数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
2次元結晶空間の中の対称操作で,1点を不動の特異点にする対称操作の作る群は10種類.
$$1, m, 2, 2mm, 3, 3m, 4, 4mm, 6, 6mm$$
-------------------------------------
$$2mm=2⊗m$$
$$3m=3⊙m$$
$$4mm=4⊙m$$
$$6mm=6⊙m$$
$$6=3⊗2$$
$$4=2○4(mod2)$$
--------------------------------
$$6mm\left\{ \begin{array}{@{\,} c @{\, } }
\left\{ \begin{array}{@{\,} c @{\, } }
\vartriangleright 6\left\{ \begin{array}{@{\,} c @{\, } }
\vartriangleright 3 \\[0mm]
\vartriangleright 2
\end{array} \right. \\[0mm]
\supset m
\end{array} \right. \\[0mm]
\left\{ \begin{array}{@{\,} c @{\, } }
\vartriangleright 3m\left\{ \begin{array}{@{\,} c @{\, } }
\vartriangleright 3 \\[0mm]
\supset m
\end{array} \right. \\[0mm]
\supset 2
\end{array} \right. \\[0mm]
\left\{ \begin{array}{@{\,} c @{\, } }
\vartriangleright 2mm\left\{ \begin{array}{@{\,} c @{\, } }
\vartriangleright 2 \\[0mm]
\vartriangleright m
\end{array} \right. \\[0mm]
\supset 3
\end{array} \right.
\end{array} \right. $$
$$4mm\left\{ \begin{array}{@{\,} c @{\, } }
\left\{ \begin{array}{@{\,} c @{\, } }
\vartriangleright 4\left\{ \begin{array}{@{\,} c @{\, } }
\vartriangleright 2 \\[0mm]
○4(mod2)
\end{array} \right. \\[0mm]
\supset m
\end{array} \right. \\[0mm]
\left\{ \begin{array}{@{\,} c @{\, } }
\vartriangleright 2mm\left\{ \begin{array}{@{\,} c @{\, } }
\vartriangleright 2 \\[0mm]
\vartriangleright m
\end{array} \right. \\[0mm]
\supset 2
\end{array} \right.
\end{array} \right. $$
$$3m\left\{ \begin{array}{@{\,} c @{\, } }
\vartriangleright 3 \\[0mm]
\supset m
\end{array} \right. $$
■対称群を系統的に見る
$$\begin{array}{|c|c|c|c|c|}
\hline
\begin{array}{@{\,} c @{\, } }
次元数 \to \\[0mm]
周期軸数 \downarrow
\end{array} & 0 & 1 & 2 & 3 \\[0mm]
\hline
0 & G_{0,0}=1 & G_{1,0}=2 & G_{2,0}=10 & G_{3,0}=32 \\[0mm]
\hline
1 & \times & G_{1,1}=2 & G_{2,1}=7 & G_{3,1}=75 \\[0mm]
\hline
2 & \times & \times & G_{2,2}=17 & G_{3,2}=80 \\[0mm]
\hline
3 & \times & \times & \times & G_{3,3}=230 \\[0mm]
\hline
\end{array}$$
■2次元のブラベー格子
2次元のバラベー格子は5種類
2次元結晶空間群
230の結晶空間群を数え上げた一人にフェドロフがいます.フェドロフはどのようにして空間群の数え上げを行ったのでしょうか.
注)
230種の3次元の結晶空間群の数え上げの研究は,フェドロフ(露,ぺテルスブルグ大,鉱物学教授),シェンフリーズ(独,フランクフルト大,数学教授),バーロウ(英,ロンドンの実業家)により,1890-1895の間に,それぞれ互いに独立に完成しました.フェドロフの結果が完璧であったことは,3者の認めるところであり,3次元結晶空間群はフェドロフ群とも呼ばれています.
3次元の結晶空間を対象とする前に,2次元の結晶空間を対象にして,結晶空間(=離散的な周期空間,デジタル化された空間)の構造を記述する群論を十分に理解するのが良いと思います.それは,3次元やそれ以上の高次元にも対応できる応用力となります.
2次元の結晶空間で,同一の平行多辺形タイルで平面をタイル張りする(重なりもなく隙間もない)ことが,この課題のスタートとなります.
次に,1つのタイルを同価な部分に分割します.この分割は,タイルの対称性を使って,そのタイルの非対称要素と言われる同価部分に分割します.
1つのタイルを分割できる同価部分の数は,タイルの点群の位数に等しい数です.こうして分割された部分の形には対称性がなく,非対称要素と呼ばれます.表紙に掲載した平面のタイル張りができる8つの平行多辺形から出発します.
平行多辺形の同価部分への分割方法
これら80種類のタイルは,それぞれ,並進だけで平面を張り詰めることのできる平行多辺形です.着色した部分はそれぞれの平行多辺形の非対称部分で,1つの例外(15番)を除いて,そのタイルの点群の対称操作を非対称部分に作用させ,そのタイルの全体を作ることができます.
このタイル張りで生じる平面群は$$p2 \tilde{a}\tilde{b} $$
15番のタイルの場合には,濃い黄緑色に着色した非対称要素に,タイルの点群$$2mm$$の対称操作を作用させても,薄い黄緑色に着色した部分へ移動し重ねることができません.この移動には映進操作$$\tilde{a}$$が必要です.
今,タイルの並進で無限に広い2次元平面を張り詰めるので,映進操作も対称操作に含めることができます.
これらの図形の点群を調べると,点群が重複しているものがたくさんあります.全部で17種類の平面群に整理することができます.
注)15番のタイル張りは,以下の$$p2gg$$⑧に対応.
⇒3次元結晶空間への発展を見る
フェドロフの平行多面体(Parallelohedron)と非対称要素立体(Stereohedron)
Параллелоэдры(Parallelohedra)и стероэдры(Stereohedra) Федорова
一つの平行多辺形で,平面を隙間なく埋めるという問題は,3次元空間に対しても提起できます.空間では,平行多辺形の役割は,平行多面体が担っています.代表的な平行多面体には,立方体,2つの底面を持つ6角柱,菱形12面体,細長い菱形12面体,立方8面体(切頂8面体)の5種類があります(図198).隣接する平行多面体の面が完全に一致するように,同一の平行多面体を充填し,すべての平行多面体が平行になるようにすると,重なりや隙間のない空間充填ができます.5つの典型的な平行多面体から,それを伸ばしたりずらしたりすることで,無限の派生平行多面体を得ることができます.
立方体から変形させると,直方,および,斜方の平行多面体,6角柱から変形させると,斜方の6角柱などになります.平行多面体にある種の対称性を持たせれば,一般的には非平行に配向した等価な部分に分割できます.分割された部分をStereohedron非対称要素立体と呼びます.3次元空間における非対称要素立体は,2次元平面におけるプラニゴン(非対称要素)Planigonに相当し,非対称要素立体は,3次元離散体の最小不可分な部分を表しています.それは,さらに小さい等価部分に分割することはできませんが,それらの部分は直交変換によって互いに変換し合います.ここでは,すべての非対称要素立体のカタログを作ることはせず,いくつかの例を挙げるにとどめます.
平行多面体が対称心を持たない斜方の平行六面体(対向面は異なる色とする)である場合,その図形を等価部分に分割できず,それ自体が非対称要素立体です.平行六面体の中心に対称心がある場合は,その図形は2つの非対称要素立体に分割することができます.立方体は,対称面によって48個の非対称要素立体に分割できます(図189のa参照).E.S.Fedorovが離散体(結晶空間)の230種類の対称類を導出した際に,Stereohedron非対称要素立体は大きな役割を果たしました.球などの最密充填の問題は,非対称要素立体や平行多面体による空間充填の問題に還元できる部分もあります(B.N.Delaunay, 1934参照).
図198
1.群$$G$$の2つの部分群$$H,K$$の共通部分は部分群である.
$$H \cap K=D \ni ^{ \forall }a,^{ \forall }b \Rightarrow \left\{ \begin{array}{@{\,} cc @{\, } }
H \ni ab \in K & \Rightarrow ab \in D \\[0mm]
H \ni a^{-1} \in K & \Rightarrow a^{-1} \in D
\end{array} \right. $$
2.2つの正規部分群$$H, K$$の共通部分は,$$H, K$$の正規部分群である.
$$\left. \begin{array}{@{\,} cc @{\, } }
H=k^{-1}Hk & k^{-1}Kk=K \\[0mm]
H \supset k^{-1}Dk & k^{-1}Dk \subset K
\end{array} \right\} \Rightarrow k^{-1}Dk=D, \left( h^{-1}Dh=D \right) $$
3.$$H, K$$が正規部分群なら,$$^{ \forall }h \in H$$と$$^{ \forall }k \in K$$は可換である.ただし,$$H \cap K=e$$とする.
$$\left. \begin{array}{@{\,} ccc @{\, } }
K正規部分群 & \Rightarrow & \left( h^{-1}k^{-1}h \right) k=k'k=k'' \\[0mm]
H正規部分群 & \Rightarrow & h^{-1}\left( k^{-1}hk \right) =h^{-1}h'=h''
\end{array} \right\} \Rightarrow k''=h''=e$$とすると,
$$h^{-1}k^{-1}hk=e$$だから,$$hk=kh$$が結論できる.
(逆)
① $$H, K$$が部分群で,$$^{ \forall }h \in H, ^{ \forall }k \in K$$に対して,$$hk=kh$$ならば,$$HK$$は群を作る.
② $$H, K$$は,$$HK$$の中で正規である.
(証明)
$$^{ \forall }h_{1}k_{1}, ^{ \forall }h_{2}k_{2} \in HK \Rightarrow h_{1}k_{1} \cdot h_{2}k_{2}=h_{1}h_{2} \cdot k_{1}k_{2} \in HK$$ ①
$$^{ \forall }hk \in HK$$に対し,$$hkHk^{-1}h^{-1}=H$$ ②
4.群$$\mit\Phi $$の部分群$$\mit\Phi ^{ \ast }, \mit\Gamma , D$$の指数関係
$$\left. \begin{array}{@{\,} c @{\, } }
\mit\Phi \supset \mit\Phi ^{ \ast } \supset D \\[0mm]
\mit\Phi \supset \mit\Gamma \supset D
\end{array} \right\} $$, $$\mit\Phi ^{ \ast } \cap \mit\Gamma =D$$ならば, $$\left( \mit\Phi :\mit\Phi ^{ \ast } \right) \ge \left( \mit\Gamma :D \right) $$
$$\left\{ \begin{array}{@{\,} c @{\, } }
\mit\Gamma =D+\gamma _{2}D+\gamma _{3}D+ \cdots +\gamma _{p}D \\[0mm]
\gamma _{i}D \cap \gamma _{j}D= \phi \left( i \neq j \right)
\end{array} \right. $$である.
もし,$$\gamma _{i}\mit\Phi ^{ \ast } \cap \gamma _{j}\mit\Phi ^{ \ast } \neq \phi $$とするなら,適当な$$\phi _{i}^{ \ast }, \phi _{j}^{ \ast } \in \mit\Phi ^{ \ast }$$があり,
$$\gamma _{i}\phi ^{ \ast }_{i}=\gamma _{j}\phi _{j}^{ \ast } \Rightarrow \mit\Gamma \ni \gamma _{j}^{-1}\gamma _{i}=\phi _{j}^{ \ast }\phi _{i}^{ \ast -1} \in \mit\Phi ^{ \ast }$$
ゆえに,$$\gamma _{j}^{-1}\gamma _{i} \in D \Rightarrow \gamma _{j}^{-1}\gamma _{i} \in \mit\Phi ^{ \ast } \Rightarrow \gamma _{i}\mit\Phi ^{ \ast }=\gamma _{j}\mit\Phi ^{ \ast }$$同一な剰余類になり矛盾.
ゆえに,$$\gamma _{i}\mit\Phi ^{ \ast } \cap \gamma _{j}\mit\Phi ^{ \ast }= \phi $$
$$\copyright$$
1.空間群[space groups: Пространственные (федоровские) группы]
結晶構造における対称操作の集合が作る群を空間群という. 3次元の空間群が230 種類あることは,1880年代に,フェドロフ,シェンフリーズ,バーロー(Fedorov, Schoenfles, Barlow)らにより,それぞれ独立に導かれた.
空間群$$\mit\Phi $$には,並進群$$T$$ [並進操作の集合が作る群: ねじれのないアーベル(Abel)群]が, 正規部分群[$$T \vartriangleleft \mit\Phi $$]として必ず含まれている. 従って,商群$$\mit\Phi /T$$が存在し,これは 結晶点群の一つ$$G$$と同型(isomorphism)[$$\mit\Phi /T \cong G$$]になる. つまり,空間群$$\mit\Phi $$は, 並進群$$T$$を,結晶点群$$G$$ [または,$$G$$中の回転軸,鏡映面の一部あるいは全部を,それぞれ,らせん軸,映進面でおきかえて得た$$G$$と同型な群$$G^{T}(\textrm{mod}T)$$]により,拡大して得られる.らせん軸や映進面を全く含まぬ点群$$G$$で拡大して得た空間群は,共型(symmorphic)群といわれ7 3種類, らせん軸や映進面を含む群$$G^{T}(\textrm{mod}T)$$により拡大 て得られた空間群は,非共型(nonsymmorphic)群といわれ15 7種類ある.
空間群の対称操作の記述には,ザイツ(Seitz)演算子$$\left[ A|t \right] $$が用いられる. これによると ,位置ベクトル$$r$$に対称操作$$\left[ A|t \right] $$を作用させた結果は,$$\left[ A|t \right] r=Ar+t$$と定義される.
空間群の記述には,ヘルマン=モーガン(Hermann=Mauguin)の記号から発展した国際記号が広く用いられて いる.
2.結晶系[syngonies, crystal system: сингонии, кристаллические системы]
結晶構造の対称性は,230種の空間群のうちの一つで記述できる. 結晶構造の特徴 は,3次元空間の周期性(=結晶空間)にあるのだから,どの空間群にも並進群が部分群(正確には正規部分群)として含まれている. この並進群の具体化(幾何学的表現)が結晶格子である. 結晶格子を,格子点のまわりの対称性(点群)で分類すると,$$\bar{1}$$(三斜格子), $$2/m$$(単斜格子), $$mmm$$(斜方格子), $$4/mmm$$(正方格子), $$\bar{3}m$$(三方格子 ), $$6/mmm$$(六方格子), $$m3m$$(立方格子)の7種になる.
一般に,結晶構造の点群は,その結晶構造がもつ結晶格子の点群よりも高い対称性をもつことはない. 従って,結晶構造の対称性を記述する32種の結晶点群を,その結晶点群が部分群として含まれるような格子の点群のうちの位数が最小なものに帰属させることができる. このような分類が結晶系である. 各結晶系で最も対称性の高い点群は,格子の点群で,これは完面像[holohedry, ]である. 7つの晶系の名称は,格子の名称と同じで,(表1)に各晶系に属する結晶点群をリストアップしておく.
各結晶系の結晶軸$$a, b, c$$のとり方は,単位胞の3本の稜の方向で,格子定数$$a_{0}, b_{0}, c_{0}; \alpha , \beta , \gamma $$と(表2)の関係にある.
(表1) (表2)
3.ブラベー格子[Bravais lattices : Решетки Бравэ]
結晶は3次元空間に周期をもって規則正しく繰り返される内部構造を特徴とする. 従 って,結晶構造を自分自身に重ね合せる(合同変換)対称操作には並進操作があり,これらは並進群を作る.並進群に従って,代表点(“格子点”となるモチーフ)を配列させて得られる並進群の具体化は結晶格子と呼ばれる. 結晶のすべての並進群は,抽象群の立場からは同 型であるが,得られた結晶格子の空間的な対称性(空間群)で分類すると,3次元の結晶格子は14の異なる型になることがブラベー(Bravais) (1849)により導かれた. これをBravais格子という. 格子点における点群を調べると,14種のBravais格子は,$$\bar{1}, 2/m, mmm, 4/mmm, 3m, 6/mmm, m3m$$の7種の点群に帰属できる. これらは ,三斜,単斜,斜方, 正方, 三方, 六方, 立方の各格子に対応する. 単位胞中に一つの 格子点を含むものは$$P$$(単純)格子, 複数の格子点を含むものは複合格子といい,$$I$$(体心)格子, $$F$$(面心)格子, $$C, A, B$$(底面心)格子, および,$$R_{\textrm{hex } }$$:(六方から導い た菱面体)格子がある. 14のBravais格子 の内訳を図示する.
図挿入
3.1. 体心格子[body-centered lattice: решетка объемно-центрированная ]
結晶格子(空間格子)の一つ. 斜方, 正方, 立方のブラベー格子に存在する複合格子.単位胞となる平行6面体の各頂点の他に,その中心にも格子点が存在するもの. 記号は$I$で示す. 単斜格子での体心格子は底面心格子と見なすことができる.
3.2. 底面心格子[base-centered lattice: решетка базоцентрированная ]
結晶格子(空間格子)の一つ. 単斜, 斜方のブラベー格子に存在する複合格子. 単位胞となる平行6面体の各頂点の他に,向かい合った一組の面の中心にも格子点が存在する もの. 格子点を追加した面を重ね合わせる並進方向が$$a$$軸のものを$$A$$面心, $$b$$軸のものを$$B$$面心, $$c$$軸のものを$$C$$面心という.
3.3. 面心格子[face-centered lattice: решетка гранецентрированная]
結晶格子(空間格子)の一つ. 斜方, 立方のブラベー格子に存在する複合格子. 単位胞となる平行6面体の各頂点の他に,それぞれの面の中心にも格子点が存在するもの. 記 号は$$F$$で示す.
3. 4. 単純格子[primitive lattice: решетка примитивная]
結晶格子(空間格子)の一つ. 複合格子(体心, 面心, 底面心)に対立する用語. 平行6面体の頂点のみに格子点を持つようにとったブラベー格子. どの晶系にも単純格子が一つづつ存在する.ただし,三方晶系では,単純格子$$R$$を用いずに,六方晶系の単純格子に2つの格子点を追加した複合格子$$R_{\textrm{hex } }$$を用いることが多い. その他の単純格子は$$P$$で示される.
格子の対称性が一目でわかるように,ブラベー格子では複合格子がいくつか用いられているが,複合格子は,適当な平行6面体を採用すれば,すべて単純格子に直すことができる(格子の定義から明らか).
4.実格子[lattice in realspace: решетка пространственная (кристаллическая) ]
結晶は3次元空間に周期をもつ構造である. 各周期を表す互いに独立な3本の並進べ クトル$$a_{1}, a_{2}, a_{3}$$は並進群を生成する. 代表点をこの並進群に従い分布させると結晶 格子(空間格子)が得られる. 結晶空間(実空間)とそのフーリエ(Fourier)変換である逆空間は, 互いに双対な空間であるので,逆格子に対する概念として結晶格子をとらえ,実格子と呼ぶことがある.
5.ラウエ群[Laue groups: Группы Лауэ, лауэвские классы ]
単結晶のX線回折強度像の対称性を表わす点群のことである. ピエール・キューリー(Pierre Curie)の原理(あるいは,NMC原理)として知られる因果律によると,「結晶で観測される物理現象の対称性(結果 )には,その舞台となる結晶構造の対称性(原因)がすべて反映されるはずである」. 従って,結晶構造の点群を$$G_{\textrm{cryst } }$$,この結晶によるX線回折強度像の点群を$$G_{\textrm{X } }$$とすると,$$G_{\textrm{cryst } } \subseteq G_{\textrm{X } }$$とな る. これは,結晶構造に存在しない対称要素でも,その結晶のX線回折強度像の対称性に出現することがあることを示している. 実際,結晶構造が特別な条件を満たせば,X線回折強度対称が,上昇することが知られている. しかし,どのような結晶構造であろうとも,異常分散がない限り,X線回折強度像の対称性には,必ず$$\bar{1}$$ (対称心)が存在することは,フリーデル(Friedel)則として知られているから, X線回折強度像の対称性は,結晶点群のうち$$\bar{1}$$を部分群として含む11の点群
$$\bar{1}, 2/m, mmm, 4/m, 4/mmm, \bar{3}, \bar{3}m, 6/m, 6/mmm, m\bar{3}, m\bar{3}m$$のどれかに限られる.これらをLaue群という. ある結晶によるX線回折強度像の対称性が,Laue群$$G_{\textrm{X } }$$であれば,その結晶の構造は$$G_{\textrm{X } }$$の部分群であるはずである.
6. 単位胞[unit cell:элементарная ячейка]
結晶は,ある構造単位が3次元空間に周期をもって繰り返す構造をしている. こ の構造単位(内部の原子分布まで含めて)を単位胞という. 単位胞の形は,その結晶構造 のプラベー格子に対応した平行6面体である. プラベー格子に複合格子があるので,単位胞は必ずしも結晶構造中の最小の繰り返し単位とは限らない.
6.1. 格子定数[lattice constants, cell dinensions: константы решетки, параметры единичные ]
結晶構造の単位胞の寸法(ブラベー格子の寸法)を記述する数値の組. 三斜晶系の単位胞の寸法を記述するには,平行6面体の3つの稜の長さ$$a_{0}, b_{0}, c_{0} [Å] $$,および ,それらの稜のなす角度$$\alpha , \beta , \gamma $$の独立な6つのパラメータが必要である. ブラベー格子の対称性が高くなると,記述に必要なパラメータの数は少くなくなり,立方晶系では$$a_{0}[Å] $$のみとなる.
7.対称要素[symetry elements: элементы симметрии ]
点群や空間群の要素となっている個々の対称操作のこと. ただし,ある物体の対称操作とは その物体を自分自身に重ね合わせる合同変換のことである. 結晶点群の対称要素には,回転軸, 鏡映面, 回映軸, 回反軸, 対称心がある.空間群になると並進があるので,この他に,らせん軸, 映進面が加わる.
対称要素の記述には,ヘルマン=モーガン(Hermann = Mauguin)の記号が用いられる.また,図面中に対称の要素を記入するには,定められたシンボルをもちいるが,詳細は,International Tableに掲載されている.
7.1. らせん軸[screw axis: винтовая ось ]
一つの軸のまわりの回転$$C$$と,その軸に沿っての並進$$\tau $$を連続して行なう空間群の対 称操作.回転とその回転軸方向の並進はどちらを先に行なっても結果は同じである.ザイツ(Seitz)記号で表すと$$\left[ C|\tau \right] $$. 回転操作$$C$$の位数を$$n, \left( C^{n}=1 \right) $$とすると,$$\left[ C|\tau \right] ^{n}=\left[ 1|n\tau \right] $$であるので,らせん軸が空間群の対称操作であるためには,$$n\tau $$が回転軸方向の基本並進$$T$$の整数倍となる必要がある. このため,$$\tau =\left( m/n \right) T $$ [$$m$$は,$$m<n$$なる自然数]という制限が生じる. $$n$$回回転操作から生じるものを$$n$$回ら せん軸と呼び,$$n_{m}$$と記す.例えば,$$3$$回回転軸(位数3)からは,$$3_{1}, 3_{2}$$らせん軸が生じる.
7.2. 回映軸[mirror-rotation axis: ось зеркального вращения]
点群,および空間群の対称操作の一つ. ある直線のまわりの回転とその直線に垂直な 平面での鏡映とを引続き行なう対称操作. このとき,回転成分の軸となる直線が回映軸である. 回映軸は回転成分が$$360 ^\circ /n$$のとき,Hermann = Mauguinの記号で,$$\tilde{n}$$と記す.
結晶構造で許される回映軸は,$$\tilde{1},\tilde{2},\tilde{3},\tilde{4},\tilde{6}$$であるが,それぞれの回映軸が 生成する巡回群(生成元となった回映軸と同じ記号を用いる)を調べると,$$\tilde{1}=m, \tilde{2}=\bar{1}, \tilde{3}=3 \otimes m, \tilde{6}=3 \otimes \bar{1}$$となり,回映群$$\tilde{4}$$以外のものは,他の対称操作により生成する巡回群やそれ らの直積に分解できる. 従って,$$\tilde{4}$$だけが回映軸として独立なものである.
7.3. 回反軸[roto-inversion axis: рото-инверсионная ось]
点群,および空間群の対称操作の一つ. ある直線のまわりの回転とその直線上にある 一点での反転とを引続き行なう対称操作. このとき,回転成分に関する直線を回反軸とい う. 回反軸は回転成分が$$360 ^\circ /n$$のとき,Hermann = Mauguinの記号で,$$\bar{n}$$と記される.
結晶構造で許される回反軸は,$$\bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{6}$$であるが,それぞれの回反軸が 生成する巡回群(生成元となった回反軸と同一の記号が用いられる)を調べると,$$\bar{2}=m, \bar{3}=3 \otimes \bar{1}, \bar{6}=3 \otimes m$$となり,他の対称要素により生成される巡回群やそれらの直積に分解される.また,$$\bar{1}$$は対称心そのものである.回反軸として独立なものは,$$\bar{4}$$のみであるが,回反軸$$\bar{4}$$が生成した巡回群と,回映軸$$\tilde{4}$$が生成した巡回群は同一になる.
7.4. 映進面 [glide-reflection plane:плоскость скольжения-отражения ]
空間群で存在する対称操作の一つ. 平面での鏡映$$m$$と,その平面内の特定な方向(周 期$$\tau $$)に沿って$$\tau /2$$だけの並進を続けて行なう対称操作. この平面を映進面という. また,映進演算は$$\left[ m|\tau /2 \right] $$で表される. 結晶格子を生成する並進ベクトルを$$a, b, c$$とすると,$$a/2$$の並進成分をもつ映進面を$$a$$映進面; $$\left( a+b \right) /2$$や$$\left( a+b+c \right) /2$$などの並進成分をもつ映進面を$$n$$映進面; $$\left( a+b \right) /4$$や$$\left( a+b+c \right) /4$$などの並進成分をもつ映進面を$$d$$映進面という. 単純格子では,$$a, b, c$$,および$$n$$映進面のみが可能で あるが,面心格子や体心格子では,$$d$$映進面も可能になる.
7.5. 並進対称 [translational symmetry: симметрия трансляции]
空間内のある一定の方向に,周期的に同一の基本構造が繰り返し配列しているような 状態. そのような周期をベクトル$$a$$で表示すると,並進対称をもつ構造$$F\left( r \right) $$では, $$F(n-na)=F(r)$$,($$n$$は整数)が成り立つ. あるいは,基本構造を$$A(r)$$とす ると,
$$F(r)=\displaystyle \int_{- \infty }^{ + \infty }A(r-r')\displaystyle \sum_{n=- \infty }^{ + \infty }\delta (r'-na)dV_{r'}$$ ただし,$$\delta \left( r'-na \right) $$はデルタ関数
と表す事のできる構造$$F(r)$$は,周期$$a$$の並進対称をもつ. 1次元の周期をもつ構造は ,列(array) , 2次元の周期をもつ構造は網(net) , 3次元の周期をもつ構造は格子( lattice)と呼ばれる. 結晶中の3次元の周期は,結晶格子を作る.
7.6. 鏡映面 [mirror plane: зеркальная плоскость ]
点群,および空間群に存在する対称操作の一つ. 物体と鏡に写った像の関係にあ る状態が鏡映対称であり,その鏡を鏡映面という. 鏡映面は,Hermann-Mauguinの記号で は$$m$$と表示される.
$$\left[ m_{x}|0 \right] $$は,$$x$$の符号を変える鏡映面($$x$$軸に垂直な平面)である.
7.7. 対称心 [center of symmetry, inversion: инверсия]
点群,空間群における合同変換(対称操作)の一つ. 構造内の分布状態を$$F(r)$$と し,$$F(-r)=F(r)$$が成り立つように位置ベクトルの原点がとれるならば,この原点を対称心(対称中心)といい$$\bar{1}$$で示す. 対称心が存在するような構造を点対称という.
7.8. 回転対称軸 [rotation axis: ось вращения ]
点群,および空間群の対称操作の一つ. ある直線のまわりに$$360 ^\circ /n$$だけ構造全体を回転しても,始めの状態と完全に合同になる場合に,この構造には$$n$$回回転対称軸($$n$$回回転軸,または単に$$n$$回軸)が存在するという. このような直線が回転軸である. 結晶構造で可能な回転軸の種類は,$$1$$(恒等変換),$$2$$,$$3$$, $$4$$, $$6$$の各回転軸に限られる.
続く➡(2)
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
※この結晶学用語集シリーズは,辞典形式の独立項目の集合よりなる.その理由は,「物理学辞典」培風館(1984)の私の分担執筆項目より抜粋し,専門技術研修「物性と評価技術(中級)」の講座テキスト(©RICOH CO.,LTD.1993)の付録に用いたためである.結晶学用語の背景を正確に解説している書物は現時点でもほとんどないため,再度編集し直してここに掲載する.
8. 異方性 [anisotropy: aissoTponifl]
測定の方位によって,物理的性質が変化するような媒質または場の状態をいう. 結晶構造における原子の配列は,明らかに異方性をもっている. このため結晶で観測される種々の物理現象には異方性を示すものが多い. 例えば,結晶の光学的特性に関係のある誘電率,力学特性に関係のある弾性スティフネス,その他,導電率, 熱膨張率などはテンソル量である.結晶構造の対称性を考慮すると,物理現象を測定する方向を減じることができる. すなわち,結晶点群の位数が$$n$$であれば,測定は全立体角の$$1/n$$を占める対称的に独立な領域のみで行なえば良い. また,結晶構造の対称性から,テンソル中の独立な成分を導くことができる.
9. 結晶方位 [direction in crystal: HanpaBuenie rpicrajua]
結晶で観測される物理現象は,その測定方向により変化する. 結晶空間での方位$$\overrightarrow{P}$$は ,結晶軸$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$を座標軸(格子定数$$a_{0}, b_{0}, c_{0}$$が各座標軸の単位)にとり,方位ベクトル$$\overrightarrow{P}$$の成分$$\left[ U, V, W \right]$$で記述される: $$\overrightarrow{P}=U\overrightarrow{a}+V\overrightarrow{b}+W\overrightarrow{c}$$. 結晶構造の点群の対称操作を$$\overrightarrow{P}$$に作用さ せて生じた$$\overrightarrow{P}$$と同価な方位を,まとめて表示するためには$$<U, V, W>$$とする.結晶面 $$\left( h, k, l \right) $$に垂直な方位は,逆格子ベクトル$$\overrightarrow{a}*, \overrightarrow{b}*, \overrightarrow{c}*$$を用い$$h\overrightarrow{a}*+k\overrightarrow{b}*+l\overrightarrow{c}*$$とすると簡単に表示できる.
単結晶の方位の決定には,X線回折,光軸の測定,蝕像などの手段がある.
10. 格子面(格子網面)[lattice plane, net plane: mocrocTH ysnosiie]
結晶は3次元空間に周期をもち,原子・分子が規則正しく繰り返す内部構造をしてい る. 結晶のこのような内部構造の周期性は,代数的には並進群(幾何学的には空間格子) として表現される. 一直線上にない任意の3格子点$$A_{0}, B_{0}, C_{0}$$を含む平面を考えると,この平面にはベクトル
$$\overrightarrow{a}_{1}=A_{0} \to A_{1}, \overrightarrow{a}_{2}=A_{0} \to A_{2}$$の1次結合で生成される無数の格子点$$n\overrightarrow{a}_{1}+m\overrightarrow{a}_{2}$$($$n, m$$は整数)が含まれている. このような平面を格子面(あるいは、格子網面)という. 格子面は結晶面と同様にミラー(Miller)指数$$\left( h, k, l \right) $$で表示できる. 結晶の内部構造の周期性により,格子面$$\left( h, k, l \right) $$は結晶内部で無限に繰り返し配列しており,その間隔を格子面$$(h, k, l)$$の面間隔と呼ぶ. 結晶構造の格子点は,無限に繰 り返すこのような格子面の集合上にすべて載ってしまう. 結晶構造中には,さまざまな格子面を考えることができる.
11. 面間隔 [spacing of lattice planes: MeiiiiocxocTioe paccTOfiHie]
結晶は3次元の周期をもって規則正しく繰り返す内部構造をしている. 従って,結晶面$$\left( h, k, l \right) $$も周期的に繰り返している. $$\left( h, k, l \right) $$面の面間隔とは,この周期のことであり$$d_{\left( h, k, l \right) }$$と記す.
格子定数を$$a_{0}, b_{0}, c_{0}; \alpha , \beta , \gamma $$とすると,
$$1/d_{(h,k,l)}^{2}=\left( h^{2}\sigma _{11}+k^{2}\sigma _{22}+l^{2}\sigma _{33}+kl\sigma _{23}+lh\sigma _{31}+hk\sigma _{12} \right) /V^{2}$$ となる.
ここで,$$\sigma _{11}=b^{2}c^{2}\textrm{sin}^{2}\alpha , \sigma _{22}=c^{2}a^{2}\textrm{sin}^{2}\beta , \sigma _{33}=a^{2}b^{2}\textrm{sin}^{2}\gamma $$
$$\sigma _{23}=a^{2}bc\left( \textrm{cos}\beta \textrm{cos}\gamma -\textrm{cos}\alpha \right) , \sigma _{31}=ab^{2}c\left( \textrm{cos}\gamma \textrm{cos}\alpha -\textrm{cos}\beta \right) , \sigma _{12}=abc^{2}\left( \textrm{cos}\alpha \textrm{cos}\beta -\textrm{cos}\gamma \right) $$
単位胞の体積: $$V=abc\left( 1-\textrm{cos}^{2}\alpha -\textrm{cos}^{2}\beta -\textrm{cos}^{2}\gamma +2\textrm{cos}\alpha \textrm{cos}\beta \textrm{cos}\gamma \right) ^{1/2}$$
結晶系の対称性が高くなると,これらの関係式は非常に簡単になる.
12. 晶帯 [zone: 30Ha]
2つの結晶面$$\left( h_{1}, k_{1}, l_{1} \right) , \left( h_{2}, k_{2}, l_{2} \right) $$の交線の方向をベクトル$$\left[ U,V,W \right] $$で表示し,これを2つの結晶面が属する晶帯軸の方向という.ただし,
$$U=\left| \begin{array}{@{\,} cc @{\, } }
k_{1} & l_{1} \\[0mm]
k_{2} & l_{2}
\end{array} \right|$$ , $$V=\left| \begin{array}{@{\,} cc @{\, } }
l_{1} & h_{1} \\[0mm]
l_{2} & h_{2}
\end{array} \right|$$ , $$W=\left| \begin{array}{@{\,} cc @{\, } }
h_{1} & k_{1} \\[0mm]
h_{2} & k_{2}
\end{array} \right| $$
で与えられる.同一の方向を晶帯軸に持つような結晶面の集合は同一の晶帯に属している という.
13. 有理指数の法則
[law of simple rational indices; MKOH pamoiajbiHX uapa・eTpoB, Fani 3acoH]
結晶を3次元の周期をもって配列した格子点の集合とみると,結晶の外形に現れる面は格子点を通る種々の平面である.そのような面は整数比のミラー指数$$\left( h, k, l \right) $$で記 述する事ができる. 特に結晶の外形によく現れる面は,小さな整数比のミラー指数で表現 できる. これを有理指数の法則,あるいは,アウイ(Hauy)の法則という. その理由は,格子点密度の大きな面ほど現れやすいことにある.
14. 結晶形 [crystal foms; ipocTHe]
自由な空間内で,液相や気相から成長した結晶は,平坦な結晶面で囲まれ,多面体の形をとる. 実際の結晶では,同価な結晶面とはいえ,発達の程度がさまざまで晶癖がある. しかし,全く等方的な環境で成長が行なわれるならば,同価な結晶面はすべて同じ大き さに発達するはずである. 実際の結晶は単一の同価面ばかりで囲まれているわけではなく,何種類かの同価面が組み合わさってできており(同価面どうしは同じ大きさ),これを理想形という.
結晶の外形には内部構造の対称性が反映されているはずである. 点群の対称操作を,結晶の$$\left( h, k, l \right) $$面に作用させ,得られた同価な面の集合$$\left\{ h, k, l \right\} $$により囲ま れる多面体を結晶形という. 結晶形は理想形とはことなり一種類の同価面でできている. 結晶形は完面像,半面像,等々,全部で4 7種ある.
15. 完面像 [holohedry: rojioanpo]
各結晶系で最も対称性の高い(最高位数の)結晶点群は格子の対称性を示す点群でもある. このような点群を完面像という. このような点群を結晶の$$\left( h, k, l \right) $$面に作用させ,得られた同価面$$\left\{ h, k, l \right\} $$の数は,$$\left( h, k, l \right) $$が一般面である場合に は,点群の位数に等しい. そのような数の同価面で囲まれた結晶形が完面像である.
もし$$\left( h, k, l \right) $$面が一般面でなく,点群中のある対称操作の特殊点(対称操作で不変となる位置)にあれば,生じる同価面の数は半減し,半面像,四半面像などが得られる.
16. 晶癖 [crystal habit: pas Bine]
完全に等方的な環境で成長した結晶では,同価な結晶面はすべて同じ大きさに発達す るはずである. しかし,実際の環境では,特定の結晶面だけが大きく発達した偏倚結晶が生じることが多い. このような偏倚結晶は晶癖があるといわれる. 三角平板状のダイヤモ ンド結晶,ひげ結晶などはその例である.
同価な結晶面は同じ大きさに発達しているのだが,現れる結晶面の組み合わせが変化 したために生じた外形の違いは晶相の変化という. ダイヤモンド結晶に正8面体や正6面体の外形のものがあるなどがこの例である.晶相の変化の原因は,結晶の成長温度や成長過程にある.
17. 軸率 [axial retio :zoTHoneaie oceBia eninm]
結晶の格子定数$$a_{0}, b_{0}, c_{0}\left[ \mbox{\AA} \right] $$の絶対測定がX線回折により可能となる以前は 相対比$a_{0}:b_{0}:c_{0}$が推定できるのみであった.斜方晶系などでは$b_{0}$が最大の格子定数であるから,これで規格化した$$a_{0}/b_{0}:1:c_{0}/b_{0}$$を軸率と呼んでいる. 結晶の形態の対称性,および,大きく発達している結晶面は低指数の面であるというBravaisの法則等 を考慮し,結晶面に面指数をつじつまの合うように配当する. こうして,X線回折を用いずに,ほぼ正確な軸率$$a_{0}/b_{0}:1:c_{0}/b_{0}$$,および,結晶軸間の角度$$\alpha , \beta , \gamma $$を推定することができた.
18. 面角一定の法則(面角不変の法則)
[law oftheconstancyofinterfacialangles:ョaxon iDCTOflicTBa " KPICTSJUIOB]
ニコラス・ステノ(Nicolaus Steno: Niels Stensen,1699)は,さまざまな産地の水晶の形態を研究し, 面の発達の様相は個体ごとに違うが,対応する面どうしのなす角は,常に一定であること を発見した.その後,Rome Delisle ( Rone de 1'Isle,1772)により,この法則は,他の鉱物結晶でも成り立っている一般的な法則であることが見いだされ,面角一定の法則と呼 ばれている.
19. 結晶面 [crystal face: rpaub EpKCTama]
自由な空間内で成長した結晶は,平坦な面で囲まれた多面体の外形をしている.これ らの面を結晶面という.結晶面の記述にはミラー指数が用いられ,面角一定の法則,有理 指数の法則などが成り立ことが古くから知られている. ときおり微斜面という高指数が付 けられる小さな結晶面が見られるが,これは成長丘の側面である.その他,結晶面には條線などが観察されることがある.結晶面の微細構造は結晶成長機構の方面から興味が持たれている.位相差顕微鏡や多重光束干渉法などを用いると,気相や液相から成長した結晶の結晶面には,渦巻成長層が観察される.また,結晶の方位の決定のために結晶面に生じ た蝕像の対称性を利用することもある.
20. ヘルマン=モーガンの記号 [Hemann-Mauguin notation: символы Германа — Могена]
結晶の点群,空間群,ならびにそれらに含まれる対称要素の記述に用いられる記号. 点群の対称要素は次のように記される.回転軸;回反軸は,その次数に応じて,$$1,2,3,4,6$$; $$\bar{1},\bar{3},\bar{4},\bar{6}$$と記される. ただし,回反軸$$\bar{2}$$は鏡映面になるので$$m$$と記される.また,$$\bar{1}$$は対称心と呼ばれる. さらに,上記の対称要素のうちのただ一つから生成される点群にもその生成元と同一の記号が用いられる.複数の対称要素の組み合わせにより生成される点群の記述は,生成元となった対称要素を列記して行なうのが基本方針であるが,わかり易くするために生成元以外の対称要素を付け加えることがある.回転軸$$n$$ に対し垂直な鏡映面$$m$$がある場合は$$n/m$$,回転軸$$n$$を含む鏡映面$$m$$がある場合は$$nm$$と記される. また,主軸となる回転軸を第1項に,これに直交する副軸を第2項に記す. これら2本の回転軸により生成される対称軸が新たな類を作るなら,これを第3項に記す. 例えば,点群$$222$$の第1項は$$c$$軸方向の2回軸,第2項は$$a$$軸方向の2回軸,第3項はこれらから生成された$$b$$軸方向の2回軸である.点群$$422$$も同様で,第1項は$$c$$軸方向の主軸,第2項は$$a$$軸方向の2回軸,第3項はこれから生成された$$\left[ 1,1,0 \right] $$方向に生じた2回軸である.点群$$32$$では,$$c$$軸方向の主軸とこれに直交する副軸としての2回軸が示されているが,これらから生成される3本の2回軸は,すべて副軸と同一の類に属するので,第3項は記入しないのである.点群$$4/m2/m2/m$$の例では,各回転軸に垂直な鏡映面が存在することが示されている(この点群は簡単に$$4/mmm$$と書かれることが多 い).立方晶系の点群の表示では,第1項と第2項の対称要素は互いに直交していないこ とに注意せよ. 空間群の記述では,空間格子の型を点群記号の前に表示する. また,空間群では,点群要素中の回転軸や鏡映面をらせん軸や映進面に拡張したものも現れる.例えば,空間群$$P2_{1}/c$$は,$$P$$格子をもち,2回らせん軸とそれに垂直な$$C$$映進面が存在す ることを表示している.
21. シェンフリースの記号[Schoenflies' symbols: символы Шёнфлиса]
結晶の点群,空間群,それらの対称要素の記述に用いられる記号. 結晶点群の記述は次のように行なう.
(1) $$n$$回軸のみにより生成される巡回群を$$C_{n}$$と記す.
(2) 主軸の$n$回軸と,これと直交する2回軸の副軸とにより生成される4元群$$D_{2}$$2は$$V$$と記されることもある.
(3 ) 正4面体群を$$T$$,正8面体群を$$O$$と記す .
(4) 対称心を有する群には,添え字$$i$$をつけ$$C_{ni}, D_{ni}$$などと記す.特に,対称心の みから生成される反転群は$$C_{1i}$$ではなく$$C_{i}$$と記す.
(5) 主軸と直交する鏡映面を有す る群は$$h$$ (horizontalの意)を添えて$$C_{nh} , D_{nh}$$などと記す.特に,鏡映面のみから生成される点群は$$C_{s}$$と記す.
(6 ) 主軸を含む鏡映面を有する群は$$v$$ (verticalの意)を添えて$$C_{nv}$$と記す.
(7) 主軸と副軸を含む鏡映面を有する群は$$D_{nv}$$,主軸を含みかつ副軸間を2等分するような鏡映面を有するものは$$d$$(diagonalの意)を添えて$$D_{nd}$$と記す.
(8 ) 4回回映軸を有する群は$$S_{4}$$と記す.
(1)~(8 )の規則に従って結晶点群を記すと重複するものがでてくる.例えば,対称心を含む群にうち$$C_{2i}=C_{2h}$$,$$C_{4i}=C_{4h}$$,$$C_{6i}=C_{6h}$$,$$D_{2i}=D_{2v}$$,$$D_{3i}=D_{3d}$$,$$D_{4i}=D_{4v}$$,$$D_{6i}=D_{6v}$$,となるので,$$i$$を添えて記述するものは$$C_{i}$$と$$C_{3i}$$だけで他は使われない.結晶点群ではないが,分子の対称性で 重要な点群に$$C_{ \infty v} , C_{ \infty h}$$などがある.
空間群の記述では,同一の点群から導かれた空間群は,その点群の右肩に番号を付け区別する.例えば,$$O_{h}^{1} , O_{h}^{2} , \cdots , O_{h}^{10}$$などである. Schoenfliesの記号は点群の記述 としては簡明であるので,分子の対称性や分光学などでは広く用いられている. しかし,空間群の記述としては十分な情報が得られないため,結晶学ではヘルマン=モーガンの記号から発展した国際記号が広く用いられている.
22. 回転群 [rotation group: группа вращений]
1点のまわりの回転操作の全体が作る群.これは,運動群の部分群でもある.1点のまわりの回転は直交行列$$A$$で表現される. 3次の直交行列全体の集合は直交群$$O_{3}$$をなしている.純粋な回転は,$$\left| \begin{array}{@{\,} c @{\, } }A\end{array} \right| =+1$$なる直交行列$$A$$で表現され,反転や鏡映は,$$\left| \begin{array}{@{\,} c @{\, } }A
\end{array} \right| =-1$$なる直交行列$$A$$で表現される.普通,回転群と呼ばれるものは,純粋回転のみからなり,反転や鏡映も含めたものは広義の回転群と呼ばれる.結晶点群や正多面体群(プラ トンの正多面体=正4, 6, 8,12, 20面体での合同変換群)は,広義の回転群の離散な部分群である.
23. 点群 [point group: точечная группа]
結晶点群[crystallographic point group: кристаллографическая точечная группа]
空間群の一点を不動にするような対称操作の組み合わせが作る群である.空間の一点 が不動となるためには,全ての回転軸はこの点で交差する必要がある. さらに,回転軸が鏡映面をよぎる場合も交点はこの不動点でなければならない.空間群は無限に繰り返される周期構造での対称操作の組み合わせが作る群であるので,空間群には並進操作が存在するが,点群には並進操作はない. 点群は分子などの有限図形の対称性の記述に用いられる.点群では$$ \infty $$次までのすべての次数の回転軸が存在し得る. たとえば,プラトンの正多面 体の1つ正20面体を記述する点群では5回軸が現れる. しかし,結晶のように空間に周期をもつ構造で許される回転軸の次数は,1,2 , 3 , 4, 6に限られる. 準結晶には巨視的な5回対称軸など現れるが,準結晶(ペンローズの空間タイリング)は,正則ではあるが,周期 的な構造ではない.回転軸にこのような制限を設けて得た点群は,結晶点群といわれ32種 (3次元空間で)存在する.空間群$$\mit\Phi $$中の並進群$$T$$は,正規部分群であるので,商群$$\mit\Phi /T$$ が作れるが,これは結晶点群$$G$$と同型になる.点群はHermann-Mauguinの記号か ら発達した国際記号や,Schoenfliesの記号で記述される.
結晶点群での対称操作は幾何学的空間での変換であるが,幾何学的変換と同時に図形の超幾何学的性質(例えば“色”)をも変換するような対称操作を導入すると,黒白結晶点群,色付結晶点群などが得られる. これらに対して,結晶点群のことを,特に,古典結晶点群ということがある.
24. クリプト•シンメトリー[crypto-symetry: xpiOTOcniteTpiii]
crypto-というのは“隠れた”という意味の接頭語で,幾何学的空間には現れない図形の超幾何学的性質("色''と呼ぶことにする)の対称性まで含めたものをクリプト・ シンンメ トリーという.結晶構造の対称性を記述する空間群は幾何学的空間の対称操作が作る群である.結晶構造のもつ超幾何学的性質(スピン座標等で,それらを代表して”色”と呼んでいる)の変換も幾何学的変換と同時に行なうような,拡張された対称操作は, 一般化された空間群[ザモルザエフ群,黒白空間群,色付空間群]を与える.
25. 色付空間群[colored-symmetry space groups:npocrpaicTBeHiHe rpynis UBRTHQ頁 cineTpis, SenoBciHe rpynnw]
結晶構造のように空間に周期をもつ構造の対称性は,空間群の一つ$$\mit\Phi $$で記述される. 結晶空間の各点に一つの超幾何学的な性質(これを''色’'と呼んでいる)を付加し,幾何学的変換(空間群の対称操作)と同時にその空間の超幾何学的な性質をも変換するような 一般化された対称操作,$$g^{(\varepsilon )}=\varepsilon \cdot g=g \cdot \varepsilon $$を導入する. ここで,$$g$$は空間群の対称操作,$$\varepsilon $$は性質空間にのみ作用する変換である.このような一般化された対称操作が作る群を色付空間群という. 結晶空間の各点に付加する性質のとり得る状態の数は$$P$$で記す. 特に,$$P=2$$(例えば,結晶空間に$$+, -$$の符号を付加する)のときには,黒白空間群(シュブニコフ群)と呼ばれる. 一般に,$$P$$色の色付空間群(ベーロフ群)は次のようにして得ら れる. 色付空間群の一つ$$ \textsl{Б}^{(P)}$$で記述される構造は,もし,色の区別ができないフィルタ ーを通して見るとすれば,何らかの空間群で記述されるべきである.これは,と同 型な$$\mit\Phi $$が存在するということである.次に,$$ \textsl{Б}^{(P)}$$中の色を変えない対称操作の集合$$A$$は,$$ \textsl{Б}^{(P)}$$,$$\mit\Phi $$の共通の部分群で,かつ正規部分群($$A$$の指数は$$P$$である)でなければならな い. ここで,商群$$\mit\Phi /A \cong \left\{ 1, g_{2}, \cdots , g_{P} \right\} =G$$が定義されるが,この$$G$$と同型な色置換群$$\left\{ 1, \varepsilon _{2}, \cdots , \varepsilon _{P} \right\} $$を見いだし,$$g$$に結合し,$$\left\{ 1, g_{2}^{(\varepsilon 2)}, \cdots ,g_{P}^{(\varepsilon P)} \right\} =G^{(P)}$$を得て,$$ \textsl{Б}^{(P)}\textsl{/A} \cong G^{(P)}$$となるように,$$A$$を$$G^{(P)}$$により拡大すれば,$$\texttt{\textsl{ } }^{\texttt{\textsl{(P) } } }$$が得 られる. こうして,与えられた空間群$$\mit\Phi $$と同型な色付空間群$$\texttt{\textsl{ } }^{\texttt{\textsl{(P) } } }$$はすべて導くことがで きる.
26. 反対称 [antisynetiry: ainciioieTpiff]
反対称空間というのは,3次元幾何学的空間に,超幾何学的性質(色または符号と呼 ぶ)の2値(黒白:$$+-$$:など)を付与した4次元空間のことである.この空間での対称性は,反対称点群,反対称空間群(WybHHKOB群)で記述される.時間反転の概念はランダウ(/I•エ HaH.aay)により導入され,反対称群はシュブニコフ(A.B. IBybHHKOB)により研究された.
反対称演算(反恒等演算)$$1'$$というのは,幾何学的空間内での位置を変えずに色だ け反転する演算である. 幾何学的空間内での変換$$g$$の位数が偶数のときには,変換$$g$$と同 時に色の反転$$1'$$を行なう結合された演算$$g \cdot 1'=1' \cdot g=g'$$が定義でき,黒白群が 得られるが,$$1'$$そのものを対称演算にもつ群は,幾何学的空間内での位置を変えずに色 の反転がおこるので中性群(灰色群)になる.
27. 結晶群[crystallographic groups: rpiCTajuorpaiqeciHe rpynia]
空間群の部分群は,すべて結晶群と呼ばれる.空間群自身も,並進を全く含まない結晶点群も結晶群である. この他に,$$n$$次元空間群の結晶群としては,$$k(<n)$$次元の部分空間内にのみ並進周期をもつような結晶群がある. 空間の次元の他に性質空間の次元を追加した一般空間群(クリプト・シンンメトリー)での部分群を指すように拡張することもできる. これらの結晶群の記述には記号$$G_{n}^{t}(l)$$が用いられる. ここで,$$n, t, l$$は,それぞれ,空間の次数,並進ベクトルの張る部分空間の次元,性質空間での反対称の次数である.例えば,$$G^{3}_{3}(0), G_{3}^{2}(0), G_{3}^{1}(0), G_{3}^{0}(0)$$は,それ ぞれ,3次元の空間群,層の対称性,帯の対称性,結晶点群を示す.結局,空間的に何らかの周期をもつた(結晶学的)構造の対称性を記述するということから,これらはすべて結晶群と呼ばれている.図はNeronova(HepoHOBa)(1966)のものに,Wondratshek et.al. (1971)による$$G_{4}^{4}(0)$$の数を追加し修正したもので,結晶群間の相互関係が示され ている.
$${\ttfamily \textrm{\textsl{P } } }$$
28. 4次元空間群 [four-dimensional space groups: {\textless}ieTHpevepHiie npocrpaicTBeHiHe rpyniw]
空間的4次元の結晶構造(4次元空間に並進周期をもつ構造)での対称操作が作る群. 高次元における空間群の研究は,1910年BieberbachやFrobeniusが,Hilbertの問題 に関連して,《n次元空間では空間群型は有限種類である》ことを証明して以来,多くの 学者により手がけられ,その一部は導かれていた.最終的な,4次元空間群の全リストは, H. Wondratshek, R. Bulow, J. Neubuser, H. Zassenhaus, H. Brown らにより1973 年 までに導かれた. それによると,4次元の空間群型は,enantiomorph (対掌体)を区別しない立場に立つと,4783種類(3次元の場合は219)あり,enantiomorphを区別する立場 に立つと,4895種類(3次元の場合は230)になる. 4次元空間群の対称操作では,3次元では存在しなかった位数5, 8,10,12などのものも可能となる.
(2)⇐続く➡(1)
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
※この解説は,物理学辞典/培風館(1984)の著者の分担執筆項目より抜粋編集し,専門技術研修「物性と評価技術(中級)」の講座テキスト(©RICOH CO.,LTD.1993)の付録に用いたものを再録した.
周期的離散体(периодического дисконтинуума; periodic discontinuum)の近似における物理量の変換則と対称性
色付き群における空間テンソル
一様連続媒体の近似では,媒体の全ての点が直交変換や並進に対して等価である.前節では,点群の直交変換のみを調べた.これらの点群と共に3次元連続並進群$$T_{000}$$を考察することで,$$ T_{000}\oslash G $$型の一様連続媒体の全ての運動群と,これらに同型な色付き連続体の群が作れる.
この節では,3次元に周期をもつ色付き離散体の対称性と,一般化されたテンソル量(空間テンソル)の変換則に注目する.空間テンソルは,3次元に周期をもち,Fedorov,Shubnikov,Belov群の同価点系に対し定義される点テンソルの集合である.既に演算子$$[D|\tau]$$,$$[D|\alpha+\tau]$$を知っており,Fedorov群でのこれらの積則も知っている[参照:10章の式(14.10),(15.10)].ここで,Belov群の色付き変換の演算子とこれらの積則を定義しよう.
色付き点群$$G^{(p)}$$の変換$$g_{i}^{(p_{i})}=g_{i}p_{i}=p_{i}g_{i}$$を用い,結合された演算子$$[D_{i}|0]^{(p_{i})}=[D_{i}|0](p_{i})=(p_{i})[D_{i}|0]$$を作る.ここで,演算子$$[D_{i}|0]$$は古典的(フェドロフ)群に属し(参照p.254),$$(p_{i})$$は,ここで取り上げる幾何学変換と結びつく特別な色置換である.式(2.11)に応じて,色直交変換の演算の積則は,次のどちらかの型に書ける:
$$[D_{j}|0]^{(p_{j})}[D_{l}|0]^{(p_{l})}=[D_{j}D_{l}|0]^{(p_{j}p_{l})}$$
$$[D_{j}|0](p_{j})[D_{l}|0](p_{l})=[D_{j}D_{l}|0](p_{j}p_{l})$$ (3)
置換$$(p_{j})$$は次の型に書く:
$$(p_{j})=\left( \begin{array}{@{\,} cccc @{\, } }
1 & 2 & ... & p \\[0mm]
n_{1} & n_{2} & ... & n_{p}
\end{array} \right) $$
ここで,$$p$$は,群$$G^{(p)}$$で置換される全色数.置換の積は,常に右から左へ(直交行列でのときと同様)行われる.すなわち,式(3)では,演算$$(p_{l})$$と$$D_{l}$$とが先に実行される.
色付き変換の演算子に対する積則は,次のどちらかの型に書ける:
$$[E|\tau _{i}]^{(p_{i})}[E|\tau _{k}]^{(p_{k})}=[E|\tau _{i}+\tau _{k}]^{(p_{i}p_{k})}$$
$$[E|\tau _{i}](p_{i})[E|\tau _{k}](p_{k})=[E|\tau _{i}+\tau _{k}](p_{i})(p_{k})$$ (4)
古典変換の演算子を形式的に,$$[D_{j}|0]^{(1)}$$,$$[E|\tau _{j}]^{(1)}$$と書く,ここで(1)は恒等置換である.
$$(1)=\left( \begin{array}{@{\,} cccc @{\, } }
1 & 2 & ... & p \\[0mm]
1 & 2 & ... & p
\end{array} \right) $$
式(3)と(4)を用い,色変換と古典(フェドロフ)変換の積を導く.
Belov群における運動の演算子を,恒等式
$$[E|\tau _{i}]^{(p_{i})}[D_{j}|0]^{(p_{j})}=[D_{j}|\tau _{i}]^{(p_{i}p_{j})}$$ あるいは,
$$[E|\tau _{i}](p_{i})[D_{j}|0](p_{j})=[D_{j}|\tau _{i}](p_{i})(p_{j})$$ (5)
それらの積則を式
$$[D_{j}|\tau _{i}](p_{ij})[D_{l}|\tau _{k}](p_{kl})=[D_{j}D_{l}|D_{j}\tau _{k}+\tau _{i}](p_{ij})(p_{kl})$$ (6)
で定義する.ここで,$$(p_{ij})=(p_{i})(p_{j})$$,$$(p_{kl})=(p_{k})(p_{l})$$は,色付き運動の演算子にともなう置換である.同様に,非共型色付き群に対する運動の演算子とそれらの積則が導ける.
読者の演習として,図214の群に対して,p.297Eではダイヤグラム法[めのこ]で得た色運動の積を,解析的に見出すことをお勧めする.例えば,$$P_{c^{(3) } }2$$(図216参照)で,軸$$2$$を色軸$$2^{(2)}$$に換え導いた6色群$$P_{c^{(3) } }2^{(2)}$$の考察をしよう.単位胞の上辺に沿って,4面体を$$\begin{array}{@{\,} cccc @{\, } }
4 & 5 & 6 & 4 \\[0mm]
1 & 2 & 3 & 1
\end{array}$$の様に追いながら,$$[D(g)|\tau ]$$を簡潔に$$[g|\tau ]$$と書き,群$$P_{c^{(3) } }2^{(2)}$$の生成演算子のあらわな形式を見出せる:
$$ \left[ 2|0 \right] ^{(2)}=\left[ 2|0 \right] \left( \begin{array}{@{\,} cccccc @{\, } } 1 & 2 & 3 & 4 & 5 & 6 \\[0mm] 4 & 5 & 6 & 1 & 2 & 3 \end{array} \right) \gets \to 2^{(2)} $$
$$ \left[ 1|\displaystyle \frac{c}{3} \right] ^{(3)}=\left[ 1|\displaystyle \frac{c}{3} \right] \left( \begin{array}{@{\,} cccccc @{\, } } 1 & 2 & 3 & 4 & 5 & 6 \\[0mm] 2 & 3 & 1 & 5 & 6 & 4 \end{array} \right) \gets \to c^{(3)} $$
次に,
$$ \left[ 2|0 \right] ^{(2)}\left[ 1|\displaystyle \frac{c}{3} \right] ^{(3)}=\left[ 2|\displaystyle \frac{c}{3} \right] \left( \begin{array}{@{\,} cccccc @{\, } } 1 & 2 & 3 & 4 & 5 & 6 \\[0mm] 5 & 6 & 4 & 2 & 3 & 1 \end{array} \right) \gets \to 2_{1}^{(3)}, $$
ただし,$$\left( 2_{1}^{(3)} \right) ^{3}=c$$;
$$ \left[ 2|0 \right] ^{(2)}\left( \left[ 1|\displaystyle \frac{c}{3} \right] ^{(3)} \right) ^{2}=\left[ 2|\displaystyle \frac{2c}{3} \right] \left( \begin{array}{@{\,} cccccc @{\, } } 1 & 2 & 3 & 4 & 5 & 6 \\[0mm] 6 & 4 & 5 & 3 & 1 & 2 \end{array} \right) \gets \to 2_{1}^{(6)}, $$
ただし,$$\left( 2_{1}^{(6)} \right) ^{6}=4c$$
同時に,
$$\left( 2_{1}^{(6)} \right) ^{3}=\left[ 2|2c \right] \left( \begin{array}{@{\,} cccccc @{\, } }
1 & 2 & 3 & 4 & 5 & 6 \\[0mm]
4 & 5 & 6 & 1 & 2 & 3
\end{array} \right) =\left[ 1|2c \right] \left[ 2|0 \right] \left( \begin{array}{@{\,} cccccc @{\, } }
1 & 2 & 3 & 4 & 5 & 6 \\[0mm]
4 & 5 & 6 & 1 & 2 & 3
\end{array} \right) \equiv 2^{(2)}\left( \textrm{mod} 2c\right) $$, etc.
次の関係を思い出そう:
$$\left[ 2|0 \right] \left[ 1|\displaystyle \frac{c}{3} \right] =\left[ 2|\hat{2}\displaystyle \frac{c}{3} \right] =\left[ 2|\displaystyle \frac{c}{3} \right] $$
($$\hat{2}$$は演算$$2$$に対応する演算子),なぜなら,ベクトル$$c$$は,演算$$2$$により符号を変えないからである.らせん軸$$2_{1}^{(3)}$$,$$2_{1}^{(6)}$$の色指数は,演算子の対応する冪乗が最小の古典変換を与えるように選ばれる.
Belov群の位数$$s$$の空間(複素)テンソルを演算子
$$A'(r')=(p)^{s}\left[ D|\tau \right] ^{s}A(r)=(p)^{s}D^{s}A(\left[ D|\tau \right] r)$$ (7)
により定義する.ここで,ベクトル表現の$$s$$次の行列
$$D^{s}=D \times D \times \cdot \cdot \cdot \cdot \times D$$
は,テンソル成分の列$$A=\left\{ A_{i_{1}i_{2} \ldots i_{s } } \right\} $$に作用し,この演算の後(前)に,全てのテンソル成分に,適切に定義された位相,すなわち色置換が巡回であれば,$$(p)^{s}=e^{-si\phi }$$,$$p=e^{-i\phi }$$,が乗じられる.古典演算子$$[D|\tau ]$$の最初の冪は,テンソルの偏角(argument)$$r$$に作用する.結果として,固定された点$$r$$で定義されたテンソル$$A$$は,この点での直交変換で,その色特性(位相)を変える.変換された量$$A'$$は,色空間群に対応する同価点の全系$$\left\{ r'=\left[ D|\tau \right] r \right\} $$で,演算子$$[D|\tau ]$$により繰り返される.
ある場合には,空間テンソルは実数になる.例えば,磁気空間ベクトルは次の式で定義され
$$m'(r')=(p)\left[ D|\tau \right] m(r)=(p)Dm\left( \left[ D|\tau \right] r \right) $$ (8)
結晶の磁気(スピン)構造を記述する.この場合,演算子$$(p)$$の位相変化は,固定された点の"回転"と定義される(参照:図212).
テンソル$$A=\left\{ A_{i_{1}i_{2} \ldots i_{s } } \right\} $$の独立な成分の数は,一つの単位胞内の同価点の系$$\left\{ r'=\left[ D|\tau \right] r \right\} $$の点の数を乗じた位置の点群$$G(p)$$あるいは$$G$$により決まり,特定なBelov群の胞内のテンソル$$A(r)$$の"独立な"成分の数を与える.
後に,2色Shubnikov群で定義された実際の空間テンソルに対するもっと詳しい考察をする(Koptsik,1966,1967)ことになる.演算子$$1'$$と$$\overline{1}$$の冪が乗じられた純粋回転$$\left[ C\left( k,\phi \right) |0 \right] $$である反対称演算子$$\left[ D|0 \right] '$$である.
中性群の場合には,反恒等演算子(antiidentification operator) $$1'$$は,2つの符号(色)の置換に影響を与える,すなわち,式(7)の置換$$\left( p \right) $$の部分に作用する:
$$1'=\left( \begin{array}{@{\,} cc @{\, } }
+ & - \\[0mm]
- & +
\end{array} \right) =\left( \begin{array}{@{\,} cc @{\, } }
1 & 2 \\[0mm]
2 & 1
\end{array} \right) $$
反対称群のテンソルンの分類に(古典群で極性と軸性に分けたように),中性点群$$\overline{1}1'=\left\{ 1, \overline{1}, 1', \overline{1}' \right\} $$を考察し,その群の1次元行列$$ \pm 1$$による最も簡単な行列表現は次のようである.演算1に数字1を対応させ,これらの数の群$$D=\left\{ \pm 1 \right\} $$の乗積表が,群$$\overline{1}1'$$の乗積表と同じ構造を持つように,他の3つの演算子に数$$ \pm 1$$を対応させる方法は4通りである.これらの可能性 [$$\chi (g)$$の表中で$$D_{\varepsilon } ,D_{M} ,D_{E} ,D_{S}$$とラベルされる(その理由は後で明らかになる);$$\chi (g)= \pm 1$$]と,乗積表明らかに群$$\overline{1}1'$$と同型であるこれらの可能性の一つと,$$D_{M}=\left\{ 1,1,-1,-1 \right\} $$以下に与える:
$$\begin{array}{c|cccc}
\chi (g) & 1 & \overline{1} & 1' & \overline{1}' \\[0mm]
\hline
D_{\varepsilon } & 1 & 1 & 1 & 1 \\[0mm]
D_{M} & 1 & 1 & -1 & -1 \\[0mm]
D_{E} & 1 & -1 & 1 & -1 \\[0mm]
D_{S} & 1 & -1 & -1 & 1
\end{array}$$ $$\begin{array}{c|cccc}
D_{M} & 1 & 1 & -1 & -1 \\[0mm]
\hline
1 & 1 & 1 & -1 & -1 \\[0mm]
1 & 1 & 1 & -1 & -1 \\[0mm]
-1 & -1 & -1 & 1 & 1 \\[0mm]
-1 & -1 & -1 & 1 & 1
\end{array} \leftrightarrow \begin{array}{c|cccc}
\overline{1}1' & 1 & \overline{1} & 1' & \overline{1}' \\[0mm]
\hline
1 & 1 & \overline{1} & 1' & \overline{1}' \\[0mm]
\overline{1} & \overline{1} & 1 & \overline{1}' & 1' \\[0mm]
1' & 1' & \overline{1}' & 1 & \overline{1} \\[0mm]
\overline{1}' & \overline{1}' & 1' & \overline{1} & 1
\end{array}$$
表現$$D_{\varepsilon }$$(unitary),$$D_{M}, D_{E}, D_{S}$$(alternating)は(irreducible)既約と呼ばれる.それは,これ以上簡単な群$$\overline{1}1'$$(この場合)に同型な行列群がないからである.32の結晶群$$G_{c}$$に対し,58のalternating 1次元表現がある.これらのどれもが,特定の反対称群$$G_{c}'$$が伴っている.同様に色群$$G_{c}^{(p)}$$は,群$$G_{c}$$の複素あるいは多次元表現に結び付いている(Niggli,1959;Indenbom,1960).さあ今度は,一般化されたEuclideanユークリッド空間の運動群(運動群と群$$\overline{1}1'$$との直積)を考察し,argument$$r$$とテンソル関数$$A(r)$$の変換則を特定することで,位数$$s$$の空間テンソル$$A(r)$$を決定しよう:
$$\left[ \overline{1}^{p}1'^{q}C\left(k, \phi \right) |\tau \right] ^{s}A_{i_{1}i_{2} \ldots i_{s } }\left(r\right)=A_{i_{1}^{'}i_{2}^{'} \ldots i_{s}^{' } }\left( r' \right) =\chi \left( g \right) C_{i_{1}^{'}i_{1 } }C_{i_{2}^{'}i_{2 } } \ldots C_{i_{s}^{'}i_{s } }A_{i_{1}i_{2} \ldots i_{s } }\left( \left( -1 \right) ^{p}C_{j^{'}j}\left( r_{j}-\tau _{j} \right) \right) $$ (9)
ここで,$$\chi (g)$$は,表現$$D_{\varepsilon } , D_{M} , D_{E} , D_{s}$$中の要素
$$g=\overline{1}^{p}1'^{q}=1,\overline{1},1',\overline{1}'$$ $$(p,q=1,2)$$に応じて,$$+1$$か$$-1$$をとる. $$C(k, \phi )$$は,単位ベクトル$$k$$の周りの角度$$\phi $$の純粋回転の演算子;$$C_{i^{'}i}=\textrm{cos}\left( x_{i'},x_{i} \right) $$;式(9)中で繰り返される添字$$i_{1}, i_{2}, \ldots ,i_{s}$$は,1から3の和が行われるとする.
適切に定義されると,結晶でテンソル$$A(r)$$は,結晶中での質量密度や電荷密度$$\rho (x,y,z)$$,電流密度$$j(x,y,z)$$,双極子や多重極子モーメントなどの3次元周期的な分布を記述する.式(9)で用いられる規約表現(irreducible representation) $$D_{\varepsilon } , D_{M} , D_{E} , D_{S}$$に応じて,偶数パリティ,磁気的,電気的,および電磁気的テンソル*が区別される.[*電磁気テンソルは,Pointingベクトルのように表現$$D_{S}$$で変換される.]
例えば,定常的なフェリ磁性,アンチフェリ磁性の磁気構造を記述する磁気モーメント$$m(r)$$の空間ベクトルの成分は,(9)から導かれる法則$$m_{i}'(r')=\chi _{M}C_{i'i}m_{i}\left( \left( -1 \right) ^{p}C_{j'j}\left( r_{j}-\tau _{j} \right) \right) $$により変換され,既に導いた表の$$D_{M}$$で表現される.演算子$$1'$$が磁気ベクトル$$B,M,H$$に作用したと同様,演算子$$\overline{1}$$は電気ベクトル$$D,P,E$$に作用し,対応する結晶の電気的および磁気的特性を記述するシュブニコフShubunikov類との同型性ができることに注目しよう.このようにして,磁気的結晶物理の現象論的手法と古典的手法と形式論的結合の課題は解け,特性の対称性に基礎を置く多くに課題を解くことができる(Sirotin,1962).
再び,テンソルの変換則(9)に戻り,任意の変換に対するテンソル$$A(r)$$の不変性の要求により,テンソル$$G_{A(\tau )}$$の対称空間群を決定しよう.
$$A'(r')=\left[ D|\tau \right] ^{S}A(r)=A(r)_{S}\left[ D|\tau \right] =\left[ 1'^{q}\overline{1}^{p}C(k,\phi )|\tau \right] $$ (10)
一般の場合,テンソルの対称群は,$$G \otimes P$$型の$$P$$-群である.なぜなら,結晶物理のテンソルは一般化された運動群$$G$$の部分群で変換されるほかに,指数$$A(r)$$の$$P$$-置換によっても変換されるからである.
式(10)で$$m(r)=A(r)$$とおくと,この式は結晶のFedorov(古典),または,磁気構造のShubnikov(2色)対称群になる.$$ \hat{\mit\Phi} $$を,結晶の結晶化学群$$\mit\Phi $$と同型な演算子の群とする.剛体運動$$ \hat g_{i}=[D(g_{i})|\tau ] \in\hat{ \mit\Phi} $$で,磁気原子は,点$$r$$から$$\hat g_{i}r=D(g_{i})r+\tau $$に動き,磁気モーメントの方向は対応して変化する.$$\hat g_{j}m(r)=[g_{j}]m(\hat g_{j}^{-1}r)=m(r)$$となる元$$\hat g_{j}$$のみが,磁気構造のFedorov対称群$$\hat {\mit\Phi} ^{\ast }$$を作る:$$\hat g_{j}\in \hat{ \mit\Phi }^{\ast } \subset \hat {\mit\Phi}$$. $$m(r)$$の軸性を許すと,直交演算子$$\hat g_{j}$$の純粋回転部分$$\left[ C(k,\phi ) \mid 0 \right] $$を$$[g_{j}]$$と標記し,式(8)に対し,ベクトル関数の定義域を特定化し,逆演算子により$$ m(\hat g_{j}^{-1}r) $$で$$ m(\hat g_{j} r) $$ではない.
同一の磁気構造のシュブニコフ対称群は,演算子$$ \hat{g}_{k}'=\hat{g}_{k}1'=1'\hat{g}_{k} \in $$Шの集合を含む.ここで,$$ \hat{g}_{k}'m(r)=(-1)[\hat{g}_{k}]m(g_{k}^{-1}r)=m(r) $$
ベーロフ多色対称群は,同様に,一般化された演算$$ \hat{g}_{i}^{(q_{i})}=q_{i}\hat{g}_{i} \in \hat{\mit\Phi }^{(q)}=\hat{Б } $$の集合を含む.ここで,$$ \hat{g}_{i}^{(q_{i})}m(r)=(q_{i})[g_{i}]m(\hat{g}_{i}^{-1}r)=m(r) $$
群$$ \mit\Phi P=\mit\Phi ^{(p)} $$(11章とこの章で扱った)の等式(6)に対して,ベーロフ群の積則$$ \mit\Phi =\mit\Phi ^{(q)} $$は次のようである.
$$ \hat{g}_{i}^{(q_{i})} \oslash \hat{g}_{k}^{(q_{k})}=(q_{i})[D_{i}|\tau _{j}] \oslash (q_{k})[D_{k}|\tau _{l}]=(q_{i}D_{i}q_{k}D_{i}^{-1})[D_{i}D_{k}|D_{i}\tau _{l}+\tau _{j}]=\hat{g}_{s}^{(q_{s})} $$ (6*)
(6*)では,$$p$$の代わりに$$q$$を用いているのは,(6)では$$\hat{g}_{i}p_{i}=p_{i}\hat{g}_{i} \in \hat{\mit\Phi }^{(p)}$$であるが,$$\hat{g}_{i}q_{i} \neq q_{i}\hat{g}_{i} \in \hat{\mit\Phi }^{(q)}$$であるからである.
演算子の集合$$q \in Q$$は,一般化された直交群$$ \infty \infty 1' \subset P_{000} \infty \infty m \otimes 1' \otimes \mit\Gamma $$($$\mit\Gamma $$は相似対称群)から選ばれ,これは点群の一般化された射影表現$$\mit\Phi /T \longleftrightarrow G$$を生むモジュラス群の一般型である.この場合は,式(6*)の($$q_{i}D_{i}q_{k}D_{i}^{-1}$$)は,もっと複雑な関数関係に置き換えられる.それは,結晶全体としての$$\hat{g}_{s}^{\omega (D_{i}, D_{k})}=\hat{g}_{s}^{(q_{s})} \in \hat{\mit\Phi }^{(q)}$$のような幾何空間の運動$$\hat{g}_{s}=[D_{i}D_{k}|D_{i}\tau _{i}+\tau _{j}]$$と結びついたスピン空間での局所変換$$q_{s}=\omega (D_{i}, D_{j})$$である.