晶対称は,テンソル行列の一般形を保存する直交変換の最も対称性の高い群により決定されるのだが,もとの結晶の対称性よりも高くなる可能性があることに注意しよう.例えば,立方晶系に対し,誘電率楕円体は対称性$$ \infty \infty m$$ の球に縮退する.3方晶系,正方晶系,6方結晶に対しては,1軸性誘電率楕円体は対称性$$ \infty /mmm$$である.残りの結晶に対しては,誘電率楕円体は,対称性 $$mmm$$の3軸性である.これは,楕円体(図220)をprincipal axes主軸$$X_{1}', X_{2}', X_{3}'$$に参照することにより理解出来る:群$$mmm$$ のすべての変換は,テンソル行列$$(\varepsilon '_{11}, \varepsilon '_{22}, \varepsilon '_{33})$$を保存する.さらに低い対称性の結晶系では,結晶物理主軸$$X_{1}, X_{2}, X_{3}$$ に対する楕円体の方位を標示するために,パラメータが(これらの3つ以上に)増える.

   均一なテンソル場の対称群の中で,極限キューリーCurie群(図74)に加えて,反対称と色付対称群のlimiting orthogonal極限直交群に出会う.
   7つの中性と7つの2-色のlimiting antisymmetry極限反対称群が,拡大の理論により得られる:
$$ \infty 1', \infty 221', \infty mm1', \infty /m1', \infty /mmm1', \infty \infty 1', \infty \infty m1',$$
$$ \infty /m', \infty 2'2', \infty m'm', \infty /m'mm, \infty /mm'm', \infty /m'm'm', \infty \infty m' $$
これらの群の具体化としての物質図形は,キュリーCurie群に対するそれらと同じ形を持つ.中性群では,図形の全ての点は中性,2-色群では,2色である(2色は,各点ごとに,混合されたり塗り分けられたりする).反対称の磁気的解釈では,電気,磁気,Poyntingポインティングベクトルは,それぞれ,磁気対称の極限群$$ \infty mm1', \infty /mm'm', \infty /m'mm$$を持つ(図221).反対称の極限群の導出では,読者はShubunikov(1958,1959),Sirotin(1962),Koptsik(1966)による扱いを参照するとよい. 
   この系列に,無限個の色付極限群(colored limiting groups)が存在し:
$$ \infty 1^{(p)}, \infty 221^{(p)}, \infty mm1^{(p)}, \infty /m1^{(p)}, \infty /mmm1^{(p)},$$
$$ \infty \infty 1^{(p)}, \infty \infty m1^{(p)}; $$
$$ \infty ^{( \infty )}, \infty ^{( \infty )}m^{(2)}m^{(2)}, \infty ^{( \infty )}/m, \infty ^{( \infty )}/mm^{(2)}m^{(2)},$$
$$ \infty ^{( \infty )}2^{(2)}2^{(2)}, \infty ^{( \infty )}/m^{(2)}, \infty ^{( \infty )}/m^{(2)}m^{(2)}m^{(2)} $$
$$ \infty ^{( \infty )} \infty ^{( \infty )}, \infty ^{( \infty )} \infty ^{( \infty )}m^{(2)} $$
色付群の具体化となる典型的な図形は,Curieキューリー図形の周りに色調が連続的に変化(虹のように)する色紙を接着すると得られる. 
例えば,単色光線がコーンの頂点からその底面へ通過すると,色は,コーンの回転にともない,自然のスペクトル順に変化する.コーンが回転するなら, 
群の系列$$ \infty ^{( \infty )}(1), \infty ^{( \infty )}(2), \ldots , \infty ^{( \infty )}(n)$$,静止しているコーンには,系列$$ \infty ^{( \infty )}m^{(2)}m^{(2)}(1), \infty ^{( \infty )}m^{(2)}m^{(2)}(2), \ldots , \infty ^{( \infty )}m^{(2)}m^{(2)}(n)$$ を得る
[ここで,(1),(2),(n)は,古典的軸性部分群である;色付コーンの群が,部分群$$n$$を含むなら,1回転で色サイクルは$$n$$回繰り返すことを意味する].
底をシリンダーとし,その周りに色サイクルを一回貼りつけ,群$$ \infty ^{( \infty )}/mm^{(2)}(1)$$ (静止したシリンダー),$$ \infty ^{( \infty )}/m(1)$$ (回転シリンダー)を得る.
色が連続的に,シリンダーを1周(円周に沿い)するのみでなく,すべての生成元に沿い変化するなら,対称性$$ \infty ^{( \infty )}/m^{(2)}m^{(2)}m^{(2)}(1)$$(静止時),$$ \infty ^{( \infty )}/m^{(2)}(1)$$(回転シリンダー),$$ \infty ^{( \infty )}2^{(2)}2^{(2)}(1)$$(ねじれシリンダー)の2回の色シリンダーを得る.
これらの全てで,部分群$$1$$を$$n$$で置き換えると,オリジナルのものから群の無限系列が導びける.色シリンダーの群は,古典的部分群$$nmm,n22$$, あるいは,何らかの性質を保存する部分群の系列に形式化できる.
色極限群の最後の2つは,全点が$$ \infty $$-色で,かつ,中性でない球で具体化される:各点の色は,セクターに沿って分布するか,あるいは,混合されずに層をなして互いに重畳され,同様に群$$ \infty ^{( \infty )}$$ と$$ \infty ^{( \infty )}m^{(2)}m^{(2)}$$ ではコーンのチップに分布する.群$$ \infty ^{( \infty )} \infty ^{( \infty )}$$ では,球の直径は群 $$ \infty ^{( \infty )}2^{(2)}2^{(2)}$$でのように捩れている.一方,群$$ \infty ^{( \infty )} \infty ^{( \infty )}m^{(2)}$$では,捩れがない.極限群の別の解釈では,初期に見たすべての図形でのように,1つの固定色は,一般点のすべてに帰属せしめられる.捩れたシリンダーの対称性は,もっと完全には2回色反対称群により記述される.
$$\displaystyle \frac{ \infty ^{( \infty ) } }{m'^{ \ast } }\displaystyle \frac{2^{(2) } }{m'^{ \ast } }\displaystyle \frac{2^{(2) } }{m'^{ \ast } }$$
ここで*星印はシリンダー底部の周囲の順序で,色の順序を変え,′ダッシュは捩れの方向を変える.
   さらに,中性群では,色同一部分群$$1^{( \infty )}$$は冪によって異なることに注意する.具体化に加え,言及したように,古典的なCurieキューリ群,反対称の極限群,Waerden-Burckhardt群,Wittke-Garrido群,およびこれらの許容される積(p.248,256参照)により記述される色図形がある.すべての有限色付き群(結晶学的および非結晶学的の位数の)は,これらの極限群(本書で初めて掲載した)の部分群である.完全構造対象の物理で,極限色付き群は通常の極限直交群よりも役割が低いわけではない.

koptsik-ch12-1

12. 科学と芸術における対称性
保存則.物理系の対称化と非対称化.複合系に対する対称原理.
-完全系構築の法則,構造の法則を研究する手段としての対称性-

   本書を通しここまでに,実に多種多様な物質的形態-有限あるいは無限のもの,空間に周期のあるもの,あるいは連続なもの-の対称性を学習し来たった.幾何学的対象物の構造が複雑になっても,対称変換の基本的要請-図形は変形なしに自分自身上に変換される-は,常に守られていた.直交変換(回転,鏡映)と並進は,図形の計量特性を保存するので,直交群と運動群に注目した.この基本的な要請ー無変形ーは,古典群から反対称や色付対称群へ移行した前章においても,古典群から新しい群への同型写像で,色付空間の構築をしたために破られることはなかった.
   色付対称群への移行は,科学研究と芸術創造における対称性理論の概念と手法の適用可能性を著しく拡大する.考察対象物の計量特性が,変形の過程で保存されるという拘束要請を緩和すると,これらの可能性はさらに増加する.このような要請緩和により,例えば,アフィン,射影,トポロジー的な変形で,保存される図形の特性を,学ぶことが出来るようになる.言い換えれば,相当する変形で変わらない不変量の命題の集合(公理,定理,これらより導出される結果)として,アフィン,射影,トポロジー幾何を構築できる.
   考察中の幾何学空間のすべての点に,色特性量を付与,あるいは,そこでのスカラー,ベクトル,テンソル量の値を定義するなら,このようにして得られた物質空間(あるいは,スカラー,ベクトル,テンソル場)に対する一般化された結合変換の群が定義できる.これらの群を,物質的対象物の対称群と見なすのは自然である.例を一般化し,自分自身の上への写像=自己同型変換の作る最も対称性の高い群を,任意の完全系をなす構造的対象物―相対的に等価な要素で構成されている―の対称群と呼ぶ.このようにして,構造的対象物の構成の法則として,あるいは,もっと正確に,考察中の系の構造的完全さが保存される1:1変換の群として対称性を定義する.
   自然界には構造のない対象物はない.対称性の概念は,相対的に等価な,相互に結合している要素で構成される系に適用される.幾何学的な完全系の等価な要素は,定義された関係で互いに結合している点であったり,直線,平面,表面,図形であったりする.物質的対象物における等価な完全系の要素であるのは,素粒子や反粒子,-電子,陽子,中性子,等々-;位相特性のみが要素相互に異なるこれらの《色》変調;等価な原子,イオン,分子,等々;物理場の力線,等々である.これらの要素は,定義された規則で互いに結合した完全系をなす複合体(系)を形作る.そして,これら複合体はさらに複雑な物質系を構成する要素となる.
   系の不変な様相として現れる対称性カテゴリーの十分な一般化,全体を等価(何らかの関係で)な部分へ分割する原理的な可能性は,現代の自然科学および芸術における対称性概念に対する,かくも広汎な価値を有する.ここでは,物質的対象物のみならず実世界の構造を反映している概念や理論の系の対称性にも言及する.これについては,(Вейль; Weyl) ワイルの著書《シンメトリー》の序文によく記されている:「対称性は,外部とは結び付いていない物体,現象,理論:地磁気,女性のベール,偏光,自然淘汰,群論,不変性と変換,みつばちの巣箱での労働習性,空間の構成,飾瓶の絵柄,量子物理,スカラベコガネムシ,花弁,X線回折図形,ウニの細胞分裂,結晶の平衡外形[訳注:理想形のこと],ロマネスク寺院,雪片,音楽,相対論:の間の面白くも驚嘆すべき類縁関係を確立する」(Нъюмен; Newman, ノイマン,1956).
   対称性概念(つりあいの意)は,古代ギリシャの哲学者,数学者から,彼らの宇宙の調和研究と結び付き発した。調和のカノン(時代とともにその概念は変化した)に従い,古代彫刻家,画家,建築家達は,傑作を創造した.それにもかかわらず,対称性についての学問が,現代科学の形式を備えたのは,群の概念の出現(Галуа; Galois, ガロワ,1832)以降のことである。20世紀の初頭には,結晶の対称性の理論が,対象変換の古典群の形式をとり,最も精緻な発展をとげた(フェドロフ,シェンフリーズ,Федоров,Шенфлис; Fedorov,Schonflies, 1891).結晶学と結晶物理学の発展後に,群論的手法は,物理学全体や他の自然科学に適用されるに至った.対称性の手法は,現代科学の理論的研究の強力で効果的な道具となった.
   対称性手法の応用例として,結晶物理の例をとり,考察しよう.この選択は,対応する群をすでに知っていることと,フェドロフの言葉を借りれば,結晶は,原子分子レベルの物質の構造構成の多種多様性を現し《自己の対称性を閃かせる》ことによる.
結晶について成り立つ内容は,(適当な変形をすれば)対称的な内部構造を有する他の対象物にも拡張することができる.
   結晶の対称性を示す点群または空間群が実験的に決定されたら,そこで可能な物理特性の最小の対称性も決定されたと言える.特に,周知のように,点群 は結晶多面体の理想形(多面体のすべての面に結晶化物質の供給が等しく行われる条件下で,わずかに過飽和の溶液から成長した結晶はこの形)の対称性を記述できる.
   全く同様に,空間群$$Ф_{k}$$は,結晶の内部構造:単位胞中の原子の同価な系の相互配置:を記述する(p.177,192参照).
   結晶学や結晶化学での対称性は,形態的・構造的な分類記述,発生的系統や適当な特徴基準による結晶の分類統合のための基礎を与える.全く同様に物理学では,素粒子,原子分子のスペクトル,基準振動,等々の分類;これらの対称性分類は,対応する構造要素上で許容される何らかの変換群に基づいている.分類の課題は,どの科学分野でも最初の課題であり,構造不変性を見出すことのできる対称性理論は,不可欠な手法である.
   しかし,これが最も重要な側面と言う訳ではない.結晶物理でもっと重要なのは,結晶の対称要素に対し,座標系を一意に関連付けることであり,これにより,一般には測定の方向に依存する物理特性(非スカラー特性)の記述の一意性が確保される.規約(表20,p.176参照)に従い軸を選べば,方位;
$$ r=x_{1}a_{1}+x_{2}a_{2}+x_{3}a_{3} $$ または  $$ [x_{1}:x_{2}:x_{3}]=[p:q:r] $$
に沿って,結晶はこれこれの物理特性を示すと明確に特定できる.種々な結晶面(例えば,劈開面,熱膨張楕円体ellipsoid面,光学屈折率楕円体indicatrix面,等々)も,
$$ hx_{1}+kx_{2}+lx_{3}=1 $$   または  $$ (h k l) $$
により,同様に,明確に特定できる.結晶学のハンドブックには,平面の結晶学的座標$$ (h k l) $$ は,この平面の座標軸に対する切片の逆数となることが示されている.
   このようにして,同一物質の結晶の物理特性の測定は,標準様式で選定した同一の座標のときに比較できる.この要請を満たさない測定は結晶物理学的な価値がない.
   結晶の対称群$$ G_{k} $$ を知れば,(特定な方位に沿っての)物理特性の測定範囲を,対称的に独立な立体角内「訳注:非対称要素」に限定できる.測定方位の選択は,対称図形を,対称的に独立なあるいは対称的に同価な領域に分割する数は,対称群の位数に等しいという理論に基づきなされる.例えば,立方体,六角形プリズムでは,そのような領域は,それぞれ1/48,1/24である(図218).結晶の特性が,対称的に独立な球面三角形の立体角内で測定されれば,この角外の方向での測定は必要がない.これは,異方性(すなわち測定の方向で物理特性が異なる)の記述のために必要な測定の数を,大いに減じる.しかし,まだこれで全てではない.
   結晶の対称群(物理量の対称群に密接に結び付いている)は,各特性を規定する独立な定数の数を決定できる.言いかえれば,結晶の注目した特性を完全に規定するために必要となる(異なる方向の)いくつの測定が必要かを,述べることが出来る.測定の数は,考察中の特性の性質と対応する物理量の変換を支配する法則に依存する.

 

結晶群の一般化(2)

空間群の発見
群拡大理論による基礎づけ
空間群の一般化
群の拡大理論に基づく空間群の記述
A.V.シュブニコフ,V.A.コプツィク(1940~1970)らが,結晶群の構成を群拡大理論に基づき記述しました.これは,あたかも電磁気学におけるマックスウェル方程式のような価値があり,群の一般化への道を開いたと言えます.

回転群を拡大して結晶点群を作る.
並進群を拡大して結晶空間群を作る.
結晶空間群を拡大して,シュブニコフ(黒白)群やベーロフ(多色)群を作る.
[定義]
$${H}$$が群$${G}$$の部分群[正規部分群に限定しない]のとき,群$${G}$$のことを群$${H}$$の拡大という.

Lagrangeの定理から,次の展開(直和分解)が保証される: 
$${G=Hg_{1} \cup Hg_{2} \cup \cdots \cup Hg_{s } }$$
部分群$${H}$$の位数は,群$${G}$$の位数の約数であるから,この約数を,部分群の指数$${s}$$という.
部分群$${H}$$の$${G}$$に対する指数$${s}$$(整数)を$${s=\left( G:H \right) }$$と標記する.

{$${ e=h_{1}=g_{1}, g_{2}, \cdots g_{s} }$$}を,群$${H}$$から群$${G}$$を作るための代表系という.

拡大には,正規拡大と非正規拡大がある:

正規拡大   ($${H \vartriangleleft G}$$の場合)
非正規拡大  ($${H \subset G}$$の場合)
非正規の拡大は,この第2回では扱わない.第3回で少しだけ言及する.
Hは正規部分群,→準同型写像,↔同型写像
$${G \to G/H \leftrightarrow G^{*}\textrm{or }G(\textrm{mod}H)}$$

$${H}$$が正規部分群($${H \vartriangleleft G}$$)であるなら
$${Hg_{j} =g_{j}H}$$なので,次の剰余類の積則が成立します:
$${Hg_{j} \cdot Hg_{l}=Hg_{j}g_{l}=Hg_{n } }$$,
すなわち,$${^{ \exists }g_{n } }$$があり,$${g_{j}g_{l} \in Hg_{n } }$$,あるいは,$${^{ \exists }h_{jl,n} \in H}$$をとり,$${g_{j}g_{l}=h_{jl,n}g_{n } }$$になります.
特に,すべての$${h_{jl,n}=h_{1}=e}$$のときは,$${g_{j}g_{l}=g_{n } }$$(代表元の1つ)となり,代表元系は群をつくり,この群を$${G^{* } }$$と標記します.[正規部分群$${H}$$を$${G^{* } }$$で拡大し,共型群が得られる]

一般には,$${h_{jl,n} \neq h_{1}=e}$$であり,
代表元系{$${ g_{1}, g_{2}, \cdots , g_{s} }$$}は,群として閉じません.
そこで,代表元系を閉じさせるために,次の積則を定義するのは自然です.
$${g_{j} \cdot g_{l}=h_{jl,n} \cdot g_{n} \equiv g_{n}(\textrm{mod}h_{jl,n})}$$
代表元系は,この積則(誘導積)に関して,商群$${G/H}$$と同型な群を作ります.代表元系の作るこのような群を$${G(\textrm{mod}H)}$$あるいは,$${G^{H } }$$と標記します.[正規部分群$${H}$$を$${G^{H } }$$で拡大し,非共型群が得られる]

$${G \vartriangleright H}$$ , $${G/H \cong G^{*} \cong G^{H } }$$のとき,$${H}$$の拡大による群$${G}$$の作り方

共型空間群  $${G=H \otimes G^{* } }$$   直積あるいは半直積
非共型空間群 $${G=H \odot G^{H } }$$    条件積
直積で記述できる場合は,$${H, G^{* } }$$ともに$${G}$$の正規部分群であり,$${G/H \cong G^{*},  G/G^{*} \cong H}$$が成り立つ場合であり,半直積で記述されるのは,片方のみが正規部分群,例えば$${H\vartriangleleft G}$$であり,$${G/H \cong G^{* } }$$のみが成り立つ場合である.
条件積が必要になる場合は,一方が法による群(モジュラス群)である場合である.

example:結晶空間群
結晶空間群 $${Φ}$$ には,並進群 $${T}$$ が正規部分群として含まれている($${Φ \vartriangleright T}$$).従って,商群 $${Φ/T}$$ が定義できる($${Φ/T \cong G}$$).
これは,空間群 $${Φ}$$ は並進群 $${T}$$ を核とする準同型写像(並進で移動した点はすべて同値)で,結晶点群 $${G}$$ に還元されるという意味である.
群 $${G}$$ は,結晶点群の場合もあるし,並進を法に持つ結晶点群$${G(\textrm{mod}T)}$$ の場合もある.

example:結晶回転群4, 6を,直積や条件積に分解する
$${4=2 \odot 4(\textrm{mod}2)}$$,    $${6=3 \otimes 2}$$

example:並進群を結晶点群で拡大

直方格子を,結晶点群2mmで拡大する 
P2mm 共型空間群,P2mg, P2gg 非共型空間群