掲示板

米国の数学月間

2014/04/03 SGK通信(2014-11)数学的カードマジック

2014/04/03
SGK通信(2014-11)数学的カードマジック

数学的カードマジック
小さなごまかし
Colm Mulcahy,MAA(MathematicalAssociation of Amereica)コラムニスト,
Spelman College professor
Christopher Morgan,コンピュータ・サイエンテスト,マジシャン,パズル収集家

http://www.mathaware.org/mam/2014/calendar/fibs.html
様々にシャッフルしているようだが,結局はフィボナッチ数列をなすA,2,3,5,8,Kの6枚のカードを選んで使うのがミソだ.

2014/04/03 SGK通信(2014-09)不思議な魔方陣

2014/04/03
SGK通信(2014-09)不思議な魔方陣

不思議な魔方陣
http://www.mathaware.org/mam/2014/calendar/magicsquares.html
Ethan Brown
Mathemagician,
Massachusetts,AndoverのPhillipsAcademyAndoverの高校生.

公衆の前で,数字を呈させ,魔方陣を直ちに作ります(第1のビデオ).こんな魔方陣です.
square
第2のビデオで,縦および横の総和の任意の数を提示させて,魔方陣を作る方法の秘密がわかります.
第3のビデオは,ラテン方陣から,もっと複雑な魔方陣を作る方法を説明します.

 

 

 

 

 

 

 

 

----
◆黒板を見ていると大体わかりますが,もっと色々説明しているようです.
英語の聞き取れる方はぜひ説明協力をお願いします.
翻訳要点をSGK通信に掲載してください.SGK通信は,日本数学協会WEB,数学月間の会にあります.
◆数学月間のHPを作りました.sgk2005.sakura.ne.jp です.
こちらにもログインしてご参加ください.
◆今年の数学月間懇話会は7月22日に実施します.

2014/03/10 SGK通信(2014-07)テーマエッセイ

2014/03/10
SGK通信(2014-07)テーマエッセイ

MAM2014
数学は,数学を使うものにミステリー感を十分与えてきた.なぜそうなるのか?それは文字通り魔法ともいえるだろう.手品や目くらましで伝統的な魔法と幻影は織りなされるが,誰でも数学の助けを借りて,神秘的なカードトリックを演じたり,オーダーメイドの魔方陣を楽しむことができる.だが,ジャグリングや電光石火の暗算のような,複雑で神秘的な活動も,数学の中に強く残っている.
2014年のMAMでは,30個のmagical,mysterious,mathematics現象を提示する.
こらは,幼い子供から専門の数学者まで,誰もが容易にわかり楽しむことができる.
4月中の毎日,新しい項目がwww.mathaware.orgに掲載される.入門ビデオは,その日のトッピックの強力なデモンストレーションになる.更に深い理解を望むものや教室での利用のためには,補足教材により,現象の底流にある数学が顕かにされ探検できる.
「mathematics,magic,mystery」の関連は,多作の著者マーティン?ガードナー( 1914-2010年)の1956年からのセミナー本の際立った歴史がある.
ガードナーは四半世紀以上にわたってアマチュアとプロの数学者の両方を喜ばす「数学ゲーム」と呼ばれるScientific Americanの非常に影響力のあるコラムを持っていた.
「数学がこれまでに持った最良の友人」とも称されるガードナーの生誕百年を祝うことは,魔法やミステリーに「ああ!」と感動する人々を先導する新世代に働きかけるMAMの活動と一致する.
http://www.mathaware.org/mam/2014/essay/

★数学と宇宙_MAM2005

MAM2005

数学強調月間 ( MAM )――4月, 2005

   「 Mathematics and the Cosmos/ 数学と宇宙 」

数学はあらゆるレベルで宇宙を理解しようとする我々の試みの中心にある.リ−マン幾何やトポロジ−は宇宙のモデルを提供する.数量的シミュレーションは大規模動力学を理解する助けとなる.天体力学は太陽系を包括する鍵を握っている.数学的ツ−ルの広い多様性は我々を取り囲む空間を実際に探査する為に必要になってくる.
米国の数学会,統計学協会,数学協会と工業応用数学協会は,2005 年MAMのテ−マを「数学と宇宙」にすると公表している.
数学は最も理論的なところから最も世俗的なところ迄あらゆるレベルで宇宙を理解する我々の試みの中心にある.現代の宇宙論は,3次元から多次元の湾曲した空間概念に沿って空間の性質を考えたリ−マンのアイデアに基づき,アインシュタインによって4次元時空間が採用された.重力は幾何であるというアインシュタインの基本的な洞察である.彼の有名な場の方程式から,アインシュタインは理論的な根拠に基づいて,重い対象物のそばを通過する時光線が曲がること,水星の近日点の歳差の正確な量,宇宙の膨張,ブラック・ホ−ルの存在,連星の挙動,重力波の存在を演繹し,それらの正当性を確証する実験を導いた.
直接実験の領域に関しない場合でも,他の数学的方法が銀河系と星団,銀河系とブラック・ホ−ルの衝突や他の大規模な重力の相互作用運動のシミュレーションを実行するのに重要である.太陽系のレベルではニュ−トンによって始められ,引き続く世紀を越えて生み出された数学的方法が,潮汐の動き,地球の赤道のふくらみ,以前には知られていなかった惑星の存在,彗星の軌道と戻り時間や丁度過去10年に彗星軌道を行く他の星の存在を説明し予測した.
実際に宇宙探査の領域では,数学的技術は月や火星や他の惑星に到達する有効な軌道を計画し誘導するためや,土星へのカッシニ・ミッションからの最近の壮大な写真を,数億マイルの宇宙を超えて送るための,符号化,圧縮,伝達に使われる.   Tani/Katase

      *     *     *     *     *
「テ−マ・エッセイ」
  ◇ 数学と宇宙  Robert Osserman
  ◇ 宇宙の形   Sarah J.Greenwald
◇ 天体力学   Richard Montgomery
◇ 宇宙探査   Robert Osserman
◇ ブラック・ホ−ルからダ−ク・エネルギ−へ:21世紀の宇宙論
         Robert Osserman