ブログ

情報処理・パソコン 2重振り子(振幅の大きいとき)★

■2重振り子(振幅の大きいとき)

微小な振幅であるならば,解析的な解があり,あまり複雑でない周期的な運動になることを前回に学習しました.
しかし,振幅が大きくなると,ラグランジュ関数 L の近似ができませんので,ラグランジュ方程式は解けません.
しかし,将来,誰かが巧妙な方法で解くのではないかと期待し,最悪そのような解析的な解は存在しないとしても,
振動範囲が小な場合と本質的に大差はないのではないかと想像するのが自然なことでした.
系のラグランジュ関数 L は全く正しいし,ラグランジュ方程式も正しいのですから,
解析的に解けないと言っても心配ないのではと思うでしょう.

しかし,実験ではとんでもない現象が見られました.
コンピュータを用いた計算が高度になり,力ずくで動きのシミュレーションがなされるようになりました.
正しい方程式は実在するのですから,関数による軌道記述は出来なくても,動きは逐一決定されるはずです.
しかし,初期条件(初期値)により,予想もつかない挙動が見られます(カオス)

◆第1の動画は実験
スタートする初期値によって運動の様子は異なります:

◆第2の動画はシミュレーション
Double Pendulum Chaos Light Writing (computer simulation) 1

タグ 解析