数学月間の会SGKのURLは,https://sgk2005.org/
数学月間の会SGKのURLは,https://sgk2005.org/
結晶空間(=3次元の離散体)のブラベー格子は,14種類ある.ブラベー格子とは,結晶の内部構造の並進性とその対称性により,結晶構造を分類する概念である.
結晶空間は,無限に広がる3次元周期をもつ離散体(デジタル化された空間)なので,
①並進性(並進群で記述):並進で移動できる点(格子点)はすべて同価.
②格子点自体には,点群で記述される対称性がある.
結晶空間の全域に作用し,これを不変に保つ対称操作の集合が,その結晶空間の結晶空間群であり,結晶空間群の対称操作は,結晶点群と並進群の対称操作の組み合わせである.もちろん,並進群だけで結晶空間群の部分群を作る.結晶空間全域に作用し,結晶空間を不変に保つ結晶点群の対称操作は,当然,局所の格子点自体が従う対称操作でもある.
注)
並進群:3次元結晶空間には,互いに独立な基本並進ベクトル$$a, b, c$$があり,$$n,m,l$$を任意の整数として,1次結合$$n・a+m・b+l・c$$を格子点といい,すべての格子点の集合(無限集合)を格子という.格子は並進群の図的表現でもある.
結晶点群:結晶空間の対称操作(変換の前後で空間を不変に保つ操作)で,かつ,空間の1点を不動(特異点)にする対称操作の全体が作る群.
無限に広がる結晶空間で,並進で移動した位置はすべて同値(格子点はすべて同値)と考えると,無限個ある格子点を1点に還元でき,結晶空間群を結晶点群に還元することができる.
■石英,岩塩,ダイヤモンドの結晶構造の例.
石英
低温水晶α-quartzの構造を観察すると,図面に垂直な3回らせん軸(風車のような記号)が,正3角形の格子点に分布しているのがわかる.これらの3回らせん軸は,1つの空間群のなかでは,すべて右まわりか左まわりに統一されている:空間群の記号で$$P3_{1}21$$(右),$$P3_{2}21$$(左).
石英の組成はSiO2だが,この図に描かれているのはSiだけで,Si位置の紙面レベルからの高さを,黒丸,白丸,半黒丸で区別している.紙面に垂直方向の周期をc=1とすると,黒丸(+1/3レベル),白丸(-1/3レベル),半黒丸(0レベル)である.
紙面の矢印は,水平面内にある2回軸で,その高さレベルの数字が記されている.
ーーーーーーーーーーーーーーーーーーーーーーー
岩塩
上図はNaCl結晶の単位胞を示す.Naイオン(黒丸)とClイオン(白丸)が,立方体の辺に沿って,あるいは,面の対角線や体対角線に沿って,交互に並んでいる.黒丸と白丸は,イオンの種類が異なるので互いに同価点ではないが,両者のペアは同価点になれる.例えば,白丸だけをペアの代表(格子点)と考えると面心格子Fになっていることが理解できる.
NaCl結晶構造の対称性は,並進(格子)だけではない.黒丸,および,白丸位置の対称性(点群)は,ともに$$ m\bar{3}m $$(非座標記法では$$\tilde{6}/4$$)である.この点群のステレオ投影図を,格子点である白丸の位置に配置したものを上図に示した.NaCl結晶構造の空間群は$$Fm\bar{3}m$$である.
-----------------------
ダイヤモンド
上図に示すのは,ダイヤモンドの結晶構造である.これは,2つの面心立方格子$$F$$を,立方体の体対角線の方向に1/4だけ相対的にずらし重ねたものを考え,両方の面心立方格子の格子点に炭素原子を置いたものである.両方の面心格子の格子点をペアで代表点とすると考えれば,ダイヤモンド構造の格子は,やはり,面心立方格子$$F$$であることがわかる.
2つの面心格子の複合
ダイヤモンド構造の場合,2つの面心格子の格子点には同価な原子があり,2つの面心格子(黒と赤)は,例えば,映進面dにより互いに変換し合う.黒の面心格子を,$$d$$で鏡映し,かつ,$$(1/4)a+(1/4)c$$だけ平行移動すると,赤の面心格子に変換され,この逆も成立する.ここで現れた$$d$$をダイヤモンド映進面と呼ぶ.
面心格子の格子点の点群は$$\bar{4}3m=3/\tilde{4}$$で空間群は$$F\bar{4}3m$$であるが,ダイヤモンド構造では,2種類の炭素原子がこれらの2つの副格子の格子点を占めていて,ダイヤモンド構造の空間群は$$Fd\bar{3}m$$である.
空間群$$Fm\bar{3}m$$と$$Fd\bar{3}m$$には,共通な部分群$$F\bar{4}3m$$を含み,点群$$m\bar{3}m$$と$$d\bar{3}m$$(格子を法とする点群)は,互いに同型な点群である.結局,空間群$$Fd\bar{3}m$$は空間群$$Fm\bar{3}m$$から,鏡映面$$m$$を映進面$$d$$に置き換えて得られる.
■非座標式標記法(ロシア式)と座標式標記法(国際式)
結晶空間群$$\mit\Phi $$は,並進群$$T$$と結晶点群$$G$$(あるいは,並進群$$T$$を法として拡張された結晶点群$$G^{T}$$)の積で作られます.
結晶点群$$G$$を用いた場合に生じる空間群をシンモルフィック,拡張された結晶点群$$G^{T}$$を用いた場合に生じる空間群を非シンモルフィックといいます.
空間群の標記法は,基本的には,群の生成元を列挙することです.まず,格子のタイプを表す記号を冒頭に置き,続いて結晶点群の生成元を並べます.国際的な標記法では,点群の生成元を,座標系の$$x, y, z$$に対応する順番で配列しますので,これを座標式標記法と言います.ロシア式標記法では,前の対称要素の方位とそれに続く対称要素の方位の関係を標記します.直前の対称要素の方向に対して,続く対称要素の方向が,直角な場合は($$:$$),平行あるいは同一面内にある場合は($$・$$),直角以外の角度で斜交する場合は($$/$$)を,間に置きます.国際記号はInternational Tableで用いられているもので,この標記法れが標準ですが,群の構造情報が詳細明瞭に表現できるロシア式は,空間群の理論を扱うのに欠くことはできません.
230種類ある結晶空間群を分類する7つの晶系の内から,Orthorhombic晶系(慣用的に”斜方晶系”と呼ばれる)をとり上げ,説明します.
■Orthorhombic晶系の部
単純格子のタイプは,互いに直角な$$a, b, c$$軸よりなる.単位胞の形は,直方体(レンガのような形)です.
「帯」(バンドやリボン)とは,1次元に周期のある2次元面の呼び名とすることにします.
帯には表面と裏面の2面がありますが,それは,我々が3次元空間にいて,帯の2次元面を見るからです.
帯自体が厚みの次元のない2次元世界ですので,2次元世界にいれば表面も裏面もありません.
帯の模様の対称性を考察するにあたり,1面(片面)帯と2面(両面)帯に分けて,それぞれの空間で空間群を調べます.
■1面(片面)帯の7種の空間群
1面帯(周期は1次元)を記述する空間群は,以下の7種類あります.
1面(片面)帯の7つの空間群
赤記号は対称要素.緑のモチーフは非対称単位.
1面帯の模様を,モチーフの分布で表現している.
片面帯の対称操作には,周期$$a$$の他に,映進面$$\tilde{a}$$,鏡映$$m$$,2回軸$$2$$が可能です.
周期$$ a $$は除き,他は皆,位数2の対称操作です.このほかに対称心(反転)$$\bar{1}$$があるように思うかもしれませんが,反転操作は,裏表のある3次元以上の世界で可能な操作で,片面だけの2次元平面には存在しません.
これらの組み合わせで生成される群は,上記の7種類になることがわかるでしょう.
もし,位数2の対称操作以外(例えば,4回軸など)の対称操作が加わった集合を考えると,帯(1次元だけ周期がある)の世界では,群を生成できません.
■下図のイスラム模様は,
Ahmed Saad Analysis of the arabian geometric patterns より引用
Ahmed Saad作品より引用
このイスラームの模様の作品には,9本の片面帯からできています.
各帯には,局所的な,4回軸,6回軸,8回軸が見られます.しかしながら,このような位数が2より高い対称操作が,1次元周期の世界の全域に作用することはできないので,群の生成に寄与することはできません.結局,これらのイスラームの模様の空間群は,以下のようになります.
イスラームの模様の特徴は,局所的に,対称性の高いロゼットが嵌め込まれていることです.空間群で記述すると,これらの局所的な対称性は反映できないので残念ですが,これらの1面帯から受ける印象は,高次元の影を見るような不思議な魅力があります.
■演習
説教壇の階段手摺模様に見られる片面帯の空間群は,7種類のうちのどれでしょうか.
2次元平面には,裏表があると思いますか/ないと思いますか?
2次元とは厚み方向の次元のない世界ですから,その世界には,表面や裏面の区別はありません.しいて言えば,片面だけ(1面だけ)の平面です.この2次元平面を私たちの住む3次元世界に置いたとすると,表側面と裏側面の区別が生じます.
周期的な2次元平面とは,面内に2つの独立な並進ベクトル$$a,b$$があり,この2つのベクトルで挟まれる平行4辺形を単位胞(単位タイル)として,平面を敷き詰めた構造です.周期的な2次元平面の対称性(平面群)は17種類ありました.いわゆる17種類の壁紙模様のことです.2次元平面(壁紙模様)は片面のみの世界で考えたものです.
我々の3次元の世界の中で,2次元の平面を見たときに,表面と裏面の区別が生じますが,このように表裏のある2次元平面を「層」と呼びます.
層というのは,3次元の世界に置かれた2次元平面ですので,層には表面と裏面があります.
層(表側と裏側のある面)の2次元周期的模様の対称性(空間群)は,80種類あります.もちろん,80種類のうちに片側のみの面の対称群17種類は含まれます.
片側のみの面の対称群17種類から,どのようにして80種類の空間群が導けるのでしょうか.
第1の方法は,層の内部(層に含まれるような)に,対称心,鏡映面(あるいは,映進面),2回軸(あるいは,2回らせん軸),などの,位数2の対称操作を導入し,片面の世界を他の面の世界に写像することです.つまり,
片面のみの壁紙模様の17種類の平面群と,層の内部に置いた位数2の対称群との直積で「層の空間群」を生成する方法です.
第2の方法は,2次元(片面)平面群の生成元を,表面と裏面との間の変換が起こるものに置き換える方法です:回軸対称軸を位数2のらせん軸に,あるいは鏡映面を映進面に置き換えることです.
こうして,17種類の平面群から,80種類の層の空間群を導くことができます.
層の(空間群)対称性をすべて導くことは,30年代にドイツの科学者;Hermann,Weber,Alexanderらによって完了しています.
層に対する空間群など,何に応用できるのかと思う方もおられることでしょう.層の対称性(空間群)は,表面や界面の記述に用いることができます.結晶学では液晶構造,ドメイン界面,双晶,エピタキシャル接合の研究に,物理化学では単分子層や薄膜の研究に,生物学では膜構造やその他の生体組織の研究に応用できます.また,建築芸術においても, 透かし彫りの格子構造,覆い,フェンス,看板などのデザインに応用できます.
それにもましてこの概念が重要なのは,層に対する空間群の内部構造を理解することが,群の拡大理論に直結し,反対称群などの概念の構築の基礎になることです.
「層」と壁紙模様の関係は,「帯」と縁飾の関係と似ています.壁紙[2次元]模様から層[3次元中の2次元]に移行するには,特異平面が極性であるという要請を緩和する必要があります.「層」を特徴づける2つの条件は:特異平面(片面および両面)の存在[簡単のために,層の特異平面は常に水平とします]と,2つの並進軸です.この定義を受け入れるならば,壁紙模様の概念は層の概念に含まれることになり,層に特異点がないという要請もこの定義から導かれます.あらゆる種類の層の対称性をすべて導くことは,30年代にドイツの科学者;Hermannヘルマン,Weberウェーバー,Alexanderアレクサンダーらによって行われました.層の対称性は,結晶学では液晶構造,ドメイン界面,双晶,エピタキシャル接合の研究に,物理化学では単分子層や薄膜の研究に,生物学では膜構造やその他の生体組織の研究に応用されています.建築芸術においても, 透かし彫り格子構造,覆い,フェンス,看板などのデザインに応用できます.
層の対称要素
壁紙模様は片面だけなので,模様のある表側面から裏側面に模様を移す「反転」という対称要素は存在しません.これらの対称要素は,層の内部に存在し,対称心,水平面内にある位数2の対称軸(単純回転,らせん回転),水平な対称面や映進面などです.古典的な対称原理に留まる限り,未発見の新しい対称要素を層に見出すことはありません.しかし,層の対称性を研究することは,対称性の概念自体を拡張し,層の反対称群や3次元(有限および無限)図形の対称群の導出に繋がります.
層の対称類の導出.表現と表記法
既に導いた2次元平面群の17種類に加えて,層のすべての対称類の導出は,これら17種類の中から同一の壁紙模様をペアにするか,あるいは,生成元に「反転」の対称要素を追加することです.まず,各類に水平な対称面を追加すると,層の17個の両面対称類ができます.新しい対称要素を導入した結果,特異平面の単位面積当たりの基本図形の数は,もし,複数の古い図形から作られた新しい図形同士の融合や絡み合いがなければ,明らかに2倍になります.
層の対称類の表現は,帯で先に使用した方法と同じで,図184-187にその単位胞を示します.図に表示されているのは,観察者方向に向いた面で,黒い3角形が見えれば,その裏側は白い3角形,白い3角形が見えれば,その裏側は白い3角形です.点のある3角形は,「表側面」と「裏側面」が同じ両面3角形です.
両面層の空間群の非座標記号は,片面層の空間群の場合と同様です(図149参照).シンモルフィック群の対称記号を得るには,2次元並進群$$( a/b)$$ ,$$(a:b)$$ ,あるいは,$$\left( \displaystyle \frac{a+b}{2}/a:b \right) $$を,有限図形に対応する対称群に「乗じる」必要があります(図69参照).点群の対称要素に層平面内の並進を「乗じる」ことになり,いくつかの派生対称要素が生じます.並進群と点群の記号の間には,これらの群の対称要素の相対方位を表示する記号($$・$$あるいは$$:$$)が置かれます.
どの場合(図187の70-72, 74の層を除く)でも,点群の記号で,最初に左に書かれてい対称要素は,層$$( a,b) $$の平面と並進群の記号で括弧内の最後に書かれている並進軸に,平行($$ ・ $$),または,垂直($$:$$)です.
このような状況下で,点群の記号は必ずしも標準形ではないが,図69と同じ分離記号($$・$$あるいは$$:$$)が用いられます:
$$m:2=2:m, m・2=2・m, m:2・m=m・2:m, m:4・m=m・4:m, m・3=3・m, m:3・m=m・3:m$$, $$2:3=3:2, m・6=6・m, m:6=6:m, m:6・m=m ・6:m$$.
非シンモルフィックの層群の対称記号中で,$$2$$回回転軸の一部または全部が2回らせん軸$$2_{1}$$に置き換えられ,対称面$$m$$が映進面$$\tilde{a}, \tilde{b}, \tilde{ab}=\tilde{n}$$[最後の平面では,並進$$\left( a+b \right) /2$$は単位格子の対角方向]に置き換えられています.層の空間群は全部80で,そのうち45はシンモルフィック,35は非シンモルフィックです.
80種類の層の対称類
層の個々の対称類について詳細を記述することはしません.なぜならば,図形の正則系の投影図(図184~187)から,基本的事項は直接見てとれるからです.これらの投影図には,対称要素は全く表示されず,図形(3角形)の相互配置のみが示されています.図184-186の細い線は,層の単位胞を区分しています.図187では,辺を挟んで隣接する2つの3角形で単位胞は構成されます.層を作るには,隙間も重なりもなく単位胞を並進させて平面を埋めます.
さらに,表11には,図149と同様な軸方位で,層の空間群の非座標表示と座標表示(国際表示)を比較掲載しました.読者は,図149と図69の群の表示を参考にして,両面層の対称要素の配置を投影して描いてみるとよいでしょう.
球の密な充填(積層).結晶学と構造工学における重要性
球の3次元充填でこれがが最密であるというKepler予想は肯定的に証明されました.この予想の証明は難問で400年もかかりました.しかし,ここでは,その構造が最密であるという断定はあえて避け,密な充填というレベルにとどめます.さらに,ここで考察するのは,厳密に言うと,球のランダムな充填は検討外で,球の最密配列層の積層(規則的)の範疇に留めていますです.そのため,充填ではなく積層という言葉を使うようにしています.
(注)ケプラーはまた、球を敷き詰めたときに、面心立方格子が最密になると予想した。 この予想はケプラー予想と呼ばれ、規則正しく敷き詰める場合に関してはカール・フリードリヒ・ガウスによって早々に証明されたが、 不規則な敷き詰め方に関しては、400年もの間未解決の問題であった。ケプラー予想は1998年に、トーマス・C・ヘイルズによって、コンピュータを駆使して解決された。wikiより引用----
現在,離散体(=結晶空間)の対称性は,結晶学や固体物理学で関心を持たれていますが,その理由は,すべての結晶は離散体であるからです.しかし,この問題は,他の学問分野や工学分野からも少なからず関心を集めています.特に,建築美術では,空間的な構造を計算する方法がなく,「平面的な問題」にとどまっていましたが,今日では,離散体の対称性理論は,建設工学に応用されるようになりました.ここでは,レンガ積みやトラス構造などや,物体を最も密に詰めるという問題に係わります.隙間や重なりなく平面を充填したり分割する様式や球の密な充填様式は,N.V. Belov(1947年)とToth(1953年)の問題提起が参考になります.
一見すると,球を高密度に充填する方法は1つしかないように見えますが,実際には無限にあります.これを理解するために,同一の球を,それぞれの球が6つの球に接するようにして1層並べてみましょう(図195のa)[パチンコ珠をトレィに並べた様子です].この配置は平面では,最も密度の高いものになることがわかっています.これを,第1層として層の積み重ねを考えます.第2層の球を,第1の層の上に,最も密な配置となるような唯一の方法で配置することができます:第2層の球の 1 つは,2の位置または 3の位置の窪みを占めることができますが,これらは,どちらも同じ結果になります.次に,第3層を,出来上がった2層系の上に積み重ねるわけですが,2つの方法があります:第3層の球は,第1層の球と同じ位置を占めるか,第2層の球が2の位置にある場合は3の位置(第2層の球が3の位置にある場合は2の位置)を占めるかです.このようにして得られた2種類の3層系の違いは,第3層の層の球を投影した時,第1層の球と一致するかしないかにあります.
球の中心を平面に投影すると3種類の位置ができますが(図195のb),どのような積み重ねであろうとも,この3つの位置以外に球は存在しないことがわかります.したがって,球の最も密な充填は,数字の1,2,3からなる記号で表すことができ,これらの数字の有限または無限の列のなかで,同じ数字が2つ続かないようにします.明らかに,この条件を満たす3つの数字の配列様式は無限です.したがって,球の最密充填は無限にあります.無限に続く数字の列が,ある同一の有限の組み合わせを周期的に繰り返すならば,その構造は対称的(周期的)です.そうでなければ,同じように球を高密度に積み重ねても,少なくとも層に垂直な方向には,非対称(非周期的)な構造になります.例えば,12312 12312 12312....は,12312という組み合わせが周期的に繰り返されていることから,対称的(周期的)な5層構造と定義されます.この列の2つの数字の間に,1つの余分な数字を挿入すると,構造の並進対称性が一気に崩れます.
対称的(周期的)な積層において,すべての球(半径は等しい)の構造中で占める位置は,互いに同価ではないことに注意しましょう(同価性は3層構造の場合にのみ当てはまります).多層構造のすべての球には,構造のすべての層ではないが,異なる層にある並進同価な球の無限集合があります.非対称な積層では,同じ球は同じ層の同じ位置にしか入りません.
球の最密充填は,どのような対称群になるでしょうか.ある対称的な積層に対応する数字の配列を見ましょう.数の列が,左から右に読んでも、右から左に読んでも同じなら,構造には対称面となる層平面が存在します.例えば,列1213121312.....では,対称面は層2と層3にあります.もし,順方向と逆方向の読み取りで,数の並びが違っているなら,構造に層(水平方向)に沿った対称面はありません.水平方向の対称面を持つすべての構造は,同じ6方対称($$P6_{3}mmc$$)を持っています. 例えば,6方対称の2層積層12(図196のa)は,このような対称性です.
対称要素と球の積層構造の投影図を重ね合わせ,第1層の球を実線で,第2層の球を破線で示します.第1層から第2層への変換は,紙面に垂直な螺旋軸$$6_{3}$$と$$2_{1}$$の回転(単位胞への投影はこれらの軸のよぎる点で,それぞれ羽付きの黒い6角形とレンズで表示),反転(紙面から$$c/4$$上にある白丸),並進$$c/2$$を伴う回映(破線)の垂直な映進面(破線で表示)が担う.これらの要素に加えて,この投影図には,垂直方向と水平方向の対称面が描かれています(後者は1番目の層の球の中心と一致しています).水平な対称面間を通過する水平な2回軸は,投影図には表示しません.
水平な対称面を持たない球配列(立方体の3層配列を除く)は,すべて3方対称性を持つ.例えば,12132の3方対称の5層積層は,空間対称群が$$P\bar{3}m1$$である(図196, b).与えられた投影図は,各層1,2,3の球をそれぞれ長短の点線と実線で表しています.
4番目の層の球は1番目の層の球と,5番目の層の球は2番目の層の球と,投影が一致しています.紙面上にある対称心(小さな白い円)は,3番目の層の球の中心と接点に一致しています.同じ中心で,4番目の層の球(紙面上)は2番目の層の球(紙面より下)に,5番目の層の球は1番目の層の球に映されます.
この投影図には,対称心のほかに,垂直方向の対称面(実線),映進面,垂直方向の単純軸と回反軸$$3, \bar{3}$$が示されています.水平方向の対称軸$$2, \bar{2}$$は,投影されていません.
図196のcは,立方面心格子の対称性を持つ3層構造の投影図です$$Fm\bar{3}m$$.図193のcとは対照的に,このグループの対称要素は,垂直軸$$3$$に沿って図面上に投影されており,点群$$m\bar{3}m$$のステレオ投影の中心は,球の中心と一致しています.1番目の層の球の中心は紙面の中心にあります.1番目の層の球から2番目の層および3番目の層の球(図中に数字で示されている)への移行は,垂直な螺旋軸$$3_{1}, 3_{2}$$で回転させることによって行うことができます(それらの投影は,羽付きの小さな黒い3角形で示されています).また,対称心(レベル$$c/6$$および$$c/3$$の小さな白い円)で反射させることもできます.2番目の層と3番目の層の球の中心は,投影図に対応する数字で示されているように,レベル$$c/3$$と$$2c/3$$にあります.さらに,この投影図では,レベル$$c/2$$にある対称心が,2番目の層と3番目の層3の球と映進の垂直面を結んでいます.群$$Fm\bar{3}m$$の対称要素の一部は,投影図には表示されていません.
立方および6方の高密度充填の3次元モデルを図197のa,bに示します.2層積層では、位置3(図195のa参照)が球で占められておらず,層に垂直に走る構造的なチャネルが,6次の$$6_{3}$$の3方向のらせん軸とその方向で一致している.立方積層には,構造上のチャンネルがありません.この2つの積層は,ほとんどの化学元素の結晶構造や,多くの無機化合物や鉱物の構造における陰イオンの積層に対応しています.
平行多辺形とプラニゴン
寄せ木細工での利用
一つの図形を用いて,平面を隙間も重なることもなく埋め尽くす課題にしばしば出会います.図形を互いに平行配置し平面を埋め尽すことができ,その図形がポリゴン[凸多角形]であれば,その図形は平行多辺形parallelogonと呼ばれます.任意の平行4辺形と,対辺が平行で等しい6辺形だけが,平行多辺形になれ,この他に平行多辺形はありません.こうして,次の8つの典型的な平行多辺形が作れます(図171).内訳は,4つの平行多辺形(正方形,長方形,菱形,傾いた平行4辺形)と,4つの平行6辺形(正6角形,対辺に垂直な方向に伸びた6辺形,対角を2等分する方向に伸びた6辺形,歪んだ6辺形)です.
平行多辺形からプラニゴンplanigon(すなわち,平面を隙間なく重ることもなく埋め尽くす形の平行多辺形で,平行移動だけでなく回転軸や対称面で反射した位置にも配列できる)を得るには,各平行多辺形を対称性に従い等価な部分に分割すれば十分です.例えば,正方形は8通りの方法で等価な部分に分割できます(図172,19-26).もし,正方形を非対称図形として扱えば,分割できず(19)のままであり,この場合は平行多辺形であると同時にプラニゴンでもあります.もし,正方形を対称性2・mにするなら,等価な部分への分割には2つの方法があります(20,21).2回回転対称性を持たせるなら2つの台形への分割になります(22).対称性4・mにする,正方形の4つの等価部分への分割なら2通り(23,25),および,8つの等価部分への1通りの分割(26)があり,4回回転対称性にするなら,4つの等価部分への分割は1通り(24)があります.すべての平行多辺形の等価部分への分割は,これと完全に同様な方法で行います.図172には全部で48通りの平行4辺形のプラニゴンへの分割結果が掲載されています.ただし,これらの分割された平行多辺形の48個のうちのいくつかは,平面を埋めるた結果が同じになります.例えば,平行多辺形19と23は,同じ単純正方格子になります.また,平行多辺形21,25,26は直角2等辺3角形の異なる寄せ木パターンを作ります.
平面をプラニゴンで埋める問題は,確かに,もっと一般的な問題の特殊なケースで,等価な図形で平面を埋める問題は早くから考察されてきました.この特殊なケースは,床や道を張り詰める寄せ木デザインなどで実用的な重要性があります.
[訳者注]ここで扱う平面の分割は,結晶(周期的内部構造)学の基礎になるもので周期的なものであります.ペンローズタイリングのような非周期の平面分割(充填)もあります.
2次元のバラベー格子は5種類
\documentclass[a4paper,10pt]{jarticle}
\usepackage[dviout]{graphicx}
\begin{document}
$$\begin{array}{|c|c|c|c|c|}
\hline
単位胞の形 & 晶系 & 非座標式表示 & 座標式表示 & 格子 \\[0mm]
\hline
正方形 & 正方格子 & \left( a:a \right) & p & \begin{minipage}[b][79pt]{77pt}
\includegraphics[width=77pt,height=79pt]{2次元結晶学_001.bmp}
\end{minipage}
\\[0mm]
\hline
正3角形 & 6方格子 & \left( a/a \right) & p & \begin{minipage}[b][86pt]{89pt}
\includegraphics[width=89pt,height=86pt]{2次元結晶学_002.bmp}
\end{minipage}
\\[0mm]
\hline
面心長方形(菱形) & 直方面心格子 & \left( c/b:a \right) & c & \begin{minipage}[b][78pt]{80pt}
\includegraphics[width=80pt,height=78pt]{2次元結晶学_003.bmp}
\end{minipage}
\\[0mm]
\hline
長方形 & 直方格子 & \left( b:a \right) & p & \begin{minipage}[b][84pt]{81pt}
\includegraphics[width=81pt,height=84pt]{2次元結晶学_004.bmp}
\end{minipage}
\\[0mm]
\hline
斜交4辺形 & 一般格子 & \left( b/a \right) & p & \begin{minipage}[b][73pt]{88pt}
\includegraphics[width=88pt,height=73pt]{2次元結晶学_005.bmp}
\end{minipage}
\\[0mm]
\hline
\end{array}$$
\end{document}
■
晶系 | 単位胞 | ブラベー格子 | 非座標式標記 | 座標式標記 | 点群 | 空間群 |
6方 | ||||||
晶系 | ブラベ格子 | 点群 | 空間群 |
六方 $$6mm$$ |
正3角形 | ||
正方 $$4mm$$ |
|||
長方 $$2mm$$ |
|||
斜方 $$2$$ |
部分群の系列